1
|
Wang X, Guo Q, Pan L, Nie C, Bi Y, Qin Y, Xie F, Du F, Peng Y, Wang B, Liu R, Wang H, Hong Q, Liu K. High-throughput screening of acetals/ketals in edible essences via GC-Orbitrap-MS and their formation rates at room temperature. Food Chem 2025; 472:142921. [PMID: 39827565 DOI: 10.1016/j.foodchem.2025.142921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Flavors contain active aldehydes and ketones that react with glycerol and propylene glycol to form acetals and ketals. The identification of acetals and ketals is challenging due to the incomplete information in mass spectral libraries. This study examines the reaction kinetics of 36 aldehydes and ketones with propylene glycol and glycerol, and establishes a high sensitivity and throughput screening method for 185 acetals and ketals using GC-Orbitrap-MS. Formation rates of acetals and ketals at room temperature, and influencing factors like steric hindrance, boiling point, and molecular size were explored. A high-resolution mass spectrometry database was established through model reactions and 10 market-purchased edible essences were analyzed. The analysis of edible essences showed that the detected analytes closely correspond to aldehyde and ketone species prone to hydroxyl-aldehyde condensation reactions at room temperature. This method offers high sensitivity, throughput, and accuracy for rapid screening of acetals and ketals in essences.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China.
| | - Qiong Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Lining Pan
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Cong Nie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Yiming Bi
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Yaqiong Qin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Fangqi Du
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Yuhan Peng
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Bing Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Ruihong Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Hui Wang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China.
| | - Qunye Hong
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Kejian Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Harmoko H, Kartasasmita RE, Munawar H, Rohdiana D, Kurniawan F, Tjahjono DH, Fernández-Alba AR. Evaluation of 9,10-anthraquinone contamination in tea products from Indonesian manufacturers and its carcinogenic risk to consumer health. Food Chem Toxicol 2025; 196:115239. [PMID: 39778645 DOI: 10.1016/j.fct.2025.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
This study aimed to determine 9,10-anthraquinone (AQ) levels in Indonesian tea products from different manufacturers and assess the AQ's associated health risks. AQ levels increased significantly during withering and drying stages, using pinewood as a heat source. Generally, black tea was highly contaminated by AQ followed by green tea, oolong tea, and white tea. Out of a total of 116 samples from manufacturers using wood pellets as a heat source, 13% (15/116) of samples were contaminated with AQ exceeding the EU maximum residue level (MRL), and after accounting for measurement uncertainty, this value decreased to only 2% (2/116) that were deemed non-compliant. In contrast, 88% (57/65) and 50% (7/14) of tea samples were contaminated with AQ exceeding the EU MRL when manufacturers used pinewood and palm kernel shells as heat sources, respectively. However, based on our estimation, the risk level due to AQ exposure from Indonesian tea is still manageable, as indicated by calculating incremental lifetime cancer risk, <10⁻⁶ across all conditions studied (age group, type of tea, and heat source).
Collapse
Affiliation(s)
- Harmoko Harmoko
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia; Directorate of Standardization and Quality Control, Ministry of Trade, Republic of Indonesia, Jl. Raya Bogor Km. 26, Ciracas, Jakarta Timur, 13740, Indonesia.
| | - Rahmana Emran Kartasasmita
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia.
| | - Hasim Munawar
- Research Center for Chemistry, National Research and Innovation Agency, Gd. 452 Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, Banten, 15314, Indonesia
| | - Dadan Rohdiana
- Department of Food Technology, Faculty of Agricultural Technology, Al Ghifari University, Indonesia
| | - Fransiska Kurniawan
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Daryono Hadi Tjahjono
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia.
| | - Amadeo R Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N°, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
3
|
Bao S, Qian J, Qiu T, Jiang W, Gu W, Qu Y, Bai X, Yu X, Jiang Y, Tang S, Lv Y, Shi X, Lu Y. Evaluation of various mass spectrometry mode based on gas chromatography for quantifying the polycyclic aromatic hydrocarbon metabolites in human urine. J Chromatogr A 2025; 1739:465521. [PMID: 39566290 DOI: 10.1016/j.chroma.2024.465521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) are frequently used as biomarkers to assess human exposure to polycyclic aromatic hydrocarbons (PAHs), which are typically present in minute concentrations in the human body. Although several studies have outlined methods for measuring OH-PAHs in human urine, these approaches may have limitations concerning the range of compounds detected, the sample volume required for pre-treatment, accuracy, and instrument maintenance costs. Advances in mass spectrometry technology have facilitated the use of various mass spectrometry modes based on gas chromatography. It is essential to evaluate different mass spectrometry modes to identify a more reliable and practical method for quantifying OH-PAHs in urine. Our comparative analysis of three gas chromatography-mass spectrometry modes revealed that advanced electron ionization (AEI) mode exhibited greater sensitivity for determination compared to electron ionization (EI) mode in tandem mass spectrometry. The method validation criteria were satisfied by GC-AEI-MS/MS, which demonstrated acceptable measurement errors (MEs) ranging from -23.0 % to 19.5 %, recoveries between 81.6 % and 112.1 %, and precision levels below 10.1 %. Furthermore, the reliability and accuracy of the GC-AEI-MS/MS method were corroborated through Intraclass Correlation Coefficient (ICC) evaluation (values > 0.75), participation in external proficiency testing programs (G-EQUAS), and analysis of certified reference materials, which exhibited a relative deviation of <6.1 %. In summary, GC-AEI-MS/MS is a robust and reliable method for analyzing urine samples and conducting large-scale human biological monitoring. It was employed to determine 16 OH-PAHs in human urine as part of the China National Human Biomonitoring Program (CNHBM).
Collapse
Affiliation(s)
- Shan Bao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiankun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Tian Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Weilong Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xue Bai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaohong Yu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yuchen Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Liu J, Zhang X, Zhu Y, Wang S, Hu X, Ling M, Li D, Duan C, Mu H, Zhu B, Lan Y. Exploring the aroma profiles and color characteristics of chardonnay wines from the eastern foothills of Ningxia Helan Mountain in China: A Flavoromics approach. Food Chem X 2024; 24:102038. [PMID: 39659679 PMCID: PMC11629580 DOI: 10.1016/j.fochx.2024.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
This study assessed the chemosensory characteristics of Chardonnay wines from the eastern foothills of the Ningxia Helan Mountain, China. Using Check-All-That-Apply (CATA) and Descriptive Analysis (DA), 29 wines were categorized into lively (QTX and XX sub-regions, marked by citrus and floral aroma) and implicit (YN sub-region, marked by truffle and kerosene aroma) aroma styles. GC-Quadrupole-MS and GC-Orbitrap-MS identified 191 volatile compounds. Subsequent OPLS-DA analysis underscored those volatile compounds, including 1-hexanol, 2-phenylethyl ester, butanedioic acid, diethyl ester, and phenylacetaldehyde, likely form the fundamental volatile framework of the distinct aroma styles. HPLC-QqQ-MS/MS analysis identified 26 non-volatile phenolic compounds. Wines from the YN region exhibited a notable yellowish hue, likely due to their higher flavanol content. This study offers insights into Chardonnay wines' chemistry and sensory traits, guiding vintners to optimize viticulture and oenology practices, and empowering consumers to select wines based on unique aromas and quality.
Collapse
Affiliation(s)
- Jiani Liu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xinyue Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuying Wang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyue Hu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, “The Belt and Road” International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Demei Li
- College of Food Science and Engineering, “The Belt and Road” International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Haibin Mu
- Collaborative innovation Center of Eastern Foothills of Helan Mountain Wine Industry Technology, Yinchuan 750104, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
5
|
Li H, Hu Y, Lin Z, Yan X, Sun C, Yao D. Carbon dots-based stimuli-responsive hydrogel for in-situ detection of thiram on fruits and vegetables. Food Chem 2024; 460:140405. [PMID: 39053272 DOI: 10.1016/j.foodchem.2024.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Hu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhen Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xu Yan
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Szeitz A, Sutton AG, Hallam SJ. A matrix-centered view of mass spectrometry platform innovation for volatilome research. Front Mol Biosci 2024; 11:1421330. [PMID: 39539739 PMCID: PMC11557394 DOI: 10.3389/fmolb.2024.1421330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Volatile organic compounds (VOCs) are carbon-containing molecules with high vapor pressure and low water solubility that are released from biotic and abiotic matrices. Because they are in the gaseous phase, these compounds tend to remain undetected when using conventional metabolomic profiling methods. Despite this omission, efforts to profile VOCs can provide useful information related to metabolic status and identify potential signaling pathways or toxicological impacts in natural or engineered environments. Over the past several decades mass spectrometry (MS) platform innovation has instigated new opportunities for VOC detection from previously intractable matrices. In parallel, volatilome research linking VOC profiles to other forms of multi-omic information (DNA, RNA, protein, and other metabolites) has gained prominence in resolving genotype/phenotype relationships at different levels of biological organization. This review explores both on-line and off-line methods used in VOC profiling with MS from different matrices. On-line methods involve direct sample injection into the MS platform without any prior compound separation, while off-line methods involve chromatographic separation prior to sample injection and analyte detection. Attention is given to the technical evolution of platforms needed for increasingly resolved VOC profiles, tracing technical progress over time with particular emphasis on emerging microbiome and diagnostic applications.
Collapse
Affiliation(s)
- Andras Szeitz
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika G. Sutton
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Steven J. Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Jo J, Son Y, Park MK, Lee JY, Chu H, Ahn YG. Statistical comparison for assessing agreement between two mass spectrometric methods for the analysis of polychlorinated dibenzo-p-dioxins and furans (PCDDs/Fs) in contaminated soils. CHEMOSPHERE 2024; 363:142806. [PMID: 38986783 DOI: 10.1016/j.chemosphere.2024.142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
A gas chromatography coupled to high-resolution mass spectrometry (GC-HR/MS) has been used as the standard method for the quantification of polychlorinated dibenzo-p-dioxins and furans (PCDDs/Fs), which are regulated at screening and action levels in the environment. However, several alternative methods have been attempted due to the disadvantage of its high cost. Although a gas chromatography with triple quadrupole mass spectrometry (GC-QqQ-MS/MS) has been used in a wide variety of sample matrices, showing that they are interchangeable, there has been a lack of comprehensive studies on statistical agreement with GC-HR/MS. In this study, a pairwise comparison of the total concentrations of PCDDs/Fs in 90 soil field samples obtained by two mass spectrometric methods was performed using the Passing-Bablok (P&B) regression and Bland-Altman (B&A) analysis for the method comparison. According to the result of the B&A analysis, the concentration range of PCDDs/Fs was between 98.2 and 1760 pg/g showed good agreement between two methods at the 95 % confidence level (CL). Although there was a large discrepancy between the two methods in the low concentrations (<16.5 pg/g of PCDDs/Fs), this result was similar to the P&B regression analysis. As the verification results by B&A and P&B regression analysis, the interchangeable concentration range between the two methods was confirmed to be adequate for the monitoring of PCDDs/Fs regulating levels in soils.
Collapse
Affiliation(s)
- Jungmin Jo
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, South Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, 39177, South Korea
| | - Min-Kyu Park
- Department of Environmental Engineering, Jeju National University, 63243, South Korea
| | - Ji Yi Lee
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Haena Chu
- Metropolitan Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150, Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, South Korea
| | - Yun Gyong Ahn
- Metropolitan Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150, Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, South Korea.
| |
Collapse
|
8
|
Wei Y, Huang C, Chen L, Chen Q, Hou J, Wu H, Han C, Shen Y. Determination of chlordimeform and its metabolite residue in milk by gas chromatography-tandem mass spectrometry. Food Res Int 2024; 192:114754. [PMID: 39147558 DOI: 10.1016/j.foodres.2024.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Herein, the determination of chlordimeform and its metabolite 4-chloro-2-methylaniline residue in milk was performed for the first time using gas chromatography-tandem mass spectrometry (GC-MS/MS). Samples were extracted using acetonitrile, and cleaned using a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Separation was performed using the DB-17 MS column. It was detected in a selected reaction monitoring (SRM) mode and quantified using a matrix-matched isotope internal standard method. Under optimal conditions, a good linear relationship was observed in the concentration range of 10-200 µg/kg. The limit of quantitation was 10.0 µg/kg. The spiked recoveries for the target substance ranged from 84.5 % to 107.3 %, with relative standard deviations (RSD) of <7.2 %. The spiked samples were further confirmed by gas chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (GC-Orbitrap HRMS). The combined method resulted in high accuracy and sensitivity and was suitable for the determination of chlordimeform and its metabolite 4-chloro-2-methylaniline residue in milk.
Collapse
Affiliation(s)
- Yunxiao Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chaoqun Huang
- Technical Center of Hangzhou Customs, Hangzhou 310008, China
| | - Li Chen
- Technical Center of Hangzhou Customs, Hangzhou 310008, China
| | - Qinke Chen
- Technical Center of Hangzhou Customs, Hangzhou 310008, China
| | - Jianbo Hou
- Technical Center of Hangzhou Customs, Hangzhou 310008, China
| | - Huizhen Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yan Shen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Paiva AC, Teixeira CA, Hantao LW. Exploring accurate mass measurements in pixel-based chemometrics: Advancing coffee classification with GC-HRMS-A proof of concept study. J Chromatogr A 2024; 1731:465171. [PMID: 39059306 DOI: 10.1016/j.chroma.2024.465171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
This paper presents a study that assesses the application of chemometrics for classifying coffee samples in a quality control context. High-resolution and accurate mass measurements were utilized as input for pixel-based orthogonal partial least squares discriminant analysis (OPLS-DA) models. The compositional data were acquired through a fully automated workflow combining headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry (GC-HRMS) using an FT-Orbitrap® mass analyzer. A workflow centered on accurate mass measurements was successfully utilized for group-type analysis, offering an alternative to methods relying solely on MS similarity searches. The predictive models underwent thorough evaluation, demonstrating robust multivariate classification performance. Five key coffee attributes, bitterness, acidity, body, intensity, and roasting level were successfully predicted using GC-HRMS data. The results revealed strong predictive accuracy across all models, ranging from 88.9 % (bitterness) to 94.4 % (roasting level). This study represents a significant advancement in automating methods for coffee quality control, notably increasing the predictive ability of the models compared to existing literature.
Collapse
Affiliation(s)
- Andre Cunha Paiva
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), SP, Campinas, 13083-862 Brazil
| | - Carlos Alberto Teixeira
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), SP, Campinas, 13083-862 Brazil
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), SP, Campinas, 13083-862 Brazil.
| |
Collapse
|
10
|
Deng X, Ma B, Gong Y, Li J, Zhou Y, Xu T, Hao P, Sun K, Lv Z, Yu X, Zhang M. Advances in Aptamer-Based Conjugate Recognition Techniques for the Detection of Small Molecules in Food. Foods 2024; 13:1749. [PMID: 38890976 PMCID: PMC11172347 DOI: 10.3390/foods13111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Small molecules are significant risk factors for causing food safety issues, posing serious threats to human health. Sensitive screening for hazards is beneficial for enhancing public security. However, traditional detection methods are unable to meet the requirements for the field screening of small molecules. Therefore, it is necessary to develop applicable methods with high levels of sensitivity and specificity to identify the small molecules. Aptamers are short-chain nucleic acids that can specifically bind to small molecules. By utilizing aptamers to enhance the performance of recognition technology, it is possible to achieve high selectivity and sensitivity levels when detecting small molecules. There have been several varieties of aptamer target recognition techniques developed to improve the ability to detect small molecules in recent years. This review focuses on the principles of detection platforms, classifies the conjugating methods between small molecules and aptamers, summarizes advancements in aptamer-based conjugate recognition techniques for the detection of small molecules in food, and seeks to provide emerging powerful tools in the field of point-of-care diagnostics.
Collapse
Affiliation(s)
- Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Yunfei Gong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China;
| | - Yuxin Zhou
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Tianran Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Zhiyong Lv
- Dept Qual Managemet, Inner Mongolia Yili Grp. Co., Ltd., Hohhot 151100, China;
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| |
Collapse
|
11
|
Li Y, Li R, Hu X, Liu J, Liu G, Gao L, Zhang Y, Wang H, Zhu B. Changes of the volatile compounds and odors in one-stage and three-stage infant formulas during their secondary shelf-life. Curr Res Food Sci 2024; 8:100693. [PMID: 38356611 PMCID: PMC10864756 DOI: 10.1016/j.crfs.2024.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
The odor of infant formula changes due to alterations in its volatile composition during the shelf life. However, there is currently a lack of research on whether the odor changes in infant formula during the secondary shelf life, which refers to the period of repeated opening and usage in daily life. This study used headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-electrostatic orbitrap high-resolution mass spectrometry (GC-Orbitrap-MS) to investigate the volatile composition changes in one-stage and three-stage infant formulas during different stages (0 day, 3 days, and 7 days during the secondary shelf-life, i.e. simulated daily use). A total of 32 volatiles were identified, including nine aldehydes, seven ketones, four alcohols, three furans, two sulfur compounds, two esters, and five terpenoids. Of these, 16 compounds changed significantly in one-stage samples and 23 compounds in three-stage samples within 7 days of the secondary shelf-life. Further the odor of the three-stage infant formula samples was found changed substantially after 3 days of simulated use by using the triangle test. This study highlighted the considerable alterations in volatile compound composition and sensory changes during the simulated daily use and provided valuable insights for consumers in selecting and using infant formula products, as well as a new perspective for enterprises to improve the sensory quality of their products.
Collapse
Affiliation(s)
- Yilin Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Ruotong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Hu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guirong Liu
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Lipeng Gao
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Houyin Wang
- China National Institute of Standardization, Beijing, 100191, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Ba M, Li W, Song Y, Zhang Y, Xu X, Liu H, Cai Z, Hu S, Liu X, Sun T. Hydroxyl-functionalized pillar[5]arene with high separation performance for gas chromatography. Analyst 2024; 149:925-934. [PMID: 38192226 DOI: 10.1039/d3an01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Here we report the first example of employing hydroxyl-functionalized pillar[5]arene (P5A-C10-OH) as stationary phase for capillary gas chromatographic (GC) separations. The statically coated P5A-C10-OH capillary column possessed moderate polarity and column efficiency of 3233 plates per m determined by n-dodecane. As a result, the P5A-C10-OH column exhibited high-resolution capability for the mixture of 17 analytes from apolar to polar nature. Importantly, it exhibited advantageous performance for high resolution of the challenging isomers of bromonitrobenzene, chloroaniline, bromoaniline, iodoaniline and dimethylaniline with good peak shapes over the P5A-C10 and commercial HP-35 columns. In addition, eight cis-/trans-isomers with diverse types were baseline separated on the P5A-C10-OH column. And the application of detecting isomeric impurities in real samples gave strong evidence of its potential and feasibility for the viable GC analysis.
Collapse
Affiliation(s)
- Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Yuanyuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Xiang Xu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Haixin Liu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.
| |
Collapse
|
13
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
14
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Choi BS, Lee DU, Kim WS, Park CW, Choe WJ, Moon MJ. Simultaneous Screening of 322 Residual Pesticides in Fruits and Vegetables Using GC-MS/MS and Deterministic Health Risk Assessments. Foods 2023; 12:3001. [PMID: 37628000 PMCID: PMC10453053 DOI: 10.3390/foods12163001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of efficient methods for evaluating pesticide residues is essential in order to ensure the safety and quality of agricultural products since the Republic of Korea implemented the Positive List System (PLS). The objective of this research was to establish a method for the simultaneous analysis of 322 pesticide residues in fruits and vegetables (such as coffee, potato, corn, and chili pepper), using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach in combination with gas chromatography-tandem mass spectrometry (GC-MS/MS). This study introduces a robust, high-throughput GC-MS/MS method for screening the target pesticide residues in agricultural products, achieving the PLS criterion of 0.01 mg/kg LOQ. Despite some compounds not aligning with the CODEX recovery guideline, sufficient reproducibility was confirmed, attesting to the method's applicability in qualitative analyses. A health risk assessment conducted using estimated daily intake/acceptable daily intake ratios indicated low risks associated with product consumption (<0.035391%), thereby confirming their safety. This efficient method holds significant implications for the safe distribution of agricultural products, including during import inspections.
Collapse
Affiliation(s)
- Byong-Sun Choi
- Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea;
| | - Dong-Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea;
| | - Woo-Seong Kim
- Center of Food & Drug Analysis, Busan Regional Office of Food and Drug Safety, Ministry of Food and Drug Safety, Busan 47537, Republic of Korea; (W.-S.K.); (C.-W.P.)
| | - Chan-Woong Park
- Center of Food & Drug Analysis, Busan Regional Office of Food and Drug Safety, Ministry of Food and Drug Safety, Busan 47537, Republic of Korea; (W.-S.K.); (C.-W.P.)
| | - Won-Jo Choe
- Pesticides & Veterinary Drug Residues Division, National Institute of Food & Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Myung-Jun Moon
- Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
16
|
Li Q, Li B, Chen D, Zhang R, Liu S, Yang S, Li Y, Li J. Dietary exposure risk assessment of pyrethroids in fruits and vegetables: a national scale investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84620-84630. [PMID: 37369895 DOI: 10.1007/s11356-023-28213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The pyrethroids (PYRs) were extensively used to increase agriculture outputs. However, the cumulative exposures of PYRs would bring about potential risks through food intake. It is an urgent requirement to explore the cumulative exposures on the fruits and vegetables. In this study, a total of 1720 samples incorporating eight primary fruits and vegetables collected around China were investigated to assess the health risk for adults and children from eight PYRs. The relative potency factor (RPF) method was employed to reveal both chronic and acute cumulative exposure. As a result, the hazard index (HI) were 0.004 ~ 0.200% and 11.85 ~ 99.19% for chronic and acute cumulative dietary exposure, respectively. The national wide investigation indicated the cumulative assessments were not hazardous. Besides, the acute intake of pear, grape, and lettuce should be paid on more attention, particularly. This study provides compelling evidence to develop relative policy and regulation to improve the food quality and safety.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Beijing, 100093, People's Republic of China
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Hainan, 570314, People's Republic of China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Beijing, 100093, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Beijing, 100093, People's Republic of China
| | - Shupeng Yang
- Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Beijing, 100093, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Beijing, 100093, People's Republic of China
| | - Jianxun Li
- Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Beijing, 100093, People's Republic of China.
| |
Collapse
|
17
|
Liu J, Zhao H, Chang X, Li X, Zhang Y, Zhu B, Wang X. Investigation of aroma characteristics of seven Chinese commercial sunflower seed oils using a combination of descriptive Analysis, GC-quadrupole-MS, and GC-Orbitrap-MS. Food Chem X 2023; 18:100690. [PMID: 37179977 PMCID: PMC10172861 DOI: 10.1016/j.fochx.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The aroma characteristics of seven commercial Chinese sunflower seed oils were investigated in this study using descriptive analysis, headspace solid-phase microextraction coupled with GC-quadrupole-MS (LRMS, low-resolution mass spectrometry), and GC-Orbitrap-MS (HRMS, high-resolution mass spectrometry). GC-Orbitrap-MS quantified 96 compounds, including 18 alcohols, 12 esters, 7 ketones, 20 terpenoids, 11 pyrazines, 6 aldehydes, 6 furans, 6 benzene ring-containing compounds, 3 sulfides, 2 alkanes, and 5 nitrogen-containing compounds. Moreover, 22 compounds including 5 acids, 1 amide, and 16 aldehydes were quantified using GC-Quadrupole-MS. To our knowledge, 23 volatile compounds were reported for the first time in sunflower seed oil. All the seven samples were found to have a 'roasted sunflower seeds' note, 'sunflower seeds aroma' note and 'burnt aroma' note and only five of them had 'fried instant noodles' note, three had 'sweet' note and two had 'puffed food' note. Partial least squares regression was used to screen the candidate key volatiles that caused the aroma differences among these seven samples. It was observed that 'roasted sunflower seeds' note was positively correlated with 1-octen-3-ol, n-heptadehyde and dimethyl sulfone, whereas the 'fried instant noodles' and 'puffed food' demonstrated a positive correlation with pentanal, 3-methylbutanal, hexanal, (E)-2-hexenal and 2-pentylfuran. Our findings provide information to the producers and developers for quality control and improvement of sunflower seed oil.
Collapse
Affiliation(s)
- Jiani Liu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Huimin Zhao
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Xiaomin Chang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaolong Li
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yu Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Corresponding author at: Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (B. Zhu).
| | - Xiangyu Wang
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China
- Beijing Engineering Laboratory of Geriatric Nutrition Food Research, Beijing 102209, China
- Corresponding author at: Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (B. Zhu).
| |
Collapse
|
18
|
Zhou Y, Yu Y, Huang Q, Zheng H, Zhan R, Chen L, Meng X. Simultaneous Determination of 26 Pesticide Residues in Traditional Chinese Medicinal Leeches by Modified QuEChERS Coupled with HPLC-MS/MS. ACS OMEGA 2023; 8:12404-12410. [PMID: 37033865 PMCID: PMC10077569 DOI: 10.1021/acsomega.3c00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) pretreatment technique combined with HPLC-MS/MS was established to detect 26 pesticides in traditional Chinese medicinal leeches. The sample was extracted by acetonitrile solution with sodium acetate-0.1% (v/v) acetic acid as a buffer system, then cleaned up by a mixture of 750 mg of MgSO4, 150 mg of C18, and 150 mg of PSA, separated by an ACQUITY BEH C18 column, and determined in the dynamic multiple reaction mode. Under the optimized conditions, the peak areas of the 26 pesticides in leeches showed good linearity (r > 0.99) between their mass concentrations from 1 to 100 μg/L. At the spike levels of 10, 20, and 100 μg/kg, the recoveries of 26 pesticides in leeches were 72.9-101.6% with an RSD of 1.1-12.8%, an LOQ of 10 μg/kg, and an LOD of 0.1-5.4 μg/kg. This method is easy, rapid, sensitive, and practical and meets the requirements of pesticide residue detection standards.
Collapse
Affiliation(s)
- Ying Zhou
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Yahui Yu
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Qian Huang
- Jingdezhen
Nursing School, Jingdezhen 333000, P.R. China
| | - Huixin Zheng
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Ruyi Zhan
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Luting Chen
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Xingang Meng
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| |
Collapse
|
19
|
Yang Y, Tong X, Chen Y, Zhou R, Cai G, Wang T, Zhang S, Shi S, Guo Y. A dual-emission carbon dots-based nonenzymatic fluorescent sensing platform for simultaneous detection of parathion-methyl and glyphosate. Food Chem 2023; 403:134346. [DOI: 10.1016/j.foodchem.2022.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
20
|
Unified Method for Target and Non-Target Monitoring of Pesticide Residues in Fruits and Fruit Juices by Gas Chromatography-High Resolution Mass Spectrometry. Foods 2023; 12:foods12040739. [PMID: 36832813 PMCID: PMC9955418 DOI: 10.3390/foods12040739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A new polyvalent wide-scope analytical method, valid for both raw and processed (juices) fruits, combining target and non-target strategies, has been developed and validated to determine low concentrations of 260 pesticides, as well as many potential non-target substances and metabolites. The target approach has been validated according to SANTE Guide requirements. Trueness, precision, linearity, and robustness values were validated in raw fruit (apple) and juice (apple juice) as representative solid and liquid food commodities. Recoveries were between 70-120% and two ranges of linearity were observed: 0.5-20 μg kg-1 (0.5-20 μg L-1 apple juice) and 20-100 μg kg-1 (20-100 μg L-1 apple juice). The limits of quantification (LOQs) reached were lower than 0.2 μg kg-1 in apple (0.2 μg L-1 apple juice) in most cases. The developed method, based on QuEChERS extraction followed by gas chromatography-high resolution mass spectrometry (GC-HRMS), achieves part-per-trillions lower limits, which allowed the detection of 18 pesticides in commercial samples. The non-target approach is based on a retrospective analysis of suspect compounds, which has been optimized to detect up to 25 additional compounds, increasing the scope of the method. This made it possible to confirm the presence of two pesticide metabolites which were not considered in the target screening, phtamlimide and tetrahydrophthalimide.
Collapse
|
21
|
Mazza FC, de Souza Sampaio NA, von Mühlen C. Hyperspeed method for analyzing organochloride pesticides in sediments using two-dimensional gas chromatography–time-of-flight mass spectrometry. Anal Bioanal Chem 2022; 415:2629-2640. [PMID: 36495323 DOI: 10.1007/s00216-022-04464-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Pesticides are traditionally analyzed using conventional gas chromatography. When fast chromatography is associated with comprehensive two-dimensional gas chromatography (GC × GC), the resulting method presents high-resolution separation associated with a higher chromatographic speed. In the present work, a method for pesticide analysis in sediment samples was developed using quick, easy, cheap, effective, rugged, and safe extraction (QuEChERS) and a hyperspeed GC × GC separation. The QuEChERS procedure reported in the literature was extended to incorporate the analytes tetrachloro-m-xylene, decachlorobiphenyl, trans-chlordane, chlordane, endosulfan lactone, and endosulfan ether. To understand the chromatographic method improvement achieved, the recent concept of average theoretical peak time (ATPT) was used. The ATPT improved from that of the traditional GC × GC separation to the proposed method, and the separation speed can be classified as a hyperspeed separation. The limit of detection and quantitation of the compounds in the standard mix ranged from 0.39 to 17.96 µg L-1 and 1.18 to 54.43 µg L-1, respectively. The method showed acceptable RSD% (relative standard deviation) values and little interference of the sediment matrix in the extraction procedure. The developed method was applied to the determination of a mixture of 19 compounds in 16 sediment samples from the Pirapetinga River and Paraíba do Sul River in Brazil.
Collapse
Affiliation(s)
- Felipe Cury Mazza
- Faculty of Technology, State University of Rio de Janeiro-UERJ, Polo Industrial, Rodovia Presidente Dutra, Km 298, Resende, 27537-000, Brazil
| | - Nilo Antônio de Souza Sampaio
- Faculty of Technology, State University of Rio de Janeiro-UERJ, Polo Industrial, Rodovia Presidente Dutra, Km 298, Resende, 27537-000, Brazil
| | - Carin von Mühlen
- Faculty of Technology, State University of Rio de Janeiro-UERJ, Polo Industrial, Rodovia Presidente Dutra, Km 298, Resende, 27537-000, Brazil.
| |
Collapse
|
22
|
Abo-Gaida AAH, Shendy AH, Taha SM, Mahmoud HA, Attallah ER, Fernandez-Alba AR. Fennel‐seeds extract as an analyte protectant for the GC‐MS/MS residue analysis of 182 pesticide in strawberries: Comparing the manual mixing and sandwich injection. JOURNAL OF CHROMATOGRAPHY OPEN 2022; 2:100056. [DOI: 10.1016/j.jcoa.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Lee SH, Kwak SY, Sarker A, Moon JK, Kim JE. Optimization of a Multi-Residue Analytical Method during Determination of Pesticides in Meat Products by GC-MS/MS. Foods 2022; 11:2930. [PMID: 36230007 PMCID: PMC9563028 DOI: 10.3390/foods11192930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, a multi-residue analysis was developed for 32 compounds, including pesticides and metabolites, in five meat products using gas chromatography-tandem mass spectrometry (GC-MS/MS). The validation of the developed analytical method was also evaluated in accordance with Codex Alimentarius guidelines. Aminopropyl (NH2), C18, and florisil solid phase extraction (SPE) cartridges were used to evaluate and optimize the cleanup procedure of the tested samples prior to GC-MS/MS analysis. Based on the analytical performance, the C18 SPE cartridge was deemed to be the most suitable among the examined SPE cartridges. The optimized method demonstrated that 29 out of 32 tested compounds acquired good linearity (R2 ≥ 0.99), and 25 tested compounds displayed the method limit of quantification (MLOQ) ≤ 0.01 mg/kg. Out of the 32 tested compounds, only 21 compounds met the acceptable analytical criteria for the lard and tallow samples, compared to 27 compounds in the beef, pork, and chicken samples that falls within the acceptable standards for recovery (70-120%) and analytical precision (relative standard deviation RSD ≤ 20%). The average matrix effect was widely varied (20.1-64.8%) in the studied meat samples that were affected by either ion enhancement or suppression. In particular, in the lard sample, 13 compounds showed poor recovery and analytical precision due to ion suppression. Thus, the matrix effect (ME) was considered a critical factor during multi-residue pesticide analysis in different meat products. In conclusion, this developed analytical method can be used as a routine monitoring system for residual pesticide analysis in livestock products with acceptable analytical standards. Further meticulous analytical studies should be optimized and validated for multi-residue pesticide analysis in diversified meat products.
Collapse
Affiliation(s)
- Sang-Hyeob Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Se-Yeon Kwak
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Aniruddha Sarker
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Joon-Kwan Moon
- School of Plant Resources and Landscape Architecture, Hankyong National University, Anseong 17579, Korea
| | - Jang-Eok Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
24
|
Liu Y, Li N, Li X, Qian W, Liu J, Su Q, Chen Y, Zhang B, Zhu B, Cheng J. A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines. Sci Data 2022; 9:496. [PMID: 35963960 PMCID: PMC9376066 DOI: 10.1038/s41597-022-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines. Measurement(s) | volatile compounds | Technology Type(s) | GC-Orbitrap-MS |
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyao Li
- School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenchao Qian
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxin Cheng
- China People's Police University, Hebei, 065000, China.
| |
Collapse
|
25
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
26
|
Wei M, Liu X, Xie P, Lei Y, Yu H, Han A, Xie L, Jia H, Lin S, Bai Y, Sun B, Zhang S. Characterization of Volatile Profiles and Correlated Contributing Compounds in Pan-Fried Steaks from Different Chinese Yellow Cattle Breeds through GC-Q-Orbitrap, E-Nose, and Sensory Evaluation. Molecules 2022; 27:3593. [PMID: 35684525 PMCID: PMC9182176 DOI: 10.3390/molecules27113593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study focused on characterizing the volatile profiles and contributing compounds in pan-fried steaks from different Chinese yellow cattle breeds. The volatile organic compounds (VOCs) of six Chinese yellow cattle breeds (bohai, jiaxian, yiling, wenshan, xinjiang, and pingliang) were analyzed by GC-Q-Orbitrap spectrometry and electronic nose (E-nose). Multivariate statistical analysis was performed to identify the differences in VOCs profiles among breeds. The relationship between odor-active volatiles and sensory evaluation was analyzed by partial least square regression (PLSR) to identify contributing volatiles in pan-fried steaks of Chinese yellow cattle. The results showed that samples were divided into two groups, and 18 VOCs were selected as potential markers for the differentiation of the two groups by GC-Q-Orbitrap combined multivariate statistical analysis. YL and WS were in one group comprising mainly aliphatic compounds, while the rest were in the other group with more cyclic compounds. Steaks from different breeds were better differentiated by GC-Q-Orbitrap in combination with chemometrics than by E-nose. Six highly predictive compounds were selected, including 3-methyl-butanal, benzeneacetaldehyde, 2-ethyl-6-methyl-pyrazine, 2-acetylpyrrole, 2-acetylthiazole, and 2-acetyl-2-thiazoline. Sensory recombination difference and preference testing revealed that the addition of highly predictive compounds induced a perceptible difference to panelists. This study provides valuable data to characterize and discriminate the flavor profiles in pan-fried steaks of Chinese yellow cattle.
Collapse
Affiliation(s)
- Meng Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang 050035, China; (A.H.); (L.X.)
| | - Xiaochang Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Peng Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Yuanhua Lei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Haojie Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Aiyun Han
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang 050035, China; (A.H.); (L.X.)
| | - Libin Xie
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang 050035, China; (A.H.); (L.X.)
| | - Hongliang Jia
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (H.J.); (S.L.)
| | - Shaohua Lin
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (H.J.); (S.L.)
| | - Yueyu Bai
- Henan Animal Health Supervision, Zhengzhou 450046, China;
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Baozhong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Songshan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| |
Collapse
|
27
|
Liu Y, Zhao Y, Li S, Liu D. Multi-residue analysis, dissipation behavior, and final residues of four insecticides in supervised eggplant field. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1086-1099. [PMID: 35537031 DOI: 10.1080/19440049.2022.2040746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, the residues of four insecticides, spirotetramat, flonicamid, thiamethoxam, and tolfenpyrad, and their metabolites, including spirotetramat-enol, spirotetramat-mono-hydroxy, spirotetramat-keto-hydroxy, spirotetramat-enol-glucoside, 4-trifluoromethylnicotinamide, 4-trifluoromethylnicotinic acid, N-(4-trifluoromethylnicotinoyl) glycine, and clothianidin, were assessed using a single analysis method. The samples were extracted by acetonitrile, then purified by dispersive solid phase extraction and quantified using high performance liquid chromatography tandem mass spectrometry. The average recovery rate of 12 target compounds was 73.5-103.7%, the relative standard deviation was 1.1-18.3%, and the limit of quantification was 0.01-0.05 mg/kg. The results showed good linearity (R2 >0.99), meeting the requirements of the pesticide residue analysis. The dissipation half-lives of the four insecticides in eggplant were 3.4-14.5 days. After the last applications at 7 and 10 days, the final residues of the four insecticides in eggplant were <0.01-0.21, 0.085-0.26, <0.05-0.078, and <0.01-0.21 mg/kg, respectively. The dissipation and final residue results could provide a theoretical basis for the rational application of four insecticides in eggplant fields.HighlightsHPLC-MS/MS for simultaneous determination of four insecticides and their metabolites in eggplant fields.The dissipation dynamics and final residue of the target compounds in field eggplant were studied.Guidance for the safe use of four insecticides on eggplant.
Collapse
Affiliation(s)
- Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuanling Zhao
- Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
pyAIR-A New Software Tool for Breathomics Applications-Searching for Markers in TD-GC-HRMS Analysis. Molecules 2022; 27:molecules27072063. [PMID: 35408461 PMCID: PMC9000534 DOI: 10.3390/molecules27072063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Volatile metabolites in exhaled air have promising potential as diagnostic biomarkers. However, the combination of low mass, similar chemical composition, and low concentrations introduces the challenge of sorting the data to identify markers of value. In this paper, we report the development of pyAIR, a software tool for searching for volatile organic compounds (VOCs) markers in multi-group datasets, tailored for Thermal-Desorption Gas-Chromatography High Resolution Mass-Spectrometry (TD-GC-HRMS) output. pyAIR aligns the compounds between samples by spectral similarity coupled with retention times (RT), and statistically compares the groups for compounds that differ by intensity. This workflow was successfully tested and evaluated on gaseous samples spiked with 27 model VOCs at six concentrations, divided into three groups, down to 0.3 nL/L. All analytes were correctly detected and aligned. More than 80% were found to be significant markers with a p-value < 0.05; several were classified as possibly significant markers (p-value < 0.1), while a few were removed due to background level. In all group comparisons, low rates of false markers were found. These results showed the potential of pyAIR in the field of trace-level breathomics, with the capability to differentially examine several groups, such as stages of illness.
Collapse
|
29
|
Liu Y, Qian X, Xing J, Li N, Li J, Su Q, Chen Y, Zhang B, Zhu B. Accurate Determination of 12 Lactones and 11 Volatile Phenols in Nongrape Wines through Headspace-Solid-Phase Microextraction (HS-SPME) Combined with High-Resolution Gas Chromatography-Orbitrap Mass Spectrometry (GC-Orbitrap-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1971-1983. [PMID: 35112570 DOI: 10.1021/acs.jafc.1c06981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper clarifies the contribution of lactones and volatile phenols to the aroma of nongrape wine. A target method for the simultaneous determination of these two kinds of volatiles in nongrape wines was developed using headspace-solid-phase microextraction (HS-SPME) combined with high-resolution gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap-MS). A high-resolution mass spectrometry database including 12 lactones and 11 volatile phenols was established for qualitative accuracy. Different matrix-matched calibration standards should be prepared for specific samples due to the matrix effects. The method was successfully validated and applied in three nongrape wines. Hawthorn wine contained more lactones (δ/γ-hexalactone, δ/γ-nonalactone, δ/γ-decalactone, γ-undecalactone, δ/γ-dodecalactone, C10 massoia lactone, and whiskey lactone), while blueberry wine contained more volatile phenols (especially 4-vinylguaiacol and 4-ethylguiaiacol). Goji berry wines contained certain concentrations of δ-nonalactone, γ-nonalactone, δ-hexalactone, and 3-ethyl phenol. This study demonstrated that HS-SPME-GC-Orbitrap-MS can be applied for the accurate quantification of trace aroma compounds such as lactones and volatile phenols in fruit wines.
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xu Qian
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | | | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Junlong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
30
|
Pesticide residues in vegetables produced in rural south-western Uganda. Food Chem 2022; 370:130972. [PMID: 34788944 DOI: 10.1016/j.foodchem.2021.130972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022]
Abstract
This study investigated seven pesticides in vegetables produced in rural South-western Uganda to determine their suitability for human consumption. Pesticide residue concentrations (ppm) were determined using QuEChERS method, LC-MS/MS, GC-MS/MS and UV-Vis. Cypermethrin, dimethoate, metalaxyl, profenofos, malathion, dichlorvos and mancozeb concentrations detected in sprayed samples ranged between 0.00403 and 0.05350, 0.17478-62.60874, 0.12890-3.55681, 0.00107-0.59722, 0.03144-0.63328, 0.00240-0.34102 and 0.00001-0.00244, respectively. The residues exceeded MRLs in sprayed samples (59.52%), unsprayed samples (18%) and market samples (8%). The quality index of the market vegetables was found to be optimal (14.29%), good (75%), adequate (3.57%) and inadequate (14.29%). Pesticide residues may lower food quality and pose risk to human health. Therefore, regulation and monitoring pesticide residues in vegetables produced in south-western Uganda in order to avoid harmful effects on human health would be paramount.
Collapse
|
31
|
Abo-Gaida AAH, Shendy AH, taha SM, Mahmoud HA, Attallah ER. Development and Validation of a Streamlined Approach Utilizing Herbal Extracts as a Natural Analyte-Protectant for the Pesticide Residues Analyses in Strawberry Using Gc-Ms/Ms. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4006243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
32
|
Abo-Gaida AAH, Shendy AH, taha SM, Mahmoud HA, Attallah ER, Fernandez-Alba AR. Fennel Extract as an Analyte Protectant for the Residue Analysis of 182 Pesticide in Strawberries Using Gc-Ms/Ms: Comparing the Manual Mixing and Sandwich Injection. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4065297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
33
|
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem 2021; 9:813359. [PMID: 34993180 PMCID: PMC8724130 DOI: 10.3389/fchem.2021.813359] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mass spectrometry (MS) is one of the most widely used analytical techniques in many fields. Recent developments in chemical and biological researches have drawn much attention to the measurement of substances with low abundances in samples. Continuous efforts have been made consequently to further improve the sensitivity of MS. Modifications on the mass analyzers of mass spectrometers offer a direct, universal and practical way to obtain higher sensitivity. This review provides a comprehensive overview of the latest developments in mass analyzers for the improvement of mass spectrometers' sensitivity, including quadrupole, ion trap, time-of-flight (TOF) and Fourier transform ion cyclotron (FT-ICR), as well as different combinations of these mass analyzers. The advantages and limitations of different mass analyzers and their combinations are compared and discussed. This review provides guidance to the selection of suitable mass spectrometers in chemical and biological analytical applications. It is also beneficial to the development of novel mass spectrometers.
Collapse
Affiliation(s)
- Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| | - Shiying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|
34
|
Characterization of key lipids for binding and generating aroma compounds in roasted mutton by UPLC-ESI-MS/MS and Orbitrap Exploris GC. Food Chem 2021; 374:131723. [PMID: 34875435 DOI: 10.1016/j.foodchem.2021.131723] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022]
Abstract
Lipids are the key aroma formation substrates and retainers relevant to the flavor quality. The lipids in the roasted mutton were investigated by UPLC-ESI-MS/MS and Orbitrap Exploris GC. The results showed that a total of 2488 lipids from 24 subclasses were identified in the roasted mutton, including 28.21% triglyceride (TG), 14.87% phosphatidylcholine (PC), and 11.03% phosphatidylethanolamine (PE). TG (16:0_18:1_18:1) and TG (18:0_18:0_18:1) might be the predominant lipids for binding aroma compounds. 488 Differential lipids from 20 subclasses were observed based on VIP > 1 and p < 0.05. The 61 out of 488 differential lipids, especially PC and PE, might predominantly contribute to the formation of aroma compounds. A total of 13 aroma compounds were determined as the characteristic odorants in the roasted mutton, including hexanal, heptanal, and 1-octen-3-ol. PC (30: 6) and PC (28: 3) were the potential markers for the discrimination of roasted mutton.
Collapse
|
35
|
Belarbi S, Vivier M, Zaghouani W, De Sloovere A, Agasse V, Cardinael P. Comparison of Different d-SPE Sorbent Performances Based on Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Methodology for Multiresidue Pesticide Analyses in Rapeseeds. Molecules 2021; 26:6727. [PMID: 34771135 PMCID: PMC8588138 DOI: 10.3390/molecules26216727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Pesticide extraction in rapeseed samples remains a great analytical challenge due to the complexity of the matrix, which contains proteins, fatty acids, high amounts of triglycerides and cellulosic fibers. An HPLC-MS/MS method was developed for the quantification of 179 pesticides in rapeseeds. The performances of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method were evaluated using different dispersive solid-phase extraction (d-SPE) sorbents containing common octadecylsilane silica/primary-secondary amine adsorbent (PSA/C18) and new commercialized d-SPE materials dedicated to fatty matrices (Z-Sep, Z-Sep+, and EMR-Lipid). The analytical performances of these different sorbents were compared according to the SANTE/12682/2019 document. The best results were obtained using EMR-Lipid in terms of pesticide average recoveries (103 and 70 of the 179 targeted pesticides exhibited recoveries within 70-120% and 30-70%, respectively, with low RSD values). Moreover, the limits of quantification (LOQ) range from 1.72 µg/kg to 6.39 µg/kg for 173 of the pesticides. Only the recovery for tralkoxydim at 10 μg/kg level was not satisfactory (29%). The matrix effect was evaluated and proved to be limited between -50% and 50% for 169 pesticides with this EMR-Lipid and freezing. GC-Orbitrap analyses confirmed the best efficiency of the EMR-Lipid sorbent for the purification of rapeseeds.
Collapse
Affiliation(s)
- Saida Belarbi
- Laboratoire SMS-EA3233, Normandie University, FR3038 INC3M, Unirouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France;
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Martin Vivier
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Wafa Zaghouani
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Aude De Sloovere
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Valerie Agasse
- Laboratoire SMS-EA3233, Normandie University, FR3038 INC3M, Unirouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France;
| | - Pascal Cardinael
- Laboratoire SMS-EA3233, Normandie University, FR3038 INC3M, Unirouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France;
| |
Collapse
|
36
|
Campanale C, Massarelli C, Losacco D, Bisaccia D, Triozzi M, Uricchio VF. The monitoring of pesticides in water matrices and the analytical criticalities: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Kösling P, Rüger CP, Schade J, Fort KL, Ehlert S, Irsig R, Kozhinov AN, Nagornov KO, Makarov A, Rigler M, Tsybin YO, Walte A, Zimmermann R. Vacuum Laser Photoionization inside the C-trap of an Orbitrap Mass Spectrometer: Resonance-Enhanced Multiphoton Ionization High-Resolution Mass Spectrometry. Anal Chem 2021; 93:9418-9427. [PMID: 34170684 DOI: 10.1021/acs.analchem.1c01018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
State-of-the-art mass spectrometry with ultraviolet (UV) photoionization is mostly limited to time-of-flight (ToF) mass spectrometers with 1000-10 000 m/Δm mass resolution. However, higher resolution and higher spectral dynamic range mass spectrometry may be indispensable in complex mixture characterization. Here, we present the concept, implementation, and initial evaluation of a compact ultrahigh-resolution mass spectrometer with gas-phase laser ionization. The concept is based on direct laser photoionization in the ion accumulation and ejection trap (C-trap) of an Orbitrap mass spectrometer. Resonance-enhanced multiphoton ionization (REMPI) using 266 nm UV pulses from a frequency-quadrupled Nd:YAG laser was applied for selective and efficient ionization of monocyclic and polycyclic aromatic hydrocarbons. The system is equipped with a gas inlet for volatile compounds and a heated gas chromatography coupling. The former can be employed for rapid system m/z-calibration and performance evaluation, whereas the latter enables analysis of semivolatile and higher-molecular-weight compounds. The capability to evaluate complex mixtures is demonstrated for selected petrochemical materials. In these experiments, several hundred to over a thousand compounds could be attributed with a root-mean-square mass error generally below 1 ppm and a mass resolution of over 140 000 at 200 m/z. Isobaric interferences could be resolved, and narrow mass splits, such as 3.4 mDa (SH4/C3), are determined. Single laser shots provided limits of detection in the 20-ppb range for p-xylene and 1,2,4-trimethylbenzene, similar to compact vacuum REMPI-ToF systems.
Collapse
Affiliation(s)
- Paul Kösling
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Julian Schade
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | - Sven Ehlert
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Photonion GmbH, 19061 Schwerin, Germany
| | - Robert Irsig
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Photonion GmbH, 19061 Schwerin, Germany
| | | | | | | | | | | | | | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum Muenchen, Neuherberg D-85764, Germany
| |
Collapse
|
38
|
Sun T, Huang Q, Chen R, Zhang W, Li Q, Wu A, Wang G, Hu S, Cai Z. The selectivity of a polydimethylsiloxane-based triblock copolymer as the stationary phase for capillary gas chromatography. NEW J CHEM 2021. [DOI: 10.1039/d1nj03893a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A triblock copolymer (PCL-PDMS-PCL) constructed from polydimethylsiloxane (PDMS) and poly(ε-caprolactone) (PCL) chains was synthesized and used as the stationary phase for capillary gas chromatography (GC).
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Qionglu Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Aoping Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Guixia Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| |
Collapse
|