1
|
Zhu X, Ren M, Zhang Z, Meng F, Li Z, Qin Y, Fang Y, Zhang M. Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice. Food Chem 2025; 469:142536. [PMID: 39729667 DOI: 10.1016/j.foodchem.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.25 Da to 1253.55 Da, notably, AGAAPE peptide (556.25 Da), negatively charged (-1), highly hydrophobic (50 %), with significant inhibitory effects on both Escherichia coli and Staphylococcus aureus (MIC 5 mg/mL). The antimicrobial mechanism of AGAAPE was determined to damage membrane through hydrogen-bond and hydrophobic interactions, resulting in leakage of intramembrane substances and inhibition of intracellular ATPase activity. Moreover, AGAAPE was pH resistant (pH 4-12), thermally stable (121 °C, 30 min), resistant to salt ion interference (Na+, Ca2+), and protease hydrolysis resistant (neutral protease, pepsin, trypsin). Overall, identifying AMPs from quinoa provides a promising new approach for fresh juice preservation.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhiwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yan Fang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
2
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Moscoso-Mujica G, Mujica Á, Chura E, Begazo N, Jayo-Silva K, Oliva M. Kañihua ( Chenopodium pallidicaule Aellen), an ancestral Inca seed and optimal functional food and nutraceutical for the industry: Review. Heliyon 2024; 10:e34589. [PMID: 39113956 PMCID: PMC11305323 DOI: 10.1016/j.heliyon.2024.e34589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The Andean kañihua seed (Chenopodium pallidicaule Aellen) is widely used as an ancestral nutraceutical with great industrial potential and is a little-researched seed. It has high biological and nutritional value due to its protein content of 15-19 %, optimal balance of essential amino acids, essential fatty acids, mineral content, vitamins, and non-bitter saponin content. It is a potential source of peptides with different pharmacological activities such as antimicrobials, antioxidants, antihypertensives, and antidiabetics, among others. It has been a functional food in the Altiplano of Peru and Bolivia since the time of the Incas (between the 12th and 16th centuries) and is a functional food proposal for the world. In this bibliographic review, we present a detailed scientific description of the botanical characteristics, genetics, phytochemical composition, bioactives, and nutritional value. The potential uses at an industrial, medical, pharmacological, and biotechnological level and current advances in scientific research on the kañihua seed. In addition, it is an alternative grain to guarantee food security in terms of quantity, quality, and opportunity.
Collapse
Affiliation(s)
- Gladys Moscoso-Mujica
- Universidad Nacional Mayor de San Marcos, Research Group of Toxicological Biochemistry–Biochemistry Department, Faculty of Pharmacy and Biochemistry, Lima 1, Peru
| | - Ángel Mujica
- Postgraduate School, National University of Altiplano, Puno, Peru
| | - Ernesto Chura
- Postgraduate School, National University of Altiplano, Puno, Peru
| | - Noelia Begazo
- Postgraduate in Environmental Sciences, Catholic University of Santa Maria, Arequipa, Peru
| | - Karin Jayo-Silva
- Faculty of Pharmacy and Biochemistry, National University of San Antonio Abad of Cusco, Cusco, Peru
| | - Marcos Oliva
- Universidad Nacional Mayor de San Marcos, Research Group of Toxicological Biochemistry–Biochemistry Department, Faculty of Pharmacy and Biochemistry, Lima 1, Peru
| |
Collapse
|
4
|
Li S, Li N, Wang Y, Zhang X, Wang J, Zhang M, Chen H. Structural Characterization of the Staphylococcus aureus Targeting Lectin Peptides from Garlic (Allium sativum L) by Liquid Nitrogen Grinding Coupled with the Proteomic and Antimicrobial Mechanism Analysis. Probiotics Antimicrob Proteins 2024; 16:964-978. [PMID: 37217612 DOI: 10.1007/s12602-023-10078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Garlic has long been used as an antimicrobial spice and herbal remedy. The aim of this study was to isolate the antimicrobial agent in garlic water extract against Staphylococcus aureus (S. aureus) and investigate its antimicrobial mechanism. By an activity-guided separation, garlic lectin-derived peptides (GLDPs) with main molecular weight of around 12 kDa were extracted by liquid nitrogen grinding and identified with high bactericidal activity toward S. aureus, and the MIC was determined as 24.38 μg/mL. In-gel digestion-based proteomic analysis indicated that the peptide sequences were highly identical to the B strain of garlic protein lectin II. Structure analysis suggested that the secondary structure was strongly affected by lyophilization and thus resulted in the inactivation of GLDPs (P < 0.05). Mechanism study revealed that treatment of GLDPs resulted in cell membrane depolarization in a dose-dependent manner, and the disruptions of the cell wall and membrane integrities were observed under electric microscopies. GLDPs could successfully dock with cell wall component lipoteichoic acid (LTA) via van der Waals and conventional bonds in molecular docking analysis. These results suggested that GLDPs were responsible for the S. aureus targeting activity and might be promising candidates for antibiotic development against bacterial infection.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
5
|
Luque-Vilca OM, Paredes-Erquinigo JY, Quille-Quille L, Choque-Rivera TJ, Cabel-Moscoso DJ, Rivera-Ashqui TA, Silva-Paz RJ. Utilization of Sustainable Ingredients (Cañihua Flour, Whey, and Potato Starch) in Gluten-Free Cookie Development: Analysis of Technological and Sensorial Attributes. Foods 2024; 13:1491. [PMID: 38790791 PMCID: PMC11120295 DOI: 10.3390/foods13101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the consumption of gluten-free products has increased due to the increasing prevalence of celiac disease and the increased preference for gluten-free diets. This study aimed to make cookies using a mixture of cañihua flour, whey, and potato starch. The use of a Box-Behnken design allowed for flexible ingredient proportions and physicochemical properties, centesimal composition, color, texture, and sensory attributes to be evaluated through consumer tests (Sorting and acceptability). The results highlighted significant variations in physicochemical data, composition, color, and texture across formulations. The blend with 38.51% cañihua flour, 10.91% sweet whey, 25.69% potato starch, 8.34% margarine, 11.10% sugar, 0.19% sodium chloride, 0.51% baking powder, 0.51% vanilla essence, and 4.24% egg exhibited superior sensory appeal. This formulation boasted excellent texture, aroma, flavor, color, and appearance, indicating high sensory and physicochemical quality. The use of cañihua flour, sweet whey, and potato starch not only provides a gluten-free option but also delivers a nutritious and sensorily pleasing choice for those with dietary restrictions. Future research could explore the commercial viability of producing these cookies on a larger scale, as well as investigating the potential health benefits of these ingredients.
Collapse
Affiliation(s)
- Olivia M. Luque-Vilca
- Facultad de Ingeniería de Procesos Industriales, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (J.Y.P.-E.); (L.Q.-Q.); (T.J.C.-R.)
| | - Jover Y. Paredes-Erquinigo
- Facultad de Ingeniería de Procesos Industriales, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (J.Y.P.-E.); (L.Q.-Q.); (T.J.C.-R.)
| | - Lenin Quille-Quille
- Facultad de Ingeniería de Procesos Industriales, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (J.Y.P.-E.); (L.Q.-Q.); (T.J.C.-R.)
| | - Tania J. Choque-Rivera
- Facultad de Ingeniería de Procesos Industriales, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (J.Y.P.-E.); (L.Q.-Q.); (T.J.C.-R.)
| | | | - Thalía A. Rivera-Ashqui
- Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, km 19 Carretera Central, Ñaña, Lima 15457, Peru;
| | - Reynaldo J. Silva-Paz
- Escuela de Ingeniería en Industrias Alimentarias, Departamento de Ingeniería, Universidad Nacional de Barranca, Av. Toribio de Luzuriaga N° 376 Mz J. Urb. La Florida, Barranca 15169, Peru
| |
Collapse
|
6
|
Hansda B, Mishra S, Ghosh A, Das B, Biswas T, Mondal TK, Srivastava B, Mondal S, Roy D, Mandal B. Chemically Bonded Pepsin via Its Inert Center to Diazo Functionalized Silica Gel through Multipoint Attachment Mode: A Way of Restoring Biocatalytic Sustainability over "Wider pH" Range. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2146-2164. [PMID: 38240266 DOI: 10.1021/acs.langmuir.3c03113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Proteolytic enzymes play a pivotal role in the industry. Still, because of denaturation, the extensive applicability at their level of best catalytic efficiency over a more comprehensive pH range, particularly in alkaline conditions over pH 8, has not been fully developed. On the other hand, enzyme immobilization following a suitable protocol is a long pending issue that determines the conformational stability, specificity, selectivity, enantioselectivity, and activity of the native enzymes at long-range pH. As a bridge between these two findings, in an attempt at a freezing temperature 273-278 K at an alkaline pH, the diazo-functionalized silica gel (SG) surface has been used to rapidly diazo couple pepsin through its inert center, the O-carbon of the phenolic -OH of surface-occupied Tyr residues in a multipoint mode: when all the various protein groups, viz., amino, thiol, phenol, imidazole, carboxy, etc., in the molecular sequence including those belonging to the active sites, remain intact, the inherent inbuilt interactions among themselves remain. Thereby, the macromolecule's global conformation and helicity preserve the status quo. The dimension of the SG-enzyme conjugate confirms as {Si(OSi)4 (H2O)1.03}n {-O-Si(CH3)2-O-C6H4-N═N+}4·{pepsin}·yH2O; where the values of n and y have been determined respectively as 347 and 188. The material performs the catalytic activity much better at 7-8.5 than at pH 2-3.5 and continues for up to six months without any appreciable change.
Collapse
Affiliation(s)
- Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Bhavya Srivastava
- The West Bengal National University of Juridical Sciences, Dr. Ambedkar Bhavan, Kolkata 700098, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal700032, India
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| |
Collapse
|
7
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Murcia ÁB, Torrestina-Sánchez B, Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int J Biol Macromol 2023; 253:127244. [PMID: 37806416 DOI: 10.1016/j.ijbiomac.2023.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | | | |
Collapse
|
8
|
Pimchan T, Tian F, Thumanu K, Rodtong S, Yongsawatdigul J. Anti-Salmonella Activity of a Novel Peptide, KGGDLGLFEPTL, Derived from Egg Yolk Hydrolysate. Antibiotics (Basel) 2023; 13:19. [PMID: 38247578 PMCID: PMC10812675 DOI: 10.3390/antibiotics13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The present study aimed to characterize the mode of action of a novel antimicrobial peptide isolated from egg yolk hydrolysate. The EYHp6, KGGDLGLFEPTL, exhibited inhibition against Salmonella enterica serovar Typhimurium TISTR 292 and S. enterica serovar Enteritidis DMST 15679 with a MIC value of 2 mM. In contrast, S. enterica serovar Newport ATCC 6962 and other strains of Typhimurium and Enteritidis were inhibited at 4 mM. EYHp6 increased the cell membrane permeability of S. Typhimurium TISTR 292, leading to DNA leakage. Membrane integrity determined by propidium iodide and SYTO9 staining visualized by confocal microscopy demonstrated that EYHp6 at 1 × MIC induced disruption of cell membranes. Electron microscopy revealed that treatment of S. Typhimurium with EYHp6 led to damage to the cell membrane, causing the leakage of intracellular contents. Synchrotron-based Fourier-transform infrared spectroscopy indicated that EYHp6 killed S. Typhimurium by targeting fatty acids and nucleic acids in the cell membrane. The peptide did not show hemolytic activity up to 4 mM. These findings suggest that EYHp6 could be a promising antibacterial agent for controlling the growth of S. enterica.
Collapse
Affiliation(s)
- Thippawan Pimchan
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
9
|
Serena-Romero G, Ignot-Gutiérrez A, Conde-Rivas O, Lima-Silva MY, Martínez AJ, Guajardo-Flores D, Cruz-Huerta E. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth ( Amaranthus cruentus L.) and Cañihua ( Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants (Basel) 2023; 12:2075. [PMID: 38136195 PMCID: PMC10740650 DOI: 10.3390/antiox12122075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
This study evaluated the impact of in vitro gastrointestinal digestion on the digestibility, amino acid release, and antioxidant activity of proteins from amaranth (Amarantus cruentus L.) and cañihua (Chenopodium pallidicaule Aellen). Antioxidant activity was assessed using ORAC, ABTS, DPPH, and cellular antioxidant activity (CAA) assays in human intestinal Caco-2 and hepatic Hep-G2 cell lines. The results showed that amaranth had higher protein digestibility (79.19%) than cañihua (71.22%). In addition, intestinal digestion promoted the release of essential amino acids, such as leucine, lysine, and phenylalanine, in both protein concentrates. Concentrations of amaranth and cañihua proteins, ranging from 0.125 to 1.0 mg mL-1, were non-cytotoxic in both cell lines. At a concentration of 0.750 mg mL-1, simulated gastrointestinal digestion enhanced cellular antioxidant activity. Intestinal digest fractions containing peptides >5 kDa were the principal contributors to CAA in both cell lines. Notably, cañihua proteins exhibited high CAA, reaching values of 85.55% and 82.57% in Caco-2 and HepG2 cells, respectively, compared to amaranth proteins, which reached 84.68% in Caco-2 and 81.06% in HepG2 cells. In conclusion, both amaranth and cañihua proteins, after simulated gastrointestinal digestion, showcased high digestibility and released peptides and amino acids with potent antioxidant properties, underscoring their potential health benefits.
Collapse
Affiliation(s)
- Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Osvaldo Conde-Rivas
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Marlenne Y. Lima-Silva
- Facultad de Nutrición-Xalapa, Médicos y Odontólogos s/n, Unidad del Bosque, Xalapa 91017, Veracruz, Mexico
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| |
Collapse
|
10
|
Qi S, Zhao S, Zhang H, Liu S, Liu J, Yang J, Qi Y, Zhao Q, Jin Y, Wang F. Novel casein antimicrobial peptides for the inhibition of oral pathogenic bacteria. Food Chem 2023; 425:136454. [PMID: 37276666 DOI: 10.1016/j.foodchem.2023.136454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Milk casein is a rich source of antimicrobial peptides (AMPs) and the most common way to produce AMPs is enzymatic hydrolysis in vitro. In this study, active casein antimicrobial peptide (CAMPs) mixtures were generated by optimized proteolytic cleavage of milk casein. These natural-safe CAMPs mixtures exhibited high activity in the inhibition of Streptococcus mutans and Porphyromonas gingivalis. Morphological characterization suggested the pathogenic bacteria presented incomplete or irregular collapsed membrane surface after the treatment with active CAMPs mixtures. The CAMPs inhibition activity was also effective in the attachment and development of microbial biofilm. Potential CAMPs sequences were unambiguously determined by unbiased proteomic analysis and 301 potential CAMPs were obtained. The activity of 4 novel CAMPs was successfully confirmed by using synthetic standards. This study provides a promising milk CAMPs resource for the development of safe agents in oral bacteria inhibition and functional foods.
Collapse
Affiliation(s)
- Shizhe Qi
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Huiyan Zhang
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Shiwen Liu
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Jiaxin Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Jian Yang
- Shubeideng (Hangzhou) Technology Co. Ltd, No.1818-2 Wenyi Road, Hangzhou, Zhejiang Province 311121, China
| | - Yanxia Qi
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China.
| | - Qiancheng Zhao
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China.
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Rivero-Pino F, Leon MJ, Millan-Linares MC, Montserrat-de la Paz S. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Li M, Guo Q, Lin Y, Bao H, Miao S. Recent Progress in Microencapsulation of Active Peptides-Wall Material, Preparation, and Application: A Review. Foods 2023; 12:foods12040896. [PMID: 36832971 PMCID: PMC9956665 DOI: 10.3390/foods12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.
Collapse
Affiliation(s)
- Mengjie Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
| | - Hairong Bao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (H.B.); (S.M.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
- Correspondence: (H.B.); (S.M.)
| |
Collapse
|
13
|
Moscoso-Mujica G, Mujica Á, Chávez J, Peña C, Begazo N, Estrella J, Estrada Z, Tello L, Ramos Y, Rivera D, Inocente C, Huarca F. Antianemic activity of quinoa (Chenopodium quinoa Willd) Collana Negra variety and kanihua (Chenopodium pallidicaule Aellen) Ramis variety seed flour in anemic rats. SN APPLIED SCIENCES 2022; 4:318. [DOI: 10.1007/s42452-022-05202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractThe Andean grains from the Peruvian Altiplano, quinoa (Chenopodium quinoa Willd) and kanihua (Chenopodium pallidicaule Aellen) have high protein content and an optimal balance of essential amino acids and minerals such as iron (19.8 mg/100 g y 17.6 mg/100 g, respectively). The objective of this research was to evaluate the antianemic activity of extruded flour from quinoa seeds variety Negra Collana and kanihua variety Ramis in anemic Holtzman strain rats. The results of the proximal analysis showed high protein content in quinoa at 22% and kanihua at 16.2%, and the acute toxicity test showed harmlessness up to the dose of 15000 mg/Kg in both flours confirmed with the anatomopathological observation of organs such as liver, stomach, lung, kidneys, and brain. In the evaluation of the antianemic activity, a basal average of 29.3 ± 0.2% of hematocrit was observed in the group of anemic rats treated with quinoa flour, and in twelve weeks, it increased to 53.8 ± 0.3% of hematocrit (p ≤ 0.05). A group of anemic rats treated with kanihua flour had a basal average of 29.5 ± 0.3%, and in twelve weeks, it increased to 51.7 ± 0.3% (p ≤ 0.05). A group of rats without anemia treated with quinoa and kanihua flour showed a basal average of 50.2 ± 0.2% and 49.3 ± 0.3%; in twelve weeks, it increased to 55.2 ± 0.2% and 54.8 ± 0.1%, respectively. It was concluded that oral administration of 360 mg/Kg every 24 h of quinoa flour and kanihua flour increased hematocrit levels by 24.5 ± 0.5% and 22.2 ± 0.3%; weight 65.8 ± 0.3 g and 59.2 ± 0.1 g; height 6.8 ± 0.1 cm and 5.7 ± 0.5 cm, respectively (p ≤ 0.05). In rats without anemia increased hematocrit levels by 5.3 ± 0.0% and 5.5 ± 0.0%; weight 37.7 ± 0.1 g and 21.7 ± 0.05 g; height 4 ± 0.0 cm and 3.9 ± 0.0 cm, respectively (p ≤ 0.05).
Collapse
|
14
|
Ma X, Fan X, Wang D, Li X, Wang X, Yang J, Qiu C, Liu X, Pang G, Abra R, Wang L. Study on preparation of chickpea peptide and its effect on blood glucose. Front Nutr 2022; 9:988628. [PMID: 36185665 PMCID: PMC9523602 DOI: 10.3389/fnut.2022.988628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chickpeas are the third largest bean in the world and are rich in protein. In this study, chickpea peptides were prepared by the enzyme-bacteria synergy method. Taking the peptide yield as the index, we first screened 8 strains suitable for the fermentation of chickpea peptides from 16 strains, carried out sodium dodecyl sulfate polyacrylamide gel electrophoresis, and then screened 4 strains with the best decomposition effect of chickpea protein. The molecular weight, amino acid content, and α-glucosidase inhibitory activity of the chickpea peptides fermented by these four strains were detected. Finally, the strains with the best α-glucosidase inhibitory activity were obtained, and the inhibitory activities of the different molecular weight components of the chickpea peptides fermented by the strains with the best α-glucosidase inhibitory were detected. It was found that Bifidobacterium species had the best fermentation effect, and the highest peptide yield was 52.99 ± 0.88%. Lactobacillus thermophilus had the worst fermentation effect, and the highest peptide yield was 43.22 ± 0.47%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that Bifidobacterium species, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus paracasei have a better effect on the decomposition of chickpea protein in the fermentation process, and the molecular weight of their fermented peptides is basically below 20 KDa. Among the four strains, the α-glycosidase inhibition of chickpea peptide fermented by Lactobacillus acidophilus was the best, which was 58.22 ± 1.10% when the peptide concentration was 5.0 mg/ml. In chickpea peptide fermented by Lactobacillus acidophilus, the influence of molecular weight on the inhibitory activity is not obvious when the molecular weight is <10 kD, and the molecular weight range of the best inhibitory effect is 3–10 kD, and the inhibitory rate of α-glucosidase is 37 ± 1.32% at 2.0 mg/ml. This study provides a theoretical basis for the study of a new preparation method for chickpea peptide and its hypoglycemic effect.
Collapse
Affiliation(s)
- Xuemei Ma
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xing Fan
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Deping Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xianai Li
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Xiaoyun Wang
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Jiangyong Yang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Chenggong Qiu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaolu Liu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guangxian Pang
- Shenxin Science and Technology Cooperation Base Co. LTD, Urumqi, China
| | - Redili Abra
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
- Redili Abra
| | - Liang Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
- *Correspondence: Liang Wang
| |
Collapse
|
15
|
|
16
|
Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JSM, Tacias-Pascacio VG, Fernandez-Lafuente R. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol 2022; 210:682-702. [PMID: 35508226 DOI: 10.1016/j.ijbiomac.2022.04.224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Pepsin is a protease used in many different applications, and in many instances, it is utilized in an immobilized form to prevent contamination of the reaction product. This enzyme has two peculiarities that make its immobilization complex. The first one is related to the poor presence of primary amino groups on its surface (just one Lys and the terminal amino group). The second one is its poor stability at alkaline pH values. Both features make the immobilization of this enzyme to be considered a complicated goal, as most of the immobilization protocols utilize primary amino groups for immobilization. This review presents some of the attempts to get immobilized pepsin biocatalyst and their applications. The high density of anionic groups (Asp and Glu) make the anion exchange of the enzyme simpler, but this makes many of the strategies utilized to immobilize the enzyme (e.g., amino-glutaraldehyde supports) more related to a mixed ion exchange/hydrophobic adsorption than to real covalent immobilization. Finally, we propose some possibilities that can permit not only the covalent immobilization of this enzyme, but also their stabilization via multipoint covalent attachment.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Juan M Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
17
|
Zhang Y, Zhang Q, Gao L, Zhou K, Wu S, Han J, Gui M. Stability of Ceylon spinach ( Basella alba L.) seed protein extract and its effect on the microbiological, chemical and sensory quality of sturgeon fillets stored at 4 °C. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2084623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ying Zhang
- Aquatic Product Processing and Quality Safety Research, Fisheries Science Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qing Zhang
- Sichuan Agricultural University, College of Food Science, Yaan, China
| | - Liang Gao
- Aquatic Product Processing and Quality Safety Research, Fisheries Science Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Kang Zhou
- Sichuan Agricultural University, College of Food Science, Yaan, China
| | - Shang Wu
- Aquatic Product Processing and Quality Safety Research, Fisheries Science Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiawei Han
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Meng Gui
- Aquatic Product Processing and Quality Safety Research, Fisheries Science Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
18
|
Zhao Q, He L, Wang X, Ding X, Li L, Tian Y, Huang A. Characterization of a Novel Antimicrobial Peptide Isolated from Moringa oleifera Seed Protein Hydrolysates and Its Membrane Damaging Effects on Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6123-6133. [PMID: 35576531 DOI: 10.1021/acs.jafc.2c01335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study sought to identify and characterize a novel antimicrobial peptide, named MOp2 from Moringa oleifera seed protein hydrolysates, and elucidate its potential antimicrobial effects on Staphylococcus aureus. MOp2, with the amino acid sequence of His-Val-Leu-Asp-Thr-Pro-Leu-Leu (HVLDTPLL), was characterized as a hydrophobic anionic AMP of the β-sheet structure. MOp2 exhibited negligible hemolytic activity at 2.0× MIC, suggesting its inhibitory effect on the growth of S. aureus (MIC: 2.204 mM). It maintained more than 90% of antimicrobial activity under 5% salt and about 78% of antimicrobial activity at a high temperature of 115 °C for 30 min. Protease, especially acid protease, reduced its antimicrobial activity to different extents. Moreover, MOp2 caused irreversible membrane damage to S. aureus cells by increasing the membrane permeability, resulting in the release of intracellular nucleotide pools. Additionally, molecular docking revealed that MOp2 could inhibit S. aureus growth by interacting with dihydrofolate reductase and DNA gyrase through hydrogen bonding and hydrophobic interactions. Overall, MOp2 could be a potential novel antimicrobial agent against S. aureus in food processing.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuesong Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lige Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
19
|
Choque Delgado GT, Carlos Tapia KV, Pacco Huamani MC, Hamaker BR. Peruvian Andean grains: Nutritional, functional properties and industrial uses. Crit Rev Food Sci Nutr 2022; 63:9634-9647. [PMID: 35544604 DOI: 10.1080/10408398.2022.2073960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.
Collapse
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Katerin Victoria Carlos Tapia
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maria Cecilia Pacco Huamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Oral Administration of Nanopeptide CMCS-20H Conspicuously Boosts Immunity and Precautionary Effect Against Bacterial Infection in Fish. Front Immunol 2022; 12:811616. [PMID: 35087530 PMCID: PMC8786714 DOI: 10.3389/fimmu.2021.811616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Massive mortalities caused by bacterial infections in intensive aquaculture result in serious economic losses. In this study, a novel antimicrobial peptide gcIFN-20H was efficiently expressed in Pichia pastoris (GS115) and loaded on carboxylmethyl chitosan (CMCS) to prepare CMCS-20H nanoparticles. Through physical characterization assays (TEM, DLS, BCA, and Raman) and biological activity tests (antimicrobial activity and cytotoxicity), CMCS-20H nanopeptide was verified to be spherical nanoparticles with sustained release, antimicrobial activity, and negligible toxicity. CMCS-20H nanoparticles are more resistant to intestinal degradation than unloaded gcIFN-20H by indirect immunofluorescence assay. Oral administration was then carried out for 42 days. Complement C3 content, lysozyme, and total superoxide dismutase activities are highest in CMCS-20H group by serum biochemistry index assays. After challenge with Aeromonas hydrophila, the survival rate in CMCS-20H group is highest (46%), which is 64% higher than the control group (28%). Meanwhile, the tissue bacterial loads (intestine, spleen, head kidney, trunk kidney, hepatopancreas, muscle, and blood) in the CMCS-20H group are significantly lower than other groups. By PAS staining analysis, the number of intestinal villi goblet cells and the thickness of mucin in the CMCS-20H group obviously increased. CMCS-20H effectively enhances mRNA expressions of some important immune genes (IL-1β, IL-6, TNF-α, IL-2, IFN-γ2, and IgM). The minimal tissue lesions (Intestine, spleen, and trunk kidney) were seen in the CMCS-20H group by histopathological examination. 16S rRNA sequencing showed that oral CMCS-20H maintains the intestinal microbiome homeostasis in bacterial infection. The results indicate that the novel nanopeptide CMCS-20H as the immunopotentiator can remarkably boost fish immunity and precautionary effect by oral administration and address the theoretical mechanisms and insights into the promising application prospect in aquaculture.
Collapse
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
21
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
22
|
Palma-Albino C, Intiquilla A, Jiménez-Aliaga K, Rodríguez-Arana N, Solano E, Flores E, Zavaleta AI, Izaguirre V, Hernández-Ledesma B. Albumin from Erythrina edulis (Pajuro) as a Promising Source of Multifunctional Peptides. Antioxidants (Basel) 2021; 10:1722. [PMID: 34829593 PMCID: PMC8615073 DOI: 10.3390/antiox10111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Multifunctional peptides, capable of acting on different body systems through multiple mechanisms of action, offer many advantages over monofunctional peptides, including lower adverse side effects and costs. Erythrina edulis (pajuro) is a legume with a large number of high-quality proteins, of which their potential as a source of antioxidant peptides has been recently reported. In this study, the behavior of these proteins under a sequential enzymatic hydrolysis with digestive and microbial enzymes was investigated by evaluating the multi-functionality of the hydrolyzates. The albumin hydrolyzates obtained after the action of pepsin, pancreatin, and Alcalase showed antioxidant, angiotensin-converting enzyme (ACE), α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory activities. The radical scavenging properties of the hydrolyzate could be responsible for the potent protective effects observed in FeSO4-induced neuroblastoma cells. The findings support the role of pajuro protein as an ingredient of functional foods or nutraceuticals for health promotion and the prevention of oxidative stress, hypertension, and metabolic alteration-associated chronic diseases.
Collapse
Affiliation(s)
- Cleni Palma-Albino
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Arturo Intiquilla
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 946, Santiago de Chile 8380492, Chile
| | - Karim Jiménez-Aliaga
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Nathaly Rodríguez-Arana
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Estela Solano
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Eduardo Flores
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Amparo Iris Zavaleta
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Víctor Izaguirre
- Grupo de Investigación BIOMIAS, Departament of Biochemistry, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 4559, Peru; (C.P.-A.); (A.I.); (N.R.-A.); (E.S.); (E.F.); (A.I.Z.); (V.I.)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|