1
|
Rashed MMA, Han F, Ghaleb ADS, Bao N, Dong Z, Zhai KF, Al Hashedi SA, Lin L, Jafari SM. Traceability, authentication, and quality control of food-grade lavender essential oil: A comprehensive review. Adv Colloid Interface Sci 2025; 340:103466. [PMID: 40049066 DOI: 10.1016/j.cis.2025.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
The global lavender essential oil (LaEO) market is projected to grow at a compound annual growth rate (CAGR) of 6.3 %-6.8 % from 2024 to 2033. Valued at USD 138.2 million in 2024, the market is expected to reach USD 267.2 million by 2034. This growth is primarily driven by rising consumer demand for organic products, which has heightened interest in high-quality, non-toxic essential oils (EOs). Consequently, Generally Recognized as Safe (GRAS)-classified EOs are gaining attention as potential natural alternatives to synthetic food additives. However, due to its widespread use, LaEO is particularly susceptible to adulteration, often with Lavandin intermedia EO. To address this issue, mass spectrometry, and chemometric techniques have emerged as effective tools for authenticating LaEO and determining its origin. This review, therefore, investigates various quality indices, authentication techniques, and methods employed for LaEO traceability, with a specific focus on non-destructive approaches. Furthermore, LaEO's unique flavors and health benefits as food additives underscore the importance of maintaining stringent quality standards to ensure both product integrity and consumer health. Notably, NMR-based chemometric analysis, combined with GC/MS, is highlighted as an effective approach to detect adulteration, shaping the future role of LaEO in the food industry. Ultimately, ensuring the stringent quality of LaEO remains critical to its continued success in the market.
Collapse
Affiliation(s)
- Marwan M A Rashed
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China.
| | - Fangkai Han
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a ye 700, Yemen
| | - Nina Bao
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Zeng Dong
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke-Feng Zhai
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Sallah A Al Hashedi
- Central Laboratories, Department of Microbiology, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran; Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
2
|
Ratnasekhar CH, Khan S, Rai AK, Mishra H, Verma AK, Lal RK, Ananda Kumar TM, Elliott CT. Rapid metabolic fingerprinting meets machine learning models to identify authenticity and detect adulteration of essential oils with vegetable oils: Mentha and Ocimum study. Food Chem 2025; 471:142709. [PMID: 39788017 DOI: 10.1016/j.foodchem.2024.142709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Essential oils (EOs) are gaining popularity due to their potent antibacterial properties, as well as their applications in food preservation and flavor enhancement, offering growth opportunities for the food industry. However, their widespread use as food preservatives is limited by authenticity challenges, primarily stemming from adulteration with cheaper oils. This study investigated a rapid, cost-effective, and non-destructive method for assessing the authenticity of widely used Mentha and Ocimum EOs. The proposed approach integrates Fourier transform near-infrared (FT-NIR) spectroscopy with machine learning to enable rapid metabolic fingerprinting of EOs. Four Mentha species and three Ocimum species were analysed, and the system was tested on market samples adulterated with vegetable oils. The approach achieved exceptional performance, with Q2, R2, and accuracy exceeding 0.98, alongside specificity and sensitivity greater than 98 %. These findings demonstrated that FT-NIR, combined with machine learning, offers a highly efficient solution for addressing authenticity and adulteration issues in EOs.
Collapse
Affiliation(s)
- C H Ratnasekhar
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India; Academy of Scientific and Industrial Research, Ghaziabad 201002, India; Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast (QUB), BT9 5DL, UK.
| | - Samreen Khan
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Abhishek Kumar Rai
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Himanshu Mishra
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Anoop Kumar Verma
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Kishore Lal
- Genetics and Plant Breeding Division, CSIR-CIMAP, Lucknow 226015, India
| | - T M Ananda Kumar
- Crop Production and Protection Department, CSIR-CIMAP, Lucknow 226015, India
| | - Christopher T Elliott
- International Joint Research Centre on Food Security, Pathum Thani 12120, Thailand; Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast (QUB), BT9 5DL, UK
| |
Collapse
|
3
|
Sun Y, Xu H, Xie Y, Ding K, Liu Q, Li Y, Tao N, Ding S, Wang R. Sulfonated cellulose nanocrystalline- and pea protein isolate-mixture stabilizes the citral nanoemulsion to maintain its functional activity for effectively preserving fruits. Int J Biol Macromol 2025; 289:138725. [PMID: 39672440 DOI: 10.1016/j.ijbiomac.2024.138725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The instability of citral greatly limits its application in food field. This study aimed to develop a safe and green emulsifier-stabilized nanoemulsion (NE) to encapsulate citral for exerting its activities. A series of NEs were prepared using varying proportions (1:2 and 1:3) of sulfonated cellulose nanocrystalline- (CNC-C) and pea protein isolate- (PPI) mixture as emulsifier to encapsulate citral with different content (1 %, 2 %, and 3 %), and their stability, antioxidant and antibacterial activities were evaluated to identify the optimal system. When CNC-C and PPI proportion was 1:3 and citral content was 2 % (CC1-P3-C2), the obtained CC1-P3-C2 incorporated into pectin achieved the excellent preservation effect on kiwifruits and blueberries. It was attributed to the stability and functional activities of CC1-P3-C2. On the one hand, after storage (25 d) or at pH 11 or 100 mM NaCl, its size and polydispersity index were still within acceptance level (<300 nm and 0.3). On the other hand, it showed good antioxidant and antibacterial activities against Escherichia coli, Staphylococcus aureus, Botrytis cinerea, and Botryosphaeria dothidea, which was due to its high encapsulation efficiency (96.78 %). Therefore, CC1-P3-C2 showed a great application potential in fruit preservation, which also provided a feasible strategy to design stable citral NEs.
Collapse
Affiliation(s)
- Yuying Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qike Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yawen Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Haghbayan H, Moghimi R, Sarrafi Y, Taleghani A, Hosseinzadeh R. Enhancing bioactivity of Callistemon citrinus (Curtis) essential oil through novel nanoemulsion formulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2660-2681. [PMID: 39102358 DOI: 10.1080/09205063.2024.2386787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The main focus of this study was to create a stable and efficient nanoemulsion (NE) using Callistemon citrinus essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis via IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against Fusarium oxysporum, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against Escherichia coli, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against Chilo suppressalis (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum C. citrinus NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.
Collapse
Affiliation(s)
- Hamta Haghbayan
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Roya Moghimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
5
|
Zhu Y, Gu M, Su Y, Li Z, Xie T, Zhang Y, Qiao G, Lu F, Han C. Effect of Litsea cubeba and Cinnamon Essential Oil Nanoemulsion Coatings on the Preservation of Plant-Based Meat Analogs. Foods 2024; 13:3365. [PMID: 39517151 PMCID: PMC11545311 DOI: 10.3390/foods13213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plant-based meat analogs (PBMAs) are promising sustainable food sources. However, their high moisture and protein contents make them prone to microbial deterioration, limiting their shelf life and sensory appeal. This study explored enhancing PBMAs' shelf life using nanoemulsions of Litsea cubeba and cinnamon essential oils, emulsified with chitosan and Tween 80. The composite nanoemulsion, produced through high-pressure homogenization, exhibited a droplet size of 4.99 ± 0.03 nm, a polydispersity index (PDI) of 0.221 ± 0.008, and a zeta potential of 95.13 ± 2.67 mV, indicating remarkable stability (p < 0.05). Applied to PBMAs stored at 4 °C, it significantly improved color and pH balance and reduced thiobarbituric acid reactive substances and cooking loss. Most notably, it inhibited the growth of Escherichia coli and Staphylococcus aureus, curbing spoilage and protein oxidation, thereby extending the products' shelf life and preserving sensory quality. As shown above, the encapsulation of LCEO/CEO in nanoemulsions effectively inhibits spoilage and deterioration in PBMAs, improving flavor and quality more than direct addition. Future studies should explore using various essential oils and emulsifiers, as well as alternative encapsulation techniques like microcapsules and nanoparticles, to further prevent PBMA deterioration.
Collapse
Affiliation(s)
- Yiqun Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yuhan Su
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Tiemin Xie
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Guohua Qiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
- Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, China
| | - Chunyang Han
- School of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| |
Collapse
|
6
|
Giri S, Chakraborty A, Mandal C, Rajwar TK, Halder J, Irfan Z, Gouda MM. Formulation and Evaluation of Turmeric- and Neem-Based Topical Nanoemulgel against Microbial Infection. Gels 2024; 10:578. [PMID: 39330180 PMCID: PMC11431516 DOI: 10.3390/gels10090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
The combination of nanoemulgel and phytochemistry has resulted in several recent discoveries in the field of topical delivery systems. The present study aimed to prepare nanoemulgel based on turmeric (Curcuma longa) and neem (Azadirachta indica) against microbial infection as topical drug delivery. Olive oil (oil phase), Tween 80 (surfactant), and PEG600 (co-surfactant) were used for the preparation of nanoemulsion. Carbopol 934 was used as a gelling agent to convert the nanoemulsion to nanoemulgel and promote the control of the release of biological properties of turmeric and neem. The nanoemulsion was characterized based on particle size distribution, PDI values, and compatibility using FTIR analysis. In contrast, the nanoemulgel was evaluated based on pH, viscosity, spreadability, plant extract and excipient compatibility or physical state, in vitro study, ex vivo mucoadhesive study, antimicrobial properties, and stability. The resulting nanoemulsion was homogeneous and stable during the centrifugation process, with the smallest droplets and low PDI values. FTIR analysis also confirmed good compatibility and absence of phase separation between the oil substance, surfactant, and co-surfactant with both plant extracts. The improved nanoemulgel also demonstrated a smooth texture, good consistency, good pH, desired viscosity, ex vivo mucoadhesive strength with the highest spreadability, and 18 h in vitro drug release. Additionally, it exhibited better antimicrobial properties against different microbial strains. Stability studies also revealed that the product had good rheological properties and physicochemical state for a period of over 3 months. The present study affirmed that turmeric- and neem-based nanoemulgel is a promising alternative for microbial infection particularly associated with microorganisms via topical application.
Collapse
Affiliation(s)
- Sumon Giri
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata 700125, India; (S.G.); (A.C.); (C.M.)
| | - Anhic Chakraborty
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata 700125, India; (S.G.); (A.C.); (C.M.)
| | - Chiranjit Mandal
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata 700125, India; (S.G.); (A.C.); (C.M.)
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India; (T.K.R.); (J.H.)
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India; (T.K.R.); (J.H.)
| | - Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata 700125, India; (S.G.); (A.C.); (C.M.)
| | - Mostafa M. Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Hedayati S, Tarahi M, Iraji A, Hashempur MH. Recent developments in the encapsulation of lavender essential oil. Adv Colloid Interface Sci 2024; 331:103229. [PMID: 38878587 DOI: 10.1016/j.cis.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
The unregulated and extensive application of synthetic compounds, such as preservatives, pesticides, and drugs, poses serious concerns to the environment, food security, and global health. Essential oils (EOs) are valid alternatives to these synthetic chemicals due to their therapeutic, antioxidant, and antimicrobial activities. Lavender essential oil (LEO) can be potentially applied in food, cosmetic, textile, agricultural, and pharmaceutical industries. However, its bioactivity can be compromised by its poor stability and solubility, which severely restrict its industrial applications. Encapsulation techniques can improve the functionality of LEO and preserve its bioactivity during storage. This review reports recent advances in the encapsulation of LEO by different methods, such as liposomes, emulsification, spray drying, complex coacervation, inclusion complexation, and electrospinning. It also outlines the effects of different processing conditions and carriers on the stability, physicochemical properties, and release behavior of encapsulated LEO. Moreover, this review focuses on the applications of encapsulated LEO in different food and non-food products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Napiórkowska A, Khaneghah AM, Kurek MA. Essential Oil Nanoemulsions-A New Strategy to Extend the Shelf Life of Smoothies. Foods 2024; 13:1854. [PMID: 38928796 PMCID: PMC11202876 DOI: 10.3390/foods13121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Over the years, consumer awareness of proper, healthy eating has increased significantly, but the consumption of fruits and vegetables remains too low. Smoothie drinks offer a convenient way to supplement daily diets with servings of fruits and vegetables. These ready-to-eat beverages retain the nutritional benefits of the raw ingredients from which they are made. Furthermore, they cater to the growing demand for quick and nutritious meal options. To meet consumer expectations, current trends in the food market are shifting towards natural, high-quality products with minimal processing and extended shelf life. Food manufacturers are increasingly aiming to reduce or eliminate synthetic preservatives, replacing them with plant-based alternatives. Plant-based preservatives are particularly appealing to consumers, who often view them as natural and organic substitutes for conventional preservatives. Essential oils, known for their antibacterial and antifungal properties, are effective against the microorganisms and fungi present in fruit and vegetable smoothies. However, the strong taste and aroma of essential oils can be a significant drawback, as the concentrations needed for microbiological stability are often unpalatable to consumers. Encapsulation of essential oils in nanoemulsions offers a promising and effective solution to these challenges, allowing for their use in food production without compromising sensory qualities.
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| | - Amin Mousavi Khaneghah
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 1435713715, Iran;
| | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| |
Collapse
|
9
|
Yang S, Ban Z, Jin L, Chen C, Li L, Yi G, Abdollahi M, Liu L. Polyvinyl alcohol films incorporated with clove essential oil emulsions stabilized by soy protein isolate-derived amyloid fibrils: Fabrication, characterization, and its application for active packaging. Food Chem 2024; 440:138245. [PMID: 38159320 DOI: 10.1016/j.foodchem.2023.138245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.
Collapse
Affiliation(s)
- Suhua Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Linxuan Jin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Product), Tianjin Academy of Agricultural Sciences, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of the People's Republic of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guohui Yi
- Public Research Center, Hainan Medical University, Haikou 571199, China
| | - Mehdi Abdollahi
- Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Lingling Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China.
| |
Collapse
|
10
|
Xu F, Shi Y, Li B, Liu C, Zhang Y, Zhong J. Characterization, Stability and Antioxidant Activity of Vanilla Nano-Emulsion and Its Complex Essential Oil. Foods 2024; 13:801. [PMID: 38472915 DOI: 10.3390/foods13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
As a natural flavoring agent, vanilla essential oil has a special aroma and flavor, but its volatility and instability limit its value. Therefore, in this study, vanilla essential oil was compounded with cinnamon essential oil to prepare nano-emulsions (composite nano-emulsions called C/VT and C/VM), and the stability of the composite essential oil emulsions was investigated. Transmission electron microscopy (TEM) images showed that the nano-emulsions were spherical in shape and some flocs were observed in C/VM and C/VT. The results showed that the average droplet sizes of C/VM and C/VT increased only by 14.99% and 15.01% after heating at 100 °C for 20 min, and the average droplet sizes were less than 120 nm after 24 days of storage at 25 °C. Possibly due to the presence of reticulated flocs, which have a hindering effect on the movement of individual droplets, the instability indices of C/VM and C/VT were reduced by 34.9% and 39.08%, respectively, in comparison to the instability indices of C/VM and C/VT. In addition, the results of antioxidant experimental studies showed that the presence of composite essential oil flocs had no significant effect on the antioxidant capacity. These results indicate that the improved stability of the composite essential oil nano-emulsions is conducive to broadening the application of vanilla essential oil emulsions.
Collapse
Affiliation(s)
- Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Yucong Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Bin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Junzhen Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
11
|
Guanghui L, Qi L, Anning G, Luting R, Yinghan Z, Weiyun G, Shenghua H, Fengyi G, Xiaoli P. Preparation, stability, and in vitro transport of soybean protein-based diosgenin nanoemulsions. Food Chem X 2023; 20:100982. [PMID: 38144861 PMCID: PMC10740035 DOI: 10.1016/j.fochx.2023.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Soybean protein isolate (SPI)-stabilized nanoemulsions (NEs) were formulated to encapsulate diosgenin (DIO) to enhance its water solubility and bioavailability. The influence of DIO concentrations on NEs' properties was investigated, and their environmental stability and cell permeability were also assessed. Results demonstrated that DIO significantly affected all the physicochemical properties of NEs. NEs with 1.0 mg/mL of DIO exhibited smaller droplet size (209 nm), lower polydispersity index (0.17), and higher stability coefficient (95.8 %). Furthermore, DIO-SPI NEs displayed better stability under appropriate pH (<4 or > 5), NaCl concentrations (≤0.3 M), temperatures (≤60 °C), and freeze-thaw cycles (≤2), as well as storage at 4 °C. Moreover, encapsulating DIO in NEs reduced its toxicity towards cells and enhanced its transport efficiency, which reached 3.16 ∼ 4.87 × 10-6. These findings highlight the potential of SPI-based NEs as a promising carrier for the efficient delivery of DIO.
Collapse
Affiliation(s)
- Li Guanghui
- Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, China
| | - Liu Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gao Anning
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Ren Luting
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhang Yinghan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guo Weiyun
- Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, China
| | - He Shenghua
- Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, China
| | - Gao Fengyi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Peng Xiaoli
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Manzoor A, Asif M, Khalid SH, Ullah Khan I, Asghar S. Nanosizing of Lavender, Basil, and Clove Essential Oils into Microemulsions for Enhanced Antioxidant Potential and Antibacterial and Antibiofilm Activities. ACS OMEGA 2023; 8:40600-40612. [PMID: 37929152 PMCID: PMC10621020 DOI: 10.1021/acsomega.3c05394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Plant essential oils (EOs) possess significant bioactivities (antibacterial and antioxidant) and can be substituted for potentially harmful synthetic preservatives in the food industry. However, limited water solubility, bioavailability, volatility, and stability limit their use. Therefore, the goal of this research was nanosizing lavender essential oil (LEO), basil essential oil (BEO), and clove essential oil (CEO) in a microemulsion (ME) to improve their physicochemical attributes and bioefficacy. Tween 80 and Transcutol P were utilized for construction of pseudoternary phase diagrams. It was observed that the concentration of EOs had a great impact on the physicochemical and biological properties of MEs. A spherical droplet of MEs with a diameter of less than 20 nm with a narrower size distribution (polydispersity index (PDI) = 0.10-0.27) and a ζ potential of -0.27 to -9.03 was observed. ME formulations were also evaluated for viscosity, conductivity, and the refractive index. Moreover, the impact of delivery systems on the antibacterial property of EOs was assessed by determining the zone of inhibition and minimum inhibitory concentration against two distinct pathogen classes (S. aureus and E. coli). Crystal violet assay was used to measure the growth and development of biofilms. According to bioefficacy assays, ME demonstrated more efficient antibacterial activity against microorganisms at concentrations lower than pure EOs. CEO ME had superior activity againstS. aureus and E. coli. Similarly, dose-dependent antioxidant capacity was noted for MEs. Consequently, nanosized EO formulations with improved physicochemical properties and enhanced bioactivities can be employed in the food processing sector as a preservation agent.
Collapse
Affiliation(s)
- Aneela Manzoor
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Faculty
of Pharmacy, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
14
|
Kolozsváriné Nagy J, Móricz ÁM, Böszörményi A, Ambrus Á, Schwarczinger I. Antibacterial effect of essential oils and their components against Xanthomonas arboricola pv. pruni revealed by microdilution and direct bioautographic assays. Front Cell Infect Microbiol 2023; 13:1204027. [PMID: 37389207 PMCID: PMC10303133 DOI: 10.3389/fcimb.2023.1204027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Bacterial spot of stone fruits caused by Xanthomonas arboricola pv. pruni (Xap) is one of the most significant diseases of several Prunus species. Disease outbreaks can result in severe economic losses while the control options are limited. Antibacterial efficacy of essential oils (EOs) of thyme, cinnamon, clove, rosemary, tea tree, eucalyptus, lemon grass, citronella grass, and lemon balm was assessed against two Hungarian Xap isolates. The minimal inhibitory concentration (MIC) was determined by broth microdilution assay and for the identification of active EOs' components a newly introduced high-performance thin-layer chromatography (HPTLC)-Xap (direct bioautography) method combined with solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) was applied. All EOs inhibited both bacterium isolates, but cinnamon proved to be the most effective EO with MIC values of 31.25 µg/mL and 62.5 µg/mL, respectively. Compounds in the antibacterial HPTLC zones were identified as thymol in thyme, trans-cinnamaldehyde in cinnamon, eugenol in clove, borneol in rosemary, terpinen-4-ol in tea tree, citral (neral and geranial) in lemon grass and lemon balm, and citronellal and nerol in citronella grass. Regarding active compounds, thymol had the highest efficiency with a MIC value of 50 µg/mL. Antibacterial effects of EOs have already been proven for several Xanthomonas species, but to our knowledge, the studied EOs, except for lemon grass and eucalyptus, were tested for the first time against Xap. Furthermore, in case of Xap, this is the first report demonstrating that direct bioautography is a fast and suitable method for screening anti-Xap components of complex matrices, like EOs.
Collapse
Affiliation(s)
- Judit Kolozsváriné Nagy
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network, Budapest, Hungary
| | - Ágnes M. Móricz
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network, Budapest, Hungary
| | - Andrea Böszörményi
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Ágnes Ambrus
- Plant Health Bacteriological Diagnostic National Reference Laboratory, Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Pécs, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network, Budapest, Hungary
| |
Collapse
|
15
|
Topical advances of edible coating based on the nanoemulsions encapsulated with plant essential oils for foodborne pathogen control. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Encapsulation of D-Limonene into O/W Nanoemulsions for Enhanced Stability. Polymers (Basel) 2023; 15:polym15020471. [PMID: 36679351 PMCID: PMC9864102 DOI: 10.3390/polym15020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The present study aimed to investigate the physical stability in terms of (droplet size, pH, and ionic strength) and chemical stability in terms of (retention) of D-limonene (LM) in the nanoemulsions after emulsification as well as after storing them for 30 days under different temperatures (5 °C, 25 °C, and 50 °C). LM is a cyclic monoterpene and a major component extracted from citrus fruits. The modification of disperse phase with soybean oil (SB) and a nonionic emulsifier (Tween 80) was adequate to prepare stable LM-loaded nanoemulsions. LM blended with SB-loaded nanoemulsions were stable against droplet growth over pH (3-9) and ionic strength (0-500 mM NaCl). Regarding long-term storage, the prepared nanoemulsions demonstrated excellent physical stability with droplet size ranging from 120-130 nm during 30 days of storage at both 5 °C and 25 °C; however, oiling off started in the emulsions, which were stored at 50 °C from day 10. On the other hand, the retention of LM in the emulsions was significantly impacted by storage temperature. Nanoemulsions stored at 5 °C had the highest retention of 91%, while nanoemulsions stored at 25 °C had the lowest retention of 82%.
Collapse
|
17
|
Feng X, Feng K, Zheng Q, Tan W, Zhong W, Liao C, Liu Y, Li S, Hu W. Preparation and characterization of geraniol nanoemulsions and its antibacterial activity. Front Microbiol 2022; 13:1080300. [PMID: 36523845 PMCID: PMC9745324 DOI: 10.3389/fmicb.2022.1080300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 10/14/2023] Open
Abstract
Geraniol nanoemulsions (G-NE) based on Tween 80 and medium chain triglyceride (MCT) as surfactant and co-surfactant, respectively, has been prepared by the spontaneous emulsification method. Its physical and chemical properties such as mean particle size, zeta potential, PDI, pH, viscosity, contact angle, appearance morphology, and stability (storage stability, thermal stability, centrifugal properties, acid-base stability, and freeze-thaw properties) of the droplet were analyzed. The results showed that the mean particle size of G-NE was 90.33 ± 5.23 nm, the PDI was 0.058 ± 0.0007, the zeta potential was -17.95 ± 5.85 mV and the encapsulation efficiency was >90%. The produced G-NE has been demonstrated to be fairly stable in long-term storage at 4°C, pH = 5 and high-speed centrifuges. Moreover, G-NE had a significant inhibition effect on Staphylococcus aureus, Escherichia coli, Salmonella typhimurium and Listeria monocytogenes (p < 0.05). The bacterial inhibition rates of G-NE at a concentration of 1 MIC were 48, 99, 71.73, and 99% after 12 h of action against these four foodborne pathogenic bacteria, respectively. Therefore, the results obtained indicated that nanoemulsification enhanced the stability and antibacterial activity of geraniol to some extent, which will promote the utilization of geraniol in food preservation.
Collapse
Affiliation(s)
- Xiaolin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kexin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Qinhua Zheng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Weijian Tan
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Caiyu Liao
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Yuntong Liu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Shangjian Li
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
18
|
Zhang Z, Wei Z, Xue C. Delivery systems for fucoxanthin: Research progress, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4643-4659. [PMID: 36377728 DOI: 10.1080/10408398.2022.2144793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fucoxanthin is a special kind of keto-carotenoid found only in algae. The unique structure of fucoxanthin endows it with extraordinary biological activities, which are of great significance to improve food quality and enhance human health. However, due to its highly unsaturated structure, fucoxanthin also suffers from some limitations, such as instability, poor water solubility and low bioavailability. Therefore, although its content is relatively abundant, its applications in the food industry are extremely scarce. In recent years, there have been many reports on the preparation and characterization of delivery systems for fucoxanthin. These well-designed delivery systems can efficaciously alleviate the instability of fucoxanthin under adverse conditions, thereby improving its oral bioavailability. Thus, this review emphatically summarizes the delivery systems that are widely used to encapsulate, protect and release fucoxanthin. Besides, the influence of delivery systems on the absorption of fucoxanthin by intestinal epithelial cells is highlighted. The applications and future development trends of delivery systems for fucoxanthin are also discussed. The extraction of fucoxanthin, development of novel delivery systems, sensory evaluation and toxicity studies, and industrial production may be promising research directions in the future. Overall, this review provides guidance for the development of fucoxanthin-loaded delivery systems.
Collapse
Affiliation(s)
- Zimo Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
19
|
Physical characterization of clove oil based self Nano-emulsifying formulations of cefpodoxime proxetil: Assessment of dissolution rate, antioxidant & antibacterial activity. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Essential Oil Stabilisation by Response Surface Methodology (RSM): Nanoemulsion Formulation, Physicochemical, Microbiological, and Sensory Investigations. Molecules 2022; 27:molecules27217330. [DOI: 10.3390/molecules27217330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
This manuscript aimed to optimise the encapsulation of Thymus capitatus essential oil into nanoemulsion. Response Surface Methodology results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal nanoemulsion showed nanometer-sized droplets (380 nm), a polydispersity index less than 0.5, and a suitable Zeta potential (−10.3 mV). Stability results showed that nanoemulsions stored at 4 °C were stable with the lowest d3,2, PolyDispersity Index (PDI), and pH (day 11). Significant ameliorations in the capacity to neutralise DPPH radical after the encapsulation of the antimicrobial efficacy of thyme essential oil were recorded. S. typhimurium growth inhibition generated by nanoencapsulated thyme essential oil was 17 times higher than by bulk essential oil. The sensory analysis highlighted that the encapsulation of thyme essential oil improved enriched milk’s sensory appreciation. Indeed, 20% of the total population attributed a score of 4 and 5 on the scale used for milk enriched with nanoemulsion. In comparison, only 11% attributed the same score to milk enriched with bulk essential oil. The novel nanometric delivery system presents significant interest for agroalimentary industries.
Collapse
|
21
|
Tayeb HH, Moqaddam SA, Hasaballah NH, Felimban RI. Development of nanoemulsions for the delivery of hydrophobic and hydrophilic compounds against carbapenem-resistant Klebsiella pneumoniae. RSC Adv 2022; 12:26455-26462. [PMID: 36275094 PMCID: PMC9479168 DOI: 10.1039/d2ra03925g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance (AR), particularly the limited antimicrobial activities of antibiotics and natural compounds, has prompted research into new antimicrobials. Nanoemulsions (NEs) have been found to improve the activity of antimicrobial compounds. This study developed clove essential oil-in-water NEs (CEO-NEs) and water-in-oil-in-water NEs co-encapsulating CEO and meropenem (CEO-MEM-NEs) to investigate the antibacterial activity of these loaded NEs against carbapenem-resistant Klebsiella pneumoniae. Ultrasonication was used to prepare CEO-NEs and CEO-MEM-NEs. Tween 80 and Imwitor 375 surfactants were used to produce CEO-NEs while Tween 80, Imwitor 375, and PGPR were used to produce CEO-MEM-NEs. Droplets' sizes were 138 ± 1.769 and 183.600 ± 0.889 for CEO-NEs and CEO-MEM-NEs, respectively. The resultant NEs were monodispersed, negatively charged, and physically stable. The antibacterial activities of NEs were investigated using broth microdilution, checkerboard, and time-kill assays to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). CEO-NEs (0.16% CEO MIC) and CEO-MEM-NEs (0.08% CEO and 1 μg mL-1 MEM MICs) completely inactivated K. pneumoniae, and showed functional stability after two weeks of storage at 4 °C. In conclusion, the formulated NEs significantly enhanced the antibacterial activity of CEO and MEM and have great potential as delivery systems of antimicrobial compounds.
Collapse
Affiliation(s)
- Hossam H Tayeb
- A Nanomedicine Unit, Centre of Innovations in Personalized Medicine (CIPM), King Abdulaziz University 21589 Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Shahd A Moqaddam
- A Nanomedicine Unit, Centre of Innovations in Personalized Medicine (CIPM), King Abdulaziz University 21589 Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Nojod H Hasaballah
- A Nanomedicine Unit, Centre of Innovations in Personalized Medicine (CIPM), King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- 3D Bioprinting Unit, Centre of Innovations in Personalized Medicine (CIPM), King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
22
|
Formulation and Characterization of O/W Nanoemulsions of Hemp Seed Oil for Protection from Steatohepatitis: Analysis of Hepatic Free Fatty Acids and Oxidation Markers. Pharmaceuticals (Basel) 2022; 15:ph15070864. [PMID: 35890162 PMCID: PMC9316199 DOI: 10.3390/ph15070864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a common type of metabolic liver disease which is characterized by fatty changes associated with hepatocyte injury, lobular inflammation, and/or liver fibrosis. Nanoemulsions are kinetically stable colloidal systems characterized by small droplet size. Hemp seed oil is a natural oil derived from Cannabis sativa seeds. The current study was designed to formulate nanoemulsion preparations of hemp seed oil with promising enhanced biological activity against high fat (HF) diet induced NASH in rats. Four nanoemulsion formulas (NEFs) were formulated based on high-pressure homogenization technique and evaluated for droplet size, zeta potential (ZP), polydispersity index (PDI), electrical conductivity, pH, and viscosity, as well as the preparation stability. The best NEF was selected to perform an in vivo rat study; selection was based on the smallest droplet size and highest physical stability. Results showed that NEF#4 showed the best physiochemical characters among the other preparations. Twenty male rats were assigned to four groups as follows: normal, NASH control, NASH + hemp seed oil and NASH + hemp seed oil NEF4. The rats were tested for body weight (BWt) change, insulin resistance (IR) and hepatic pathology. The hemp seed NEF#4 protected against NASH progression in rats and decreased the % of BWt gain compared to the original Hemp seed oil. NEF#4 of Hemp seed oil showed greater protective activity against experimental NASH and IR in rats. Hence, we can consider the nanoemulsion preparations as a useful tool for enhancing the biological action of the hemp seed oil, and further studies are warranted for application of this technique for preparing natural oils aiming at enhancing their activities.
Collapse
|
23
|
Nawaz A, Latif MS, Alnuwaiser MA, Ullah S, Iqbal M, Alfatama M, Lim V. Synthesis and Characterization of Chitosan-Decorated Nanoemulsion Gel of 5-Fluorouracil for Topical Delivery. Gels 2022; 8:gels8070412. [PMID: 35877497 PMCID: PMC9318027 DOI: 10.3390/gels8070412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: The present study aimed to prepare chitosan-coated nanoemulsion gel containing 5-fluorouracil for enhanced topical delivery. (2) Methods: To formulate the nanoemulsion gel, oleic acid was used as the oil phase and Carbopol 940 as a gelling agent. Chitosan was used as a coating agent to control the release of 5-FU. Drug−excipient compatibility was evaluated using ATR-FTIR. The prepared nanoemulsion formulations were characterized based on particle size distribution, zeta potential, % encapsulation efficiency and drug content. In vitro drug release, skin drug retention and ex vivo permeation profiles were performed across rat skin using a Franz diffusion cell. Skin irritation experiments were also conducted on rats to examine the irritation potential of the formulations. (3) Results: It was found that the drug and excipients were compatible and chitosan successfully coated 5-FU, as demonstrated by ATR-FTIR results. The introduction of chitosan increased the size and zeta potential of the nanoemulsion. The 5-FU release in vitro was significantly lowered in the case of chitosan-decorated nanoemulsion (5-FU-C-NE), whereas the permeation and skin drug retention were higher in the case of 5-FU-C-NE. The formulations were proven non-irritant to the skin of the rats. The optimized formulation of the nanoemulsion was introduced into 1% Carbopol 940 gel. Incorporating the nanoemulsion into the gel further reduced the drug release in vitro and ex vivo permeation, whereas the retention of the drug in the skin was significantly increased (ANOVA; p < 0.05). The increase in skin retention was due to the presence of chitosan and Carbopol 940. The in vitro and ex vivo results were also confirmed with in vivo studies. Incorporating nanoemulsion into gel has resulted in higher Tmax, longer half-life and greater skin drug retention. (4) Conclusion: The results suggest that chitosan-decorated nanoemulsion gel is safe and can potentially be used to promote 5-FU skin retention, which is ideal for skin diseases such as melanoma.
Collapse
Affiliation(s)
- Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal Univesity, Dera Ismail Khan 29050, Pakistan; (A.N.); (M.S.L.); (S.U.); (M.I.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal Univesity, Dera Ismail Khan 29050, Pakistan; (A.N.); (M.S.L.); (S.U.); (M.I.)
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal Univesity, Dera Ismail Khan 29050, Pakistan; (A.N.); (M.S.L.); (S.U.); (M.I.)
| | - Muhammad Iqbal
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal Univesity, Dera Ismail Khan 29050, Pakistan; (A.N.); (M.S.L.); (S.U.); (M.I.)
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia;
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
- Correspondence:
| |
Collapse
|
24
|
Somala N, Laosinwattana C, Teerarak M. Formulation process, physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion. Sci Rep 2022; 12:10280. [PMID: 35717505 PMCID: PMC9206648 DOI: 10.1038/s41598-022-14591-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Essential oil-based bioherbicides are a promising avenue for the development of eco-friendly pesticides. This study formulated nanoemulsions containing citronella (Cymbopogon nardus) essential oil (CEO) as an herbicidal product using a high-pressure homogenization method with hydrophilic-lipophilic balance (HLB) values ranging 9–14.9 for the surfactant mixture (Tween 60 and Span 60). The CEO was high in monoterpene compounds (36.333% geraniol, 17.881% trans-citral, 15.276% cis-citral, 8.991% citronellal, and 4.991% β-citronellol). The nanoemulsion at HLB 14 was selected as optimal due to having the smallest particle size (79 nm, PI 0.286), confirmed by transmission electron microscopy. After 28 days of storage, particle size in the selected formulation changed to 58 and 140 nm under 4 °C and 25 °C, respectively. Germination and seedling growth assays with Echinochloa crus-galli showed that the nanoemulsion exerted a significant dose-dependent inhibitory effect at all tested HLBs (9–14.9) and concentrations (100–800 µL/L). The inhibitory effect was greatest at HLB 14. Treatment of E. cruss-galli seed with the HLB 14 nanoemulsion significantly reduced seed imbibition and α-amylase activity. Our findings support that CEO nanoemulsions have a phytotoxic effect and hence herbicidal properties for controlling E. cruss-galli. Accordingly, this nanoemulsion may have potential as a bioherbicide resource.
Collapse
Affiliation(s)
- Naphat Somala
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chamroon Laosinwattana
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Montinee Teerarak
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
25
|
Al‐Hilphy AR, Ahmed AK, Gavahian M, Chen H, Chemat F, Al‐Behadli T, Mohd Nor MZ, Ahmad S. Solar energy‐based extraction of essential oils from cloves, cinnamon, orange, lemon, eucalyptus, and cardamom: A clean energy technology for green extraction. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Abdul‐Hadi K. Ahmed
- Department of Food Sciences, College of Agriculture University of Basrah Basrah Iraq
| | - Mohsen Gavahian
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan
| | - Ho‐Hsien Chen
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan
| | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA Université D'Avignon et des Pays de Vaucluse Avignon Cedex France
| | | | - Mohd Zuhair Mohd Nor
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
| | - So'bah Ahmad
- School of Industrial Technology, Faculty of Applied Science Universiti Teknologi MARA Shah Alam Malaysia
| |
Collapse
|
26
|
Mahdi WA, Alam P, Alshetaili A, Alshehri S, Ghoneim MM, Shakeel F. Product Development Studies of Cranberry Seed Oil Nanoemulsion. Processes (Basel) 2022; 10:393. [DOI: 10.3390/pr10020393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cranberry seed oil (CSO) can be used in various skin diseases, perhaps due to the presence of ω-3, ω-6, and ω-9 fatty acids. In addition, tocotrienols (vitamin E) has demonstrated powerful antioxidant activity. The combined application of CSO nanoemulsions open a promising avenue for skin conditions. The goal of this work was to create a nanoemulsion (NE) containing CSO and test its stability and in vitro release. To make NE formulations (CNE1-CNE6), the aqueous titration method was used. Following the creation of NE formulations, we selected the CNE4 formulation, which had a mean droplet size of around 110 nm, a narrow size distribution (PDI < 0.2), a steady zeta potential (−34.21 mV), and a high percentage transmittance (>99%). Furthermore, electron microscopy imaging revealed nanosized spherical droplets without any aggregation in the CNE4 formulation, which showed high entrapment efficiency (>80%). Densitometry analysis confirmed linoleic acid (RF 0.62) as a major component of CSO using toluene–acetone–glacial acetic acid (90:9:1 v/v/v) as a mobile phase. Nanogel had a three-fold greater cumulative drug permeation through the skin than neat CSO. This study shows that a unique CSO delivery technique can be used to treat skin diseases.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Zhuang H, Jiang X, Wu S, Li X, Yan H. Construction, stability and photodynamic germicidal efficacy of curcumin nanoemulsion stabilised with Maillard conjugate of Wpi‐Rha. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering Jilin University Changchun China
| | - Xinyu Jiang
- College of Food Science and Engineering Jilin University Changchun China
| | - Sijia Wu
- College of Food Science and Engineering Jilin University Changchun China
| | - Xueqian Li
- College of Food Science and Engineering Jilin University Changchun China
| | - Haiyang Yan
- College of Food Science and Engineering Jilin University Changchun China
| |
Collapse
|
28
|
Falleh H, Ben Jemaa M, Neves MA, Isoda H, Nakajima M, Ksouri R. Peppermint and Myrtle nanoemulsions: Formulation, stability, and antimicrobial activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
30
|
Mahmoudzadeh P, Aliakbarlu J, Moradi M. Preparation and antibacterial performance of cinnamon essential oil nanoemulsion on milk foodborne pathogens. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Peyman Mahmoudzadeh
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Urmia University Urmia Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Urmia University Urmia Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Urmia University Urmia Iran
| |
Collapse
|
31
|
Al-Otaibi WA, AlMotwaa SM. Preparation, characterization, optimization, and antibacterial evaluation of nano-emulsion incorporating essential oil extracted from Teucrium polium L. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1980000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|