1
|
Gonzales E, Bustamante A, García-Díaz D, Sanhueza L, Orellana JF, Fredes C, Jiménez P, Chávez V, Echeverría F. Assessing quality and polyphenol in vitro bioaccessibility in healthy jelly gummies with microencapsulated and non-encapsulated pomegranate peel extract. Food Chem 2025; 470:142611. [PMID: 39752744 DOI: 10.1016/j.foodchem.2024.142611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Pomegranate peel extract (PPE) is rich in polyphenols, notably punicalagin and ellagic acid, but is sensitive to environmental degradation and has low bioavailability. Microencapsulation can enhance PPE stability and bioaccessibility, making it suitable for functional foods like jelly gummies (JG). JG containing microencapsulated PPE (MPPE) have not been studied. OBJECTIVE To characterize a JG prototype incorporating PPE or MPPE and compare the bioaccessibility of total polyphenols (TP), punicalagin, and ellagic acid after a simulated in vitro digestion. METHODS PPE-JG and MPPE-JG prototypes were evaluated for physical, sensory, and chemical properties. The bioaccessibility of the main bioactive compounds was analyzed using the INFOGEST digestion protocol. RESULTS Bioaccessibility was significantly higher for MPPE-JG compared to PPE-JG for TP (164.1 ± 6.0 vs. 100.0 ± 5.8 %, respectively) and punicalagin (173.4 ± 4.4 vs. 106.5 ± 4.2 %, respectively). MPPE-JG exhibited enhanced bioaccessibility, suggesting MPPE as a viable, functional ingredient in healthy gummies.
Collapse
Affiliation(s)
- Elva Gonzales
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Andrés Bustamante
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Diego García-Díaz
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Leyla Sanhueza
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Juan Francisco Orellana
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Carolina Fredes
- Departamento de Nutrición y Dietética, Escuela de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile..
| | - Paula Jiménez
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Vilma Chávez
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile..
| | - Francisca Echeverría
- Departamento de Nutrición y Dietética, Escuela de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile..
| |
Collapse
|
2
|
Lu J, Ge Y, Zhu X, Ma Y, Chiou BS, Liu F. Enhancing the stability of spray-dried vitamin A acetate: the role of synergistic wall materials in microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40165452 DOI: 10.1002/jsfa.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Vitamin A is a fat-soluble vitamin that is susceptible to environmental factors, which can result in reduced activity. The stability of vitamins directly affects the shelf life and market competitiveness of products in the nutrient-fortified foods/drugs sector. Encapsulation via emulsion spray drying is a commonly utilized method to enhance the stability of active substances. It boasts a wide range of applications and capability for automated and continuous production. The wall material of microcapsules represents one of the pivotal factors influencing their properties, potentially mitigating the degradation of active substances during storage. RESULTS This study aimed to investigate the characteristics of vitamin A acetate (VAA) high-loading-capacity emulsions and microcapsules formulated with different encapsulating agents (gum arabic (GA), gelatin (GEL), white sugar (WS) and octenyl succinic acid-modified starch) prepared by spray drying. According to the accelerated storage experiment formula, the shelf life of microcapsules stored at 60 °C for 35 days is about 1 year, and the retention rate of GA + GEL/WS microcapsules with a loading capacity of 100 g kg-1 reaches over 90%. The performance of microcapsules with different wall materials was investigated and the reasons for the enhanced stability through the interaction between wall materials were analyzed. CONCLUSION The results showed that spray drying of microcapsules improved the water solubility and storage stability of VAA. At high loading levels, the synergistic effect between wall materials can improve the density of microcapsules, thereby enhancing the storage stability of VAA microcapsules. Such higher storage stability is beneficial for extending the shelf life of fortified foods and pharmaceuticals, thereby expanding the application of VAA in the food sector. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Yi Ge
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Xiaoyong Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
- Zhejiang NHU Company Ltd, Xinchang, China
| | - Yun Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, US Department of Agriculture, Albany, CA, USA
| | - Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| |
Collapse
|
3
|
Van Engeland C, Haut B, Debaste F. A Closer Look at the Potential Mechanisms of Action of Protective Agents Used in the Drying of Microorganisms: A Review. Microorganisms 2025; 13:435. [PMID: 40005799 PMCID: PMC11858741 DOI: 10.3390/microorganisms13020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Yeast, bacteria and sourdough are widely used in our daily lives, yet their drying and storage remains a significant challenge. A variety of techniques are used to improve the resistance of cells to thermal, dehydration, oxidative and osmotic stresses, which can occur at different stages of the process. The addition of protective agents prior to drying is a commonly used method, but the mechanisms that may lead to a change in viability following the addition of these agents, or more generally, the interaction between a protective agent and the drying process, are not yet fully understood. This review outlines seven main potential mechanisms, as highlighted in the literature, which can lead to internal or external modifications of the cells. The mechanisms in question are change of membrane fluidity, accumulation of compounds for osmoregulation, prior osmotic dehydration, prevention of oxidation, coating or encapsulation, enhancement in thermal resistance and change in drying kinetics. A comprehensive explanation of these mechanisms is provided. This review also highlights the connection between the mechanisms and the influence of the stresses occurring during drying and storage, which depend on the drying technique used and the operating conditions, the strains and the protective agents involved, on the importance of the different protection mechanisms. By gaining a deeper understanding of the mechanisms of action of protective agents, strategies to improve the quality of the microorganisms obtained after drying can be developed. One such strategy would be to combine several agents to achieve a synergistic effect.
Collapse
Affiliation(s)
| | | | - Frédéric Debaste
- Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 CP165/67, 1050 Bruxelles, Belgium; (C.V.E.); (B.H.)
| |
Collapse
|
4
|
Tibaquira-Pérez L, Filomena-Ambrosio A, Bauer K, Cardoso-Cardenas M, Moreno FM, Quintanilla-Carvajal MX. Validation by in-vitro digestion and sensory analysis of incorporating vegetable oil encapsulates in cottage cheese. Food Chem 2025; 465:142027. [PMID: 39571427 DOI: 10.1016/j.foodchem.2024.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Malnutrition is a global issue linked to energy or nutrient imbalances, often resulting in deficiencies or overweight. Dairy products, rich in macronutrients and micronutrients, are a potential solution. However, processing, storage, and digestion can lead to nutrient loss. To enhance nutritional value, functional ingredients like microencapsulated compounds are used. This study focused on assessing the bioaccessibility of microencapsulated ingredients in cottage cheese, their impact on sensory attributes, and shelf-life. Two microencapsulated ingredients were studied: high oleic palm oil (HOPO), encapsulated using spray drying (SD) and a refractive window (RW) drying technique. The bioaccessibility of these ingredients was evaluated using the INFOGEST in-vitro digestion model. Results showed that HOPO encapsulated via SD in cottage cheese (CSD) preserved oleic and linoleic acids best, and via RW in cottage cheese (CRW) preserve vitamins in 63 % and antioxidants in 96 %. This highlights the effectiveness of microencapsulation techniques in enhancing dairy product functionality and a 72 % of fatty acids release suggesting potential strategies for combating malnutrition through fortified dairy products.
Collapse
Affiliation(s)
- Liceth Tibaquira-Pérez
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Annamaria Filomena-Ambrosio
- Research group in Alimentación, Gestión de Procesos y Servicio, EICEA, Universidad de La Sabana, Chía, Colombia
| | - Katherine Bauer
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Mary Cardoso-Cardenas
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Fabian Moreno Moreno
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - María Ximena Quintanilla-Carvajal
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia.
| |
Collapse
|
5
|
Martinović J, Ambrus R, Planinić M, Perković G, Šelo G, Klarić AM, Bucić-Kojić A. Spray-Drying Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings and Bioaccessibility of Phenolic Compounds. Gels 2025; 11:130. [PMID: 39996673 PMCID: PMC11854297 DOI: 10.3390/gels11020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Spray-drying is a common technique for the microencapsulation of bioactive compounds, which is crucial for improving their stability and bioavailability. In this study, the encapsulation efficiency (EE), physicochemical properties and in vitro bioaccessibility of phenolic compounds from spray-dried encapsulated phenol-rich extracts of grape pomace, a winery waste, were evaluated. Sodium alginate alone (SA) or in a mixture with gum Arabic (SA-GA) or gelatin (SA-GEL) was used as a coating. SA-GEL achieved the highest EE (95.90-98.01%) and outperformed the intestinal release of phenolics by achieving a bioaccessibility index (BI) for total phenolic compounds of 37.8-96.2%. The release mechanism of phenolics from the microcapsules adhered to Fickian diffusion. Encapsulation significantly improved the BI of individual phenolics, with the highest BI values for gallocatechin gallate (2028.7%), epicatechin gallate (476.4%) and o-coumaric acid (464.2%) obtained from the SA-GEL microcapsules. Structural analysis confirmed amorphous matrices in all systems, which improved solubility and stability. These results suggest that encapsulation by spray-drying effectively protects phenolics during digestion and ensures efficient release in the intestine, which improves bioaccessibility. This study contributes to the understanding of biopolymer-based encapsulation systems, but also to the valorisation of grape pomace as a high-value functional ingredient in sustainable food processing.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary;
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| |
Collapse
|
6
|
de Medeiros FGM, You SW, Hoskin RT, Moncada M. Spray dried protein concentrates from white button and oyster mushrooms produced by ultrasound-assisted alkaline extraction and isoelectric precipitation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1635-1650. [PMID: 39367715 PMCID: PMC11726604 DOI: 10.1002/jsfa.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND In the present study, the optimization of ultrasound-assisted alkaline extraction (UAAE) and isoelectric precipitation (IEP) was applied to white button (WBM) and oyster (OYM) mushroom flours to produce functional spray dried mushroom protein concentrates. Solid-to-liquid ratio (5-15% w/v), ultrasound power (0-900 W) and type of acid [HCl or acetic acid (AcOH)] were evaluated for their effect on the extraction and protein yields from mushroom flours submitted to UAAE-IEP protein extraction. RESULTS Prioritized conditions with maximized protein yield (5% w/v, 900 W, AcOH, for WBM; 5% w/v, 900 W, HCl for OYM) were used to produce spray dried protein concentrates from white button (WBM-PC) and oyster (OYM-PC) mushrooms with high solids recovery (62.3-65.8%). WBM-PC and OYM-PC had high protein content (5.19-5.81 g kg-1), in addition to remarkable foaming capacity (82.5-235.0%) and foam stability (7.0-162.5%), as well as antioxidant phenolics. Highly pH-dependent behavior was observed for solubility (> 90%, at pH 10) and emulsifying properties (emulsification activity index: > 50 m2 g-1, emulsion stability index: > 65%, at pH 10). UAAE-IEP followed by spray drying increased surface hydrophobicity and free sulfhydryl groups by up to 196.5% and 117.5%, respectively, which improved oil holding capacity (359.9-421.0%) and least gelation concentration (6.0-8.0%) of spray dried mushroom protein concentrates. CONCLUSION Overall, the present study showed that optimized UAAE-IEP coupled with spray drying is an efficient strategy to produce novel mushroom protein concentrates with enhanced functional attributes for multiple food applications. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fábio Gonçalves Macêdo de Medeiros
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| | - Seung Woon You
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| | - Marvin Moncada
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
| |
Collapse
|
7
|
de Medeiros FGM, Xiong J, Grace M, Strauch R, Perkins-Veazie P, Moncada M, Lila MA, Hoskin R. Fermentation of American elderberry juice yields functional phytochemicals for spray dried protein-polyphenol ingredients. Food Res Int 2025; 201:115536. [PMID: 39849686 DOI: 10.1016/j.foodres.2024.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
American elderberry juice (EBJ) and fermented elderberry juice (EBF) were spray dried using two different carriers: S. cerevisiae yeast (SC), used for juice fermentation and as encapsulating agent, and pea protein, to produce protein-polyphenol ingredients. The spray drying (SD) performance (solids recovery, SR; phenolic retention, PR) and quality attributes (physicochemical and functional properties, phytochemical content and bioaccessibility after in vitro digestion) of eight treatments of spray dried elderberry particles were determined. The total phenolic content (TPC) of EBJ (4476 ± 169 mg GAE/L) increased by 27 % after fermentation (EBF: 5706 ± 199 mg GAE/L). The SD performance of EBF (SR > 50 %; PR 55.7-63.9 %) was significantly higher (p < 0.05) compared to EBJ (SR < 50 %; PR 28.6-42.8 %). Stable (aw < 0.3) protein-polyphenol particles, with pH-dependent solubility that increased as pH went from 4 to 10, were produced. The TPC of EBF-derived particles (26.2-28.7 mg GAE/g) was 22-31 % higher than EBJ-derived particles (20.4-21.9 mg GAE/g) and anthocyanins were the major phenolic group detected. An increase in nearly all phenolic metabolite concentrations was observed after fermentation, and an additional increment was observed after spray drying. Phenolic bioaccessibility improved (17-25 % higher) after S. cerevisiae fermentation and when using SC as the drying carrier compared to phenolics source (EBJ or EBF). Overall, here we show a sensible strategy to produce protein-polyphenol particles with better SD performance and enhanced phytochemical content and profile. Our fermentation and spray drying strategy provides practical and efficient means to produce functional fruit ingredients for the emerging clean-label, health-oriented market.
Collapse
Affiliation(s)
- Fábio Gonçalves Macêdo de Medeiros
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Jia Xiong
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Mary Grace
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Renee Strauch
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, United States
| | - Marvin Moncada
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Roberta Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States.
| |
Collapse
|
8
|
Bustamante-Bernedo MS, Félix LL, Gutiérrez-Pineda E, Huamán-Castilla NL, Solis JL, León MMG, Montoya-Matos IR, Yacono-Llanos JC, Pacheco-Salazar DG. Development of antioxidant films based on anthocyanin microcapsules extracted from purple corn cob and incorporated into a chitosan matrix. Int J Biol Macromol 2025; 284:137658. [PMID: 39561841 DOI: 10.1016/j.ijbiomac.2024.137658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Biodegradable food packaging films were prepared from chitosan incorporated with microencapsulated anthocyanins powder (MAP) that was extracted from purple corn cob using the casting method. Anthocyanins extracts were microencapsulated with maltodextrin, gum arabic, and soy protein using a spray-drying method. The film based on chitosan and MAP (CHt@MAP) was prepared through citric acid cross-linking and plasticization with glycerol. The structural analysis of the CHt@MAP film revealed a semicrystalline structure by X-ray diffraction. The interactions were mainly via electrostatic and hydrogen bonding, as confirmed by Fourier-transform infrared. Based on scanning electron microscopy, the morphology of the films revealed evidence of the presence of MAP on the surface and cross-section. The microcapsules inside the films produced an increase in thickness (0.18-0.21 mm), lower water vapor permeability (12.4-8.5 × 10-10 g m-1s-1Pa-1), and reduced elongation at break (217 % to 165 %), as well as tensile strength (1.3 to 0.45 MPa) compared to the chitosan film. Furthermore, the antioxidant activity of CHt@MAP film was high, with a radical scavenging activity of 56 %. It also exhibited a strong barrier to UV and visible light. The results indicate that the CHt@MAP film preserves the shelf life of blueberries at room temperature and could be used as an active packaging film for foods.
Collapse
Affiliation(s)
- Milagros Sofia Bustamante-Bernedo
- Laboratorio de Películas Delgadas y Nanomateriales, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Peru.
| | - Lizbet León Félix
- Laboratorio de Películas Delgadas y Nanomateriales, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Peru.
| | - Eduart Gutiérrez-Pineda
- Laboratory of Research and Agri-Food Development - LIDA, School of Basic Sciences, Technology and Engineering, National University Open and Distance (UNDA), Bogotá D. C., Colombia.
| | - Nils Leander Huamán-Castilla
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru.
| | - Jose Luis Solis
- Universidad Nacional de Ingeniería, Facultad de Ciencias, Av. Tupac Amaru 210, Lima 15333, Peru.
| | | | - I R Montoya-Matos
- Facultad de Ingeniería, Universidad de Lima, Av. Javier Prado Este 4600, Lima 15023, Peru.
| | - J C Yacono-Llanos
- Facultad de Ingeniería, Universidad de Lima, Av. Javier Prado Este 4600, Lima 15023, Peru.
| | - David G Pacheco-Salazar
- Laboratorio de Películas Delgadas y Nanomateriales, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Peru.
| |
Collapse
|
9
|
Griep P, Gayeski L, Colet R, Zeni J, Valduga E. Recent updates of carotenoid encapsulation by spray-drying technique. J Microencapsul 2025; 42:26-46. [PMID: 39579156 DOI: 10.1080/02652048.2024.2430643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Carotenoids are compounds sensitive to environmental factors such as light, heat, and oxygen, which can result in the loss of their properties due to isomerisation and oxidation. To overcome this problem, spray drying encapsulation has been widely used as a method to protect and stabilise carotenoids in different wall materials. This article summarises the findings and research on spray drying encapsulation of carotenoids over the past 15 years, with an emphasis on the importance of controlling the operational conditions of the drying process and the association of different wall materials (proteins and polysaccharides), promising to increase encapsulation efficiency and stabilise carotenoids, with perspectives and trends in applications. The use of spray drying for carotenoid microencapsulation can open up new opportunities for controlled delivery of beneficial compounds. Based on the study, it is expected to provide information for researchers, professionals, and companies interested in the development of functional food products.
Collapse
Affiliation(s)
- Patrícia Griep
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Luana Gayeski
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
10
|
Rezagholizade-shirvan A, Soltani M, Shokri S, Radfar R, Arab M, Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem X 2024; 24:101953. [PMID: 39582652 PMCID: PMC11584689 DOI: 10.1016/j.fochx.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Nanotechnology plays a pivotal role in food science, particularly in the nanoencapsulation of bioactive compounds, to enhance their stability, bioavailability, and therapeutic potential. This review aims to provide a comprehensive analysis of the encapsulation of bioactive compounds, emphasizing the characteristics, food applications, and implications for human health. This work offers a detailed comparison of polymers such as sodium alginate, gum Arabic, chitosan, cellulose, pectin, shellac, and xanthan gum, while also examining both conventional and emerging encapsulation techniques, including freeze-drying, spray-drying, extrusion, coacervation, and supercritical anti-solvent drying. The contribution of this review lies in highlighting the role of encapsulation in improving system stability, controlling release rates, maintaining bioactivity under extreme conditions, and reducing lipid oxidation. Furthermore, it explores recent technological advances aimed at optimizing encapsulation processes for targeted therapies and functional foods. The findings underline the significant potential of encapsulation not only in food supplements and functional foods but also in supportive medical treatments, showcasing its relevance to improving human health in various contexts.
Collapse
Affiliation(s)
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shokri
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ramin Radfar
- Department of Agriculture and Food Policies, Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, Iran
| | - Masoumeh Arab
- Department of Food Science and Technology, School of Public Health, Shahid sadoughi University of Medical Sciences, Yazd, Iran Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
11
|
Navab F, Rezaei A, Rouhani MH, Shahdadian F, Alikord M. Vitamin D3 capsulation using maillard reaction complex of sodium caseinate and tragacanth gum. Food Chem X 2024; 24:101910. [PMID: 39553234 PMCID: PMC11564911 DOI: 10.1016/j.fochx.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The encapsulation of vitamin D3 (VitD3) using the Maillard reaction complex of sodium caseinate-tragacanth gum (TG) to the production of water-soluble vitamins were studied. Spray drying was used to prepare the complex. Its physicochemical properties, stability, and release characteristics were evaluated. The results showed that containing sodium caseinate- Tragacanth gum (TG) 1 % (w/v) and VitD3 1 % (w/v) had the highest encapsulation efficiency (71 %). The resulting microcapsules showed suitable particle size, strong negative zeta potential, and good stability with spherical morphology. Thermal and spectroscopic analyses showed proper interaction between wall and core components. In vitro, release and simulated digestion studies demonstrated the ability of microcapsules to protect VitD3 under gastric conditions and provide controlled release in the intestine. This encapsulation system shows potential for enriching food with VitD3 and increasing its stability and bioavailability.
Collapse
Affiliation(s)
- Fatemeh Navab
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Alikord
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Pokorski P, He R, Kurek MA. Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques - A comprehensive review. Food Res Int 2024; 196:115012. [PMID: 39614470 DOI: 10.1016/j.foodres.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 12/01/2024]
Abstract
Phytosterols represent a diverse and complex category of lipophilic bioactive compounds, exhibiting excellent pro-healthy properties. However, their consumption in daily diets is insufficient, and their application in food production is hindered by challenges such as low water solubility, high reactivity, and rapid degradation. The adoption of different protein or their structural modification as hydrolysates as wall material into microencapsulation techniques can be associated with improved solubility, enhanced bioaccessibility, increased bioavailability, and an extension of shelf life. This contribution provides an overview of advancements in modifying functional properties through various protein isolation methods and structural changes resulting from enzymatic hydrolysis. Additionally, the paper considers the state of the art in the utilization of various techniques and the composition of wall material in the encapsulation of phytosterols and other common lipophilic phytochemicals incorporated into delivery systems. Protein isolates obtained through novel methods of extraction may be characterized by an enhancement of their functional properties, which is crucial for the microencapsulation process. It entails not only recognizing their role as protective barriers for core materials against environmental conditions but also acknowledging their potential health-promoting attributes. These attributes encompass antioxidant properties and enhanced functional characteristics compared to native proteins. Moreover, the exploration of protein hydrolysates as versatile wall materials holds significant promise. These hydrolysates offer exceptional protective features for core materials, extending beyond mere environmental shielding. The envisioned impact extends beyond conventional delivery systems, offering transformative potential for the future of drug delivery and nutraceutical formulations.
Collapse
Affiliation(s)
- Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ronghai He
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
13
|
Ali Redha A, Kodikara C, Cozzolino D. Does Encapsulation Improve the Bioavailability of Polyphenols in Humans? A Concise Review Based on In Vivo Human Studies. Nutrients 2024; 16:3625. [PMID: 39519458 PMCID: PMC11547751 DOI: 10.3390/nu16213625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Polyphenols offer an array of health benefits that can contribute to well-being. Nevertheless, their bioactivity can be compromised due to their low bioavailability. Encapsulation has been explored as a strategy to enhance the stability and bioavailability of polyphenols. During encapsulation, polyphenols are protected from degradation by a wall material that acts as a protective coating. This coating shields the polyphenols from the harsh physiological conditions of digestion, ensuring their delivery to the intestine. However, the majority of evidence, particularly regarding bioavailability after digestion, is derived from in vitro studies. While these studies provide valuable preliminary insights, they cannot definitively confirm the effects in vivo due to their inability to accurately replicate physiological conditions and the complex gut microbial ecosystem. Consequently, this review seeks to evaluate the current evidence from in vivo human studies to elucidate the efficacy of encapsulation in improving polyphenols' bioavailability. RESULTS AND CONCLUSIONS Current clinical evidence on the impact of encapsulation on polyphenol bioavailability is primarily focused on polyphenols derived from grape pomace, cocoa, and bilberries, as well as individual polyphenols such as fisetin, hesperidin, and curcumin. Encapsulation has been an effective technique in improving the bioavailability of individual polyphenols like hesperidin, fisetin, and curcumin. However, this approach has not yielded consistent results when applied to groups of polyphenols, such as bilberry anthocyanins or cocoa phenolic acids. Encapsulation by micellization has shown promising results in improving the bioavailability of curcumin in a nutraceutical context. Further studies are needed to explore the bioavailability of encapsulated polyphenols, especially in the functional food context.
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Chamali Kodikara
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Canadian Grain Commission, 303 Main St Suite 1000, Winnipeg, MB R3C 3G8, Canada
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
14
|
Lisiecka K, Dziki D, Karaś M. Physical and Functional Properties of Powders Obtained during Spray Drying of Cyani flos Extracts. Molecules 2024; 29:3400. [PMID: 39064978 PMCID: PMC11279533 DOI: 10.3390/molecules29143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Edible flowers are a potential source of bioactive ingredients and are also an area of scientific research. Particularly noteworthy are Cyani flos, which have a wide range of uses in herbal medicine. The below study aimed to investigate the influence of selected soluble fiber fractions on the selected properties of physical and biochemical powders obtained during spray drying a water extract of Cyani flos. The drying efficiency for the obtained powders was over 60%. The obtained powders were characterized by low moisture content (≤4.99%) and water activity (≤0.22). The increase in the addition of pectin by the amount of 2-8% in the wall material resulted in a decrease in hygroscopicity, water solubility, and protection of flavonoids and anthocyanins both before and after digestion in the tested powders in comparison to the sample with only inulin as a carrier. Additionally, it was noted that all samples were characterized by high bioaccessibility when determining antioxidant properties and xanthine oxidase inhibition.
Collapse
Affiliation(s)
- Katarzyna Lisiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland;
| |
Collapse
|
15
|
Wen C, Lin X, Tang J, Fan M, Liu G, Zhang J, Xu X. New perspective on protein-based microcapsules as delivery vehicles for sensitive substances: A review. Int J Biol Macromol 2024; 270:132449. [PMID: 38777020 DOI: 10.1016/j.ijbiomac.2024.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
16
|
Zhang G, Qi X, He L, Wang X, Zhao Y, Wang Q, Han J, Wang Z, Ding Z, Liu M. Non-covalent complexes of lutein/zeaxanthin and whey protein isolate formed at different pH levels: Binding interactions, storage stabilities, and bioaccessibilities. Curr Res Food Sci 2024; 8:100778. [PMID: 38854501 PMCID: PMC11157214 DOI: 10.1016/j.crfs.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Lutein (Lut) and zeaxanthin (Zx) are promising healthy food ingredients; however, the low solubilities, stabilities, and bioavailabilities limit their applications in the food and beverage industries. A protein-based complex represents an efficient protective carrier for hydrophobic ligands, and its ligand-binding properties are influenced by the formulation conditions, particularly the pH level. This study explored the effects of various pH values (2.5-9.5) on the characteristics of whey protein isolate (WPI)-Lut/Zx complexes using multiple spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, and Fourier transform infrared (FTIR) spectroscopies and dynamic light scattering (DLS). UV-Vis and DLS spectra revealed that Lut/Zx were present as H-aggregates in aqueous solutions, whereas WPI occurred as nanoparticles. The produced WPI-Lut/Zx complexes exhibited binding constants of 104-105 M-1, which gradually increased with increasing pH from 2.5 to 9.5. FTIR spectra demonstrated that pH variations and Lut/Zx addition caused detectable changes in the secondary WPI structure. Moreover, the WPI-Lut/Zx complexes effectively improved the physicochemical stabilities and antioxidant activities of Lut/Zx aggregates during long-term storage and achieved bioaccessibilities above 70% in a simulated gastrointestinal digestion process. The comprehensive data obtained in this study offer a basis for formulating strategies that can be potentially used in developing commercially available WPI complex-based xanthophyll-rich foods.
Collapse
Affiliation(s)
- Gang Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Xin Qi
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Linlin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Xiao Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng, 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng, 252059, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
- Shandong Liang-Jian Biotechnology Co., Ltd., Zibo, 255000, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
- Shandong Liang-Jian Biotechnology Co., Ltd., Zibo, 255000, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
17
|
Dang YT, Tran H, Kha TC. Encapsulation of W/O/W Acerola Emulsion by Spray Drying: Optimization, Release Kinetics, and Storage Stability. Foods 2024; 13:1463. [PMID: 38790764 PMCID: PMC11120112 DOI: 10.3390/foods13101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Acerola (Malpighia emarginata DC.) is a sub-tropical and tropical fruit renowned for its high levels of vitamin C and phenolic compounds, which offer health benefits. This study aimed to optimize the spray drying process by determining the inlet and outlet temperatures using response surface methodology (RSM) with the central composite design. Additionally, it aimed to evaluate the release kinetics in the hydrophilic food simulation environment and the stability of the resulting powder under various storage temperatures. The RSM method determined the optimal inlet and outlet temperatures as 157 °C and 91 °C, respectively. High-accuracy prediction equations (R2 ≥ 0.88) were developed for moisture content (3.02%), process yield (91.15%), and the encapsulation yield of total polyphenol content (61.44%), total flavonoid content (37.42%), and vitamin C (27.19%), with a predicted monolayer moisture content below 4.01%, according to the BET equation. The powder exhibited good dissolution characteristics in the acidic hydrophilic food simulation environment and showed greater stability when stored at 10 °C for 30 days, compared to storage at 35 °C and 45 °C.
Collapse
Affiliation(s)
- Yen Thi Dang
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City 700000, Vietnam;
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Vietnam;
| | - Hieu Tran
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Vietnam;
| | - Tuyen Chan Kha
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
18
|
Barańska A, Michalska-Ciechanowska A, Wojdyło A, Mykhailyk VA, Korinchevska TV, Samborska K. Carriers based on dairy by-products and dehumidified-air spray drying as a novel multiple approach towards improved retention of phenolics in powders: sour cherry juice concentrate case study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1497-1510. [PMID: 37804151 DOI: 10.1002/jsfa.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Sour cherry juice concentrate powder can serve as a modern, easy-to-handle, phenolics-rich merchandise; however, its transformation into powdered form requires the addition of carriers. In line with the latest trends in food technology, this study valorizes the use of dairy by-products (whey protein concentrate, whey, buttermilk, and mixes with maltodextrin) as carriers. A new multiple approach for higher drying yield, phenolics retention (phenolic acids, flavonols and anthocyanins) and antioxidant capacity of powders were tested as an effect of simultaneous decrease of drying temperature due to the drying air dehumidification and lower carrier content. RESULTS Dairy-based carriers were effective for spray drying of sour cherry-juice concentrate. The drying yield was increased and retention of phenolics was higher when compared with maltodextrin. The application of dehumidified air, which enabled the drying temperature to be reduced, affected drying yield positively, and also affected particle morphology and retention of phenolics (the phenolic content was approximately 30% higher than with spray drying). CONCLUSIONS The study proved that it is possible to apply dairy-based by-products to produce sour cherry juice concentrate powders profitably, lowering the spray-drying temperature and changing the carrier content. Dehumidified air spray drying can be recommended for the production of fruit juice concentrate powders with improved physicochemical properties. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alicja Barańska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Viacheslav A Mykhailyk
- Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana V Korinchevska
- Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
19
|
Sarabandi K, Akbarbaglu Z, Peighambardoust SH, Ayaseh A, Jafari SM. Biological stabilization of natural pigment-phytochemical from poppy-pollen (Papaver bracteatum) extract: Functional food formulation. Food Chem 2023; 429:136885. [PMID: 37544107 DOI: 10.1016/j.foodchem.2023.136885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
In this study, poppy-pollen extract (as a novel source of pigment and natural phytochemical) was microencapsulated. The spray-drying process maintained the encapsulation efficiency (EE) of phenolic (84-93%), anthocyanins (71-83%), and also antioxidant activity of extract in inhibiting DPPH (68-80%), ABTS (74-95%), OH (63-74%) radicals and reducing power (84-95%). The results of the Photo- and thermal (40-70˚C) stability of the bioactive compounds (TPC and TAC) indicated the thermal degradation and decomposition of particles' surface compounds during storage. The chemical (FTIR) and morphological analyses respectively revealed the insertion of extract compounds in the carrier matrix and the production of healthy particles with wrinkled structures. An increase in the carrier concentration elevated physical-stability, maintained structural properties, reduced hygroscopicity, and formed liquid/solid bridges or deliquescence phenomenon. The evaluation of the color histogram of the fortified gummy-candies indicated the usability of the spray-dried PP extract in producing an attractive red color with high sensory perception.
Collapse
Affiliation(s)
- Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Ali Ayaseh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
20
|
Ferraz MC, Júnior FDO, Barroso LA, de Figueiredo Furtado G, Cunha RL, Hubinger MD. Co-encapsulation of Paprika and Cinnamon Oleoresins by Spray Drying in a Mayonnaise Model: Bioaccessibility of Carotenoids Using in vitro Digestion. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:676-682. [PMID: 37721655 DOI: 10.1007/s11130-023-01104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to investigate the digestibility and bioaccessibility of spray-dried microparticles co-encapsulating paprika and cinnamon oleoresins using simulated gastrointestinal conditions. It focused on exploring the potential of these co-encapsulated active compounds, which possess diverse technological and functional properties, particularly within a food matrix, in order to enhance their bioavailability. Mayonnaise was selected as the food matrix for its ability to promote the diffusion of carotenoids, as most hydrophobic compounds are better absorbed in the intestine when accompanied by digestible lipids. Model spice mayonnaise, containing 0.5 wt% paprika and cinnamon microparticles content, was formulated in compliance with Brazilian regulations for spices, seasonings, and sauce formulations. Droplet size distribution, optical microscopy and fluorescence microscopy analyses were conducted on the microparticles, model spice mayonnaise, and standard mayonnaise both before and after in vitro gastric and intestinal digestion. Following digestion, all samples demonstrated droplet aggregation and coalescence. Remarkably, dispersed particles (37.40 ± 2.58%) and model spice mayonnaise (17.76 ± 0.07%) showed the highest release rate of free fatty acids (FFAs), indicating efficient lipid digestion. The study found that using mayonnaise as a delivery system significantly increased bioaccessibility (22.7%). This suggests that particles in an aqueous medium have low solubility, while the high lipid composition of mayonnaise facilitates the delivery of active compounds from carotenoids present in paprika and cinnamon oleoresin after digestion.
Collapse
Affiliation(s)
- Mariana Costa Ferraz
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-862, Brazil.
| | - Fernando Divino Oliveira Júnior
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-862, Brazil
| | - Lívia Alves Barroso
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-862, Brazil
| | - Guilherme de Figueiredo Furtado
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-862, Brazil
| | - Rosiane Lopes Cunha
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-862, Brazil
| | - Miriam Dupas Hubinger
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-862, Brazil
| |
Collapse
|
21
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
22
|
Jin JC, Liang S, Qi SX, Tang P, Chen JX, Chen QS, Chen YF, Yin JF, Xu YQ. Widely targeted metabolomics reveals the effect of different raw materials and drying methods on the quality of instant tea. Front Nutr 2023; 10:1236216. [PMID: 37899836 PMCID: PMC10600452 DOI: 10.3389/fnut.2023.1236216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Instant teas are particularly rich in tea polyphenols and caffeine and have great potential as food ingredients or additives to improve the quality of food and enhance their nutritional and commercial value. Methods To determine the relationships between raw material, drying method, and sensory and other quality attributes, instant teas were prepared from three tea varieties, namely black, green and jasmine tea, using two drying methods, namely spray-drying (SD) and freeze-drying (FD). Results Both the raw tea material and drying method influenced the quality of the finished instant teas. Black tea was quality stable under two drying, while green tea taste deteriorated much after SD. Jasmine tea must be produced from FD due to huge aroma deterioration after SD. FD produced instant tea with higher sensory quality, which was attributed to the lower processing temperature. Chemical compositional analysis and widely targeted metabolomics revealed that SD caused greater degradation of tea biochemical components. The flavonoids content changed markedly after drying, and metabolomics, combined with OPLS-DA, was able to differentiate the three varieties of tea. Instant tea preparations via SD often lost a large proportion of the original tea aroma compounds, but FD minimized the loss of floral and fruity aroma compounds. Changes in the tea flavonoids composition, especially during drying, contributed to the flavor development of instant tea. Discussion These results will provide an practicle method for high-quality instant tea production through choosing proper raw tea material and lowering down drying temperature with non-thermal technologies like FD.
Collapse
Affiliation(s)
- Jian-Chang Jin
- College of Biological and Environmental Engineering, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou, China
| | - Shuang Liang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | | | - Ping Tang
- Hangzhou Vocational and Technical College, Hangzhou, China
| | - Jian-Xin Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Quan-Sheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | | | - Jun-Feng Yin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
23
|
Ligarda-Samanez CA, Moscoso-Moscoso E, Choque-Quispe D, Ramos-Pacheco BS, Arévalo-Quijano JC, la Cruz GD, Huamán-Carrión ML, Quispe-Quezada UR, Gutiérrez-Gómez E, Cabel-Moscoso DJ, Muñoz-Melgarejo M, Calsina Ponce WC. Native Potato Starch and Tara Gum as Polymeric Matrices to Obtain Iron-Loaded Microcapsules from Ovine and Bovine Erythrocytes. Polymers (Basel) 2023; 15:3985. [PMID: 37836034 PMCID: PMC10575126 DOI: 10.3390/polym15193985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Iron deficiency leads to ferropenic anemia in humans. This study aimed to encapsulate iron-rich ovine and bovine erythrocytes using tara gum and native potato starch as matrices. Solutions containing 20% erythrocytes and different proportions of encapsulants (5, 10, and 20%) were used, followed by spray drying at 120 and 140 °C. Iron content in erythrocytes ranged between 2.24 and 2.52 mg of Fe/g; microcapsules ranged from 1.54 to 2.02 mg of Fe/g. Yields varied from 50.55 to 63.40%, and temperature and encapsulant proportion affected moisture and water activity. Various red hues, sizes, and shapes were observed in the microcapsules. SEM-EDS analysis revealed the surface presence of iron in microcapsules with openings on their exterior, along with a negative zeta potential. Thermal and infrared analyses confirmed core encapsulation within the matrices. Iron release varied between 92.30 and 93.13% at 120 min. Finally, the most effective treatments were those with higher encapsulant percentages and dried at elevated temperatures, which could enable their utilization in functional food fortification to combat anemia in developing countries.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Germán De la Cruz
- Agricultural Science Faculty, Universidad Nacional de San Cristobal de Huamanga, Ayacucho 05000, Peru;
| | - Mary L. Huamán-Carrión
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
| | - Uriel R. Quispe-Quezada
- Agricultural and Forestry Business Engineering, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru;
| | - Edgar Gutiérrez-Gómez
- Engineering and Management Faculty, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru;
| | | | | | | |
Collapse
|
24
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Process optimization for spray dried Aegle marmelos fruit nanomucilage: Characterization, functional properties, and in vitro antibiofilm activity against food pathogenic microorganisms. Int J Biol Macromol 2023; 249:126050. [PMID: 37517760 DOI: 10.1016/j.ijbiomac.2023.126050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Recently, mucilage extraction from plant sources has been remarkably explored due to its potential applications. Several underutilized fruits such as Aegle marmelos are the potential source of mucilage that can be utilized for agri-food-pharma applications. Therefore, in this study, we explored vital functional and antimicrobial properties of Aegle marmelos nanomucilage. Spray drying conditions such as inlet temperature, feed flow, and atomization speed were optimized to assess the influence on yield and moisture content using response surface methodology. In addition, during the optimized spray drying conditions, the maximum mucilage yield was 16.23 % (w/w). The particle size (178.4 ± 5.06 nm) at the nanoscale, polydispersity index (0.432), and zeta potential (-16.4 ± 1.14 mV) confirmed the stability of the nanomucilage. Moreover, the spray-dried nanomucilage powder exhibited high thermal stability (55.70 J) and excellent industrially important techno-functional properties with water-holding capacity (8.01 ± 0.04 g/g), oil-holding capacity (3.43 ± 0.7 g/g), emulsifying capacity (91.50 ± 0.78 %), emulsifying stability (92.65 ± 0.46 %), solubility (89.36 ± 1.69 %), and foaming capacity (16.13 ± 0.41 %). Moreover, the powder showed strong antibiofilm activity against food-pathogenic bacteria, including Escherichia coli (73.52 ± 1.14 %) and Staphylococcus aureus (79.57 ± 1.23 %), with minimum inhibitory concentrations of 3.125 mg/mL and 1.562 mg/mL respectively. Overall, based on the above findings the spray-dried powder of Aegle marmelos fruit nanomucilage could be utilized as a potential functional ingredient in various food products formulations.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
25
|
González-Chavarría I, Roa FJ, Sandoval F, Muñoz-Flores C, Kappes T, Acosta J, Bertinat R, Altamirano C, Valenzuela A, Sánchez O, Fernández K, Toledo JR. Chitosan Microparticles Enhance the Intestinal Release and Immune Response of an Immune Stimulant Peptide in Oncorhynchus mykiss. Int J Mol Sci 2023; 24:14685. [PMID: 37834146 PMCID: PMC10572396 DOI: 10.3390/ijms241914685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1β, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1β, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Francisco J. Roa
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Felipe Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Tomas Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Romina Bertinat
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile;
| | - Ariel Valenzuela
- Laboratory of Fish Culture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Oliberto Sánchez
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| |
Collapse
|
26
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
27
|
Xu Y, Dong M, Xiao H, Young Quek S, Ogawa Y, Ma G, Zhang C. Advances in spray-dried probiotic microcapsules for targeted delivery: a review. Crit Rev Food Sci Nutr 2023; 64:11222-11238. [PMID: 37459278 DOI: 10.1080/10408398.2023.2235424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Probiotics have gained significant attention owing to their roles in regulating human health. Recently, spray drying has been considered as a promising technique to produce probiotic powders due to its advantages of high efficiency, cost-saving, and good powder properties. However, the severe environmental conditions from drying and digestion can significantly reduce cell viability, resulting in poor bioaccessibility and bioavailability of live cells. Therefore, there is a need to develop effective targeted delivery systems using spray drying to protect bacteria and to maintain their physiological functions in the targeted sites. This review highlights recent studies about spray-dried targeted delivery vehicles for probiotics, focusing on key strategies to protect bacteria when encountering external stresses, the formation mechanism of particles, the targeted release and colonization mechanisms of live cells in particles with different structures. Advances in the targeted delivery of live probiotics via spray-dried vehicles are still in their early stages. To increase the possibilities for industrialization and commercialization, functional improvement of microcapsules in terms of protection, targeted release, and colonization of bacteria, as well as the effect of spray drying on bacterial physiological functions in the host, need to be further investigated.
Collapse
Affiliation(s)
- Yuyan Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Guangyuan Ma
- Jiangsu Innovation Center of Marine Biological Resources, Nanjing, China
| | - Chuang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
28
|
Li S, Mao X, Guo L, Zhou Z. Comparative Analysis of the Impact of Three Drying Methods on the Properties of Citrus reticulata Blanco cv. Dahongpao Powder and Solid Drinks. Foods 2023; 12:2514. [PMID: 37444253 DOI: 10.3390/foods12132514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Citrus reticulata Blanco cv. Dahongpao is a traditional Chinese citrus variety. Due to the high investment in storage and transport of Citrus reticulata Blanco cv. Dahongpao and the lack of market demand, the fresh fruit is wasted. The processing of fresh fruit into fruit drinks can solve the problem of storage and transport difficulties and open up new markets. Investigating the effects of different drying processes (hot air, freeze, and spray drying) on fruit powders is a crucial step in identifying a suitable production process. The experiment measured the effects of different drying methods (hot air drying, freeze drying, and spray drying) on the nutrient, bioactive substance, and physical characteristics of fruit powder. This study measured the influence of three different drying methods (hot air, freeze, and spray drying) on the nutritional, bioactive substance, and physical characteristics of fruit powder. The results showed that compared to vacuum freeze-drying at low temperature (-60 °C) and spray-drying at high temperatures (150 °C), hot air drying at 50 °C produced fruit powder with superior nutritional quality, higher levels of active substances, and better physical properties. Hot air drying produced fruit powder that had the highest content of amino acids (11.48 ± 0.08 mg/g DW), vitamin C (112.09 ± 2.86 μg/g DW), total phenols (14.78 ± 0.30 mg/g GAE DW), total flavonoids (6.45 ± 0.11 mg/g RE DW), organic acids, and antioxidant activity capacity. Additionally, this method yielded the highest amounts of zinc (8.88 ± 0.03 mg/Kg DW) and soluble sugars, low water content, high solubility, and brown coloration of the fruit powder and juice. Therefore, hot air drying is one of the best production methods for producing high-quality fruit powder in factory production.
Collapse
Affiliation(s)
- Shunjie Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
29
|
Mora-Flórez LS, Cabrera-Rodríguez D, Hernández-Carrión M. Encapsulation of Menthol and Luteolin Using Hydrocolloids as Wall Material to Formulate Instant Aromatic Beverages. Foods 2023; 12:foods12102080. [PMID: 37238898 DOI: 10.3390/foods12102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Aromatic plants represent about 0.7% of all medicinal plants. The most common are peppermint (main active ingredient: menthol) and chamomile (main active ingredient: luteolin), which are usually consumed in "tea bags" to make infusions or herbal teas. In this study, menthol and luteolin encapsulates using different hydrocolloids were obtained to replace the conventional preparation of these beverages. Encapsulation was carried out by feeding an infusion of peppermint and chamomile (83% aqueous phase = 75% water - 8% herbs in equal parts, and 17% dissolved solids = wall material in 2:1 ratio) into a spray dryer (180 °C-4 mL/min). A factorial experimental design was used to evaluate the effect of wall material on morphology (circularity and Feret's diameter) and texture properties of the powders using image analysis. Four formulations using different hydrocolloids were evaluated: (F1) maltodextrin-sodium caseinate (10 wt%), (F2) maltodextrin-soy protein (10 wt%), (F3) maltodextrin-sodium caseinate (15 wt%), and (F4) maltodextrin-soy protein (15 wt%). The moisture, solubility, bulk density, and bioavailability of menthol in the capsules were determined. The results showed that F1 and F2 presented the best combination of powder properties: higher circularity (0.927 ± 0.012, 0.926 ± 0.011), lower moisture (2.69 ± 0.53, 2.71 ± 0.21), adequate solubility (97.73 ± 0.76, 98.01 ± 0.50), and best texture properties. Those suggest the potential of these powders not only as an easy-to-consume and ecofriendly instant aromatic beverage but also as a functional one.
Collapse
Affiliation(s)
- Laura Sofía Mora-Flórez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Daniel Cabrera-Rodríguez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - María Hernández-Carrión
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
30
|
Younesi M, Peighambardoust SH, Sarabandi K, Akbarmehr A, Ahaninjan M, Soltanzadeh M. Application of structurally modified WPC in combination with maltodextrin for microencapsulation of Roselle (Hibiscus sabdariffa) extract as a natural colorant source for gummy candy. Int J Biol Macromol 2023:124903. [PMID: 37220850 DOI: 10.1016/j.ijbiomac.2023.124903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
The aim of this work was to improve the stability of Roselle extract (RE) by spray-drying using maltodextrin (MD) alone, and in combination with WPC in the forms of unmodified and modified (via ultrasonication, UWPC, or enzymatic hydrolysis, HWPC). Enzymatic hydrolysis by improving the surface activity of WPC increased spray-drying yield (75.1 %), and improved physical (flow) and functional (solubility, and emulsifying) properties of obtained microparticles. Degree of hydrolysis of the primary WPC (2.6 %) was increased to 6.1 % and 24.6 % after ultrasonication and hydrolysis, respectively. Both modifications caused a significant increase in the solubility of WPC, in a way that initial solubility (10.6 %, at pH = 5) was significantly increased to 25.5 % in UWPC, and to 87.3 % in HWPC (P < 0.05). Furthermore, emulsifying activity (20.6 m2/g) and emulsifying stability (17 %) indices of primary WPC (at pH = 5) were significantly increased to 32 m2/g and 30 % in UWPC, and to 92.4 m2/g and 69.0 % in HWPC, respectively (P < 0.05). FT-IR analysis indicated successful encapsulation of RE within carriers' matrix. According to FE-SEM study, the surface morphology of microparticles was improved when modified HWPC was used as a carrier. Microencapsulation of RE with HWPC showed the highest contents of total phenolic compounds (13.3 mg GAE/mL), total anthocyanins (9.1 mg C3G/L) as well as a higher retention of antioxidant activity according to ABTS+ (85.0 %) and DPPH (79.5 %) radicals scavenging assays. Considering all properties of microparticles obtained by HWPC next to their color attributes, it can be concluded that HWPC-RE powders could be used as natural colorant and antioxidant source for the fortification of gummy candy. Gummy candy obtained using 6 % concentration of the above powder gave the highest overall sensory scores.
Collapse
Affiliation(s)
- Mohsen Younesi
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir Akbarmehr
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mehdi Ahaninjan
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
31
|
Sampedro-Guerrero J, Vives-Peris V, Gomez-Cadenas A, Clausell-Terol C. Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance. PLANT METHODS 2023; 19:47. [PMID: 37189192 PMCID: PMC10184380 DOI: 10.1186/s13007-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Climate change due to different human activities is causing adverse environmental conditions and uncontrolled extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield (both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to tolerate environmental stresses and maintain their normal growth and development. Treatments performed with exogenous phytohormones stand out because they mitigate the negative effects of stress and promote the growth rate of plants. However, the technical limitations in field application, the putative side effects, and the difficulty in determining the correct dose, limit their widespread use. Nanoencapsulated systems have attracted attention because they allow a controlled delivery of active compounds and for their protection with eco-friendly shell biomaterials. Encapsulation is in continuous evolution due to the development and improvement of new techniques economically affordable and environmentally friendly, as well as new biomaterials with high affinity to carry and coat bioactive compounds. Despite their potential as an efficient alternative to phytohormone treatments, encapsulation systems remain relatively unexplored to date. This review aims to emphasize the potential of phytohormone treatments as a means of enhancing plant stress tolerance, with a specific focus on the benefits that can be gained through the improved exogenous application of these treatments using encapsulation techniques. Moreover, the main encapsulation techniques, shell materials and recent work on plants treated with encapsulated phytohormones have been compiled.
Collapse
Affiliation(s)
- Jimmy Sampedro-Guerrero
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Aurelio Gomez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| | - Carolina Clausell-Terol
- Departamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
32
|
Berraquero-García C, Pérez-Gálvez R, Espejo-Carpio FJ, Guadix A, Guadix EM, García-Moreno PJ. Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying. Foods 2023; 12:foods12102005. [PMID: 37238822 DOI: 10.3390/foods12102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell-core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion.
Collapse
Affiliation(s)
| | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
33
|
Akbarmehr A, Peighambardoust SH, Ghanbarzadeh B, Sarabandi K. Physicochemical, antioxidant, antimicrobial, and in vitro cytotoxic activities of corn pollen protein hydrolysates obtained by different peptidases. Food Sci Nutr 2023; 11:2403-2417. [PMID: 37181317 PMCID: PMC10171531 DOI: 10.1002/fsn3.3252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The applications of protein hydrolysates as food preservatives and nutraceutical ingredients have attracted much attention because of their beneficial effects. The interest in these ingredients has shifted toward their biological activities with benefits to human health. Bioactive peptides are known as antioxidant agents that could promote health-promoting effects and prolong food shelf-life beyond their basic nutritional value. Thus, the aim of this study was to investigate antioxidant, antimicrobial, and in vitro cytotoxic properties of corn pollen protein (CPP) hydrolysates obtained by different enzymes. Proteolytic activity in terms of degree of hydrolysis (DH) and SDS-PAGE analysis was measured in pancreatin (H-Pan), pepsin (H-Pep), and trypsin (H-Tri) hydrolysates. Amino acid composition, antioxidant and antimicrobial activities, and cytotoxicity of hydrolysates were evaluated. DH and SDS-PAGE revealed higher proteolytic activity of pepsin compared to other enzymes. Amino acid analysis showed that the functional amino acids such as antioxidant types were most predominant in H-Pep compared to two other samples. Antioxidant activity of hydrolysates was found to be affected by the type of enzyme and the concentration of hydrolysates. There was a significant difference (p < 0.05) between antioxidant activity of different hydrolysates. The highest antioxidant activity in terms of Trolox equivalent antioxidant capacity (0.23-2.75 mM), DPPH (33.3%-64.8%), and hydroxyl (33.7%-63.2%) radical scavenging activities, chelation of iron (33.2%-62.5%) and copper (30.2%-50.5%) metals, and total antioxidant activity (0.65-0.85) was obtained for H-Pep followed by H-Pan and H-Tri samples. Antibacterial tests showed that pepsin-hydrolyzed protein was not significantly (P > 0.05) effective against E. coli at any concentrations, however, it showed significant (P < 0.05) concentration-dependent effect against S. aureus (with inhibition zones of 15-25 mm). Cytotoxicity results revealed that CPP, as a nonhydrolyzed protein, did not generally show antiproliferative activity, however, a significant (P < 0.05) ability of H-Pep hydrolysate in decreasing HT-29 colon cancer cell line viability was seen in a concentration-dependent manner (the lowest cell viability of 32% at 5 mg/mL). Overall, investigating the application of protein-based hydrolysates is one of the possible strategies that govern their applied intentions as preservatives and nutraceuticals in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Amir Akbarmehr
- Department of Food Science, College of AgricultureUniversity of TabrizTabrizIran
| | | | - Babak Ghanbarzadeh
- Department of Food Science, College of AgricultureUniversity of TabrizTabrizIran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of MedicineZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
34
|
Akbarmehr A, Peighambardoust SH, Soltanzadeh M, Jafari SM, Sarabandi K. Microencapsulation of Yerba mate extract: The efficacy of polysaccharide/protein hydrocolloids on physical, microstructural, functional, and antioxidant properties. Int J Biol Macromol 2023; 234:123678. [PMID: 36796563 DOI: 10.1016/j.ijbiomac.2023.123678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Effects of hydrolyzed whey protein concentrate (WPC) and its combination with polysaccharides as wall material in spray-drying microencapsulation of Yerba mate extract (YME) have not been investigated yet. Therefore, it is hypothesized that the surface-active properties of WPC or WPC-hydrolysate may improve different properties of spray-dried microcapsules (such as physicochemical, structural, functional and morphological properties) compared to neat MD and GA. Thus, the objective of current study was to produce microcapsules loaded with YME by different carrier combinations. Effect of maltodextrin (MD), maltodextrin-gum Arabic (MD-GA), maltodextrin-whey protein concentrate (MD-WPC), and maltodextrin-hydrolyzed WPC (MD-HWPC) as encapsulating hydrocolloids was studied on physicochemical, functional, structural, antioxidant and morphological characteristics of the spray-dried YME. The type of carrier significantly affected spray dying yield. Enzymatic hydrolysis by improving the surface activity of WPC increased its efficiency as a carrier and produced particles with high production yield (about 68 %) and excellent physical, functional, hygroscopicity and flowability indices. Chemical structure characterization by FTIR indicated the placement of phenolic compounds of the extract in the carrier matrix. FE-SEM study showed that the microcapsules produced with polysaccharide-based carriers were completely wrinkled, whereas, the surface morphology of particles was improved when protein-based carriers were applied. Among the produced samples, the highest amount of TPC (3.26 mg GAE/mL), inhibition of DPPH (76.4 %), ABTS (88.1 %) and hydroxyl (78.1 %) free radicals were related to microencapsulated extract with MD-HWPC. The results of this research can be used to stabilize plant extracts and produce powders with appropriate physicochemical properties and biological activity.
Collapse
Affiliation(s)
- Amir Akbarmehr
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
35
|
Kaboudi Z, Peighambardoust SH, Nourbakhsh H, Soltanzadeh M. Nanoencapsulation of Chavir (Ferulago angulata) essential oil in chitosan carrier: Investigating physicochemical, morphological, thermal, antimicrobial and release profile of obtained nanoparticles. Int J Biol Macromol 2023; 237:123963. [PMID: 36906207 DOI: 10.1016/j.ijbiomac.2023.123963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
The essential oil obtained by steam-distillation from Ferulago angulata (FA) was stabilized by ionic-gelation technique within chitosan nanoparticles (CSNPs). The aim of this study was to investigate different properties of CSNPs loaded with FA essential oil (FAEO). GC-MS analysis detected the major components of FAEO as α-pinene (21.85 %), β-ocimene (19.37 %), bornyl acetate (10.50 %) and thymol (6.80 %). Due to presence of these components, FAEO showed stronger antibacterial activity against S. aureus and E. coli with MIC values of 0.45 and 2.12 mg/mL, respectively. Chitosan to FAEO ratio of 1: 1.25 exhibited a maximum encapsulation efficiency (60.20 %) and loading capacity (24.5 %) values. By increasing loading ratio from 1:0 to 1:1.25, mean particle size and polydispersity index were significantly (P < 0.05) increased from 175 to 350 nm and 0.184 to 0.32, respectively, while zeta potential was decreased from +43.5 to +19.2 mV, indicating the physical instability of CSNPs at higher FAEO loading concentrations. SEM observation proved successful formation of spherical CSNPs during the nanoencapsulation of EO. FTIR spectroscopy indicated successful physical entrapment of EO within CSNPs. Differential scanning calorimetry also proved the physical entrapment of FAEO into polymeric matrix of chitosan. XRD exhibited a broad peak at 2θ = 19° - 25° in loaded-CSNPs as indication of successful entrapment of FAEO within CSNPs. Thermogravimetric analysis showed that encapsulated essential oil was decomposed at higher temperature than its free from, indicating the success of encapsulation technique in stabilizing FAEO within CSNPs.
Collapse
Affiliation(s)
- Zahra Kaboudi
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Himan Nourbakhsh
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
36
|
Sun J, Cai W, Wang Y, Niu H, Chen X, Han X. The Effect of Decreased Ca ++/Mg ++ ATPase Activity on Lactobacillus delbrueckii subsp. bulgaricus sp1.1 Survival during Spray Drying. Foods 2023; 12:foods12040787. [PMID: 36832862 PMCID: PMC9955740 DOI: 10.3390/foods12040787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Compared with the commonly used technique of freeze-drying, spray drying has lower energy costs. However, spray drying also has a fatal disadvantage: a lower survival rate. In this study, the survival of bacteria in a spray-drying tower decreased as the water content was reduced. The water content of 21.10% was the critical point for spray drying Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) sp1.1 based on sampling in the tower. Based on the relationship between the moisture content of spray drying and the survival rate, the water content of 21.10% was also the critical point for the change in the survival rate during spray drying. Proteomic analysis was used to investigate the reasons for L. bulgaricus sp1.1 inactivation during and after spray drying. Gene Ontology (GO) enrichment revealed that differentially expressed proteins were mainly associated with the cell membrane and transport. In particular, proteins related to metal ion transport included those involved in the transport of potassium, calcium and magnesium ions. The protein-protein interaction (PPI) network revealed that Ca++/Mg++ adenosine triphosphatase (ATPase) may be a key protein. Ca++/Mg++ ATPase activity decreased substantially during spray drying (p < 0.05). Supplementation with Ca++ and Mg++ significantly increased the expression of ATPase-related genes and enzyme activity (p < 0.05). The Ca++/Mg++ ATPase activity of L. bulgaricus sp1.1 was enhanced by increasing the intracellular Ca++ or Mg++ concentration, thus increasing the survival of spray-dried LAB. Bacterial survival rates were increased to 43.06% with the addition of Ca++ and to 42.64% with the addition of Mg++, respectively. Ca++/Mg++ ATPase may be the key to the damage observed in spray-dried bacteria. Furthermore, the addition of Ca++ or Mg++ also reduced bacterial injury during spray drying by enhancing the activity of Ca++/Mg++ ATPase.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Han
- Correspondence: ; Tel.: +86-133-1365-9156
| |
Collapse
|
37
|
Xie H, Liao Y, Woo MW, Xiong H, Zhao Q. Whey protein hydrolysates as prebiotic and protective agent regulate growth and survival of Lactobacillus rhamnosus CICC22152 during spray/freeze-drying, storage and gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1237-1246. [PMID: 36085589 DOI: 10.1002/jsfa.12218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Probiotic products are receiving increasing attention because of their tremendous beneficial health effects. However, it is still a great challenge to preserve probiotic viability during processing, storage and gastrointestinal digestion. Encapsulation is a widely known technology for enhancing bacterial viability and product stability. Hence highly hydrolyzed whey protein hydrolysate (HWPH) and moderately hydrolyzed whey protein hydrolysate (MWPH) used as a one-step culture medium and wall material for Lactobacillus rhamnosus were investigated. RESULTS H/MWPH-substitutive medium for the growth of Lactobacillus rhamnosus presented double the biomass production compared to other media. The H/MWPH-substitutive medium in combination with freeze drying also led to the highest survival ratio (97.13 ± 9.16%) and cell viability (10.62 log CFU g-1 ). The highest survival rate of spray-dried cells was 85.56 ± 7.4%. In addition, the cell viability of spray-dried Lactobacillus rhamnosus with MWPH as culture and dry medium was 0.79 log CFU g-1 higher than that of HWPH. Images confirmed that spray-dried Lactobacillus rhamnosus in MWPH provided better protection and it showed greater sustained viability after gastrointestinal digestion. CONCLUSION Overall, WPH just as carrier provides better thermal protection and MWPH is a preferable two-in-one medium for probiotics. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hexiang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yang Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Shanghai Medical Co. Ltd, Shanghai, China
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Jafari S, Jafari SM, Ebrahimi M, Kijpatanasilp I, Assatarakul K. A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: Characterization, food application and in vitro gastrointestinal digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
40
|
Sarabandi K, Tamjidi F, Akbarbaglu Z, Samborska K, Gharehbeglou P, Kharazmi MS, Jafari SM. Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics 2022; 14:2434. [PMID: 36365250 PMCID: PMC9693466 DOI: 10.3390/pharmaceutics14112434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 01/04/2024] Open
Abstract
In this study, whey protein concentrate (WPC) was sonicated or partially hydrolyzed by Alcalase, then examined as an emulsifier and carrier for the emulsification and spray drying of grape seed oil (GSO)-in-water emulsions. The modification treatments increased the free amino acid content and antioxidant activity (against DPPH and ABTS free radicals), as well as, the solubility, emulsifying, and foaming activities of WPC. The modified WPC-stabilized emulsions had smaller, more homogeneous droplets and a higher zeta potential as compared to intact WPC. The corresponding spray-dried powders also showed improved encapsulation efficiency, oxidative stability, reconstitution ability, flowability, solubility, and hygroscopicity. The morphology of particles obtained from the primary WPC (matrix type, irregular with surface pores) and modified WPC (reservoir type, wrinkled with surface indentations), as well as the oxidative stability of the GSO were influenced by the functional characteristics and antioxidant activity of the carriers. Changes in the secondary structures and amide regions of WPC, as well as the embedding of GSO in its matrix, were deduced from FTIR spectra after modifications. Partial enzymolysis had better results than ultrasonication; hence, the WPC hydrolysates are recommended as emulsifiers, carriers, and antioxidants for the delivery and protection of bioactive compounds.
Collapse
Affiliation(s)
- Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 43463-98167, Iran
| | - Fardin Tamjidi
- Department of Food Science & Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Pouria Gharehbeglou
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
41
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
42
|
Grace MH, Hoskin RT, Hayes M, Iorizzo M, Kay C, Ferruzzi MG, Lila MA. Spray-dried and freeze-dried protein-spinach particles; effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics. Food Chem 2022; 388:133017. [PMID: 35468465 DOI: 10.1016/j.foodchem.2022.133017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023]
Abstract
The effects of protein carrier and drying technique on the concentration and bioaccessibility of lipophilic compounds (lutein, β-carotene, chlorophylls a and b) and hydrophilic flavonoids in freeze-dried (FD) or spray-dried (SD) spinach juice and protein-spinach particles were investigated. Carotenoid and chlorophyll contents were highest in FD spinach juice without protein (147 and 1355 mg/100 g, respectively). For both SD and FD protein-spinach particles, SPI best protected carotenoids and chlorophylls (123 and 1160 mg/g, respectively), although the bioaccessibility of lipophilic compounds in WPI particles was higher than SPI particles (p < 0.05). For flavonoids, the drying technique was more important than the type of carrier, since FD particles had higher total flavonoids than SD. However, SD particles had higher bioaccessibility for most flavonoids (40-90 %) compared to FD (<20 %). The drying method and protein carrier can be designed to produce protein-spinach ingredients with desired concentration of compounds and bioaccessibility.
Collapse
Affiliation(s)
- Mary H Grace
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Roberta T Hoskin
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Micaela Hayes
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Massimo Iorizzo
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin Kay
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mario G Ferruzzi
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
43
|
Sridhar K, Bouhallab S, Croguennec T, Renard D, Lechevalier V. Application of high-pressure and ultrasound technologies for legume proteins as wall material in microencapsulation: New insights and advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Altay Ö, Köprüalan Ö, İlter I, Koç M, Ertekin FK, Jafari SM. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit Rev Food Sci Nutr 2022; 64:1139-1157. [PMID: 36004620 DOI: 10.1080/10408398.2022.2113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Essential oils (EOs) have many beneficial qualities, including antimicrobial, antioxidant, antiviral, and antifungal activities, along with good aroma, which have played a significant role in pharmaceutical, textile, and food industries. However, their high volatility and sensibility to external factors, as well as susceptibility to deterioration caused by environmental and storage conditions, or even common processing, and consequently limited water solubility, makes it difficult to incorporate them into aqueous food matrices and limits their industrial application. Spray-drying encapsulation has been proposed as a solution and a challenging research field to retard oil oxidation, extend EO's shelf life, improve their physicochemical stability, achieve controlled release, suggest novel uses, and therefore boost their added value. The objective of this review is to discuss various used wall materials, infeed emulsion properties, the main formulation and process variables affecting the physicochemical properties and release characteristics of the EOs-loaded particles obtained by spray-drying, the stability of EOs during storage, and the applications of encapsulated EOs powders in foods and nutrition, pharmaceuticals, and textile industries. The current review also summarizes recent advances in spray drying approaches for improving encapsulation efficiency, flavor retention, controlled release, and applicability of encapsulated EOs, thereby expanding their use and functionalities.
Collapse
Affiliation(s)
- Özgül Altay
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Özgün Köprüalan
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Işıl İlter
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Mehmet Koç
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Figen Kaymak Ertekin
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
45
|
Pan LH, Chen LP, Wu CL, Wang JF, Luo SZ, Luo JP, Zheng Z. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: Physicochemical properties, release behavior in vitro and storage stability. Food Chem 2022; 395:133626. [DOI: 10.1016/j.foodchem.2022.133626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022]
|
46
|
Park J, Kim MS, Shin J, Chang YH. Microencapsulation of de‐glycosylated mulberry (
Morus alba
L.) fruit extract through double‐layered multiple emulsions of pectic polysaccharide extracted from
Ulmus davidiana
and soy protein isolate. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jun‐Young Park
- Department of Food and Nutrition, and Bionanocomposite Research Center Kyung Hee University Seoul South Korea
| | - Min Su Kim
- Department of Food and Nutrition, and Bionanocomposite Research Center Kyung Hee University Seoul South Korea
| | - Joongmin Shin
- Industrial Technology and Packaging California Polytechnic State University San Luis Obispo CA USA
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center Kyung Hee University Seoul South Korea
| |
Collapse
|
47
|
Malekjani N, Jafari SM. Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater. Crit Rev Food Sci Nutr 2022; 63:9797-9815. [PMID: 35475951 DOI: 10.1080/10408398.2022.2068123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Olive by-products are rich sources of phenolic compounds and their valorization is a favorable approach in line with sustainable development goals of the United Nations (UN) organization to promote well-being and production of healthier products; also, to deal with the environmental and economic subjects resulting in more profitability in the olive oil industry. The production of value-added ingredients from these by-products is not extensively exploited on the industrial scale. Drying is a critical pretreatment before extraction that can have a direct impact on the recovery and yield of the available bioactive compounds in olive by-products. In order to produce more stable and high quality phenolic products, encapsulation using spray and freeze drying is used. In this study, the effect of the drying process before and after extraction of bioactive compounds from olive by-products as a valuable source of phenolic compounds is reviewed. In addition, fortification using these ingredients and their incorporation in food formulations is also investigated.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
48
|
Abbas MS, Saeed F, Afzaal M, Jianfeng L, Hussain M, Ikram A, Jabeen A. Recent Trends in Encapsulation of Probiotics in Dairy and Beverage: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Lu Jianfeng
- School of Biotechnology and Food Engineering Hefei University of Technology China
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ayesha Jabeen
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
49
|
Chen Y, Belwal T, Xu Y, Ma Q, Li D, Li L, Xiao H, Luo Z. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Crit Rev Food Sci Nutr 2022; 63:8639-8671. [PMID: 35435782 DOI: 10.1080/10408398.2022.2063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins have received considerable attention for the development of food products with attractive colors and potential health benefits. However, anthocyanin applications have been hindered by stability issues, especially in the context of complex food matrices and diverse processing methods. From the natural microenvironment of plants to complex processed food matrices and formulations, there may happen comprehensive changes to anthocyanins, leading to unpredictable stability behavior under various processing conditions. In particular, anthocyanin hydration, degradation, and oxidation during thermal operations in the presence of oxygen represent major challenges. First, this review aims to summarize our current understanding of key anthocyanin stability issues focusing on the chemical properties and their consequences in complex food systems. The subsequent efforts to examine plenty of cases attempt to unravel a universal pattern and provide thorough guidance for future food practice regarding anthocyanins. Additionally, we put forward a model with highlights on the role of the balance between anthocyanin release and degradation in stability evaluations. Our goal is to engender updated insights into anthocyanin stability behavior under food processing conditions and provide a robust foundation for the development of anthocyanin stabilization strategies, expecting to promote more and deeper progress in this field.
Collapse
Affiliation(s)
- Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Department of Food Science, College of Natural Sciences, University of Massachusetts Amherst, Massachusetts, The United States
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, People's Republic of China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
50
|
Yang L, Li F, Cao X, Qiao X, Xue C, Xu J. Stability and bioavailability of protein matrix-encapsulated astaxanthin ester microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2144-2152. [PMID: 34614199 DOI: 10.1002/jsfa.11556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Astaxanthin ester derived from Haematococcus pluvialis is often used as a functional and nutritional ingredient in foods. However, its utilization is currently limited as a result of its chemical instability and low bioavailability. Food matrix microcapsules are becoming increasingly popular because of their safety and high encapsulation efficiency. In the present study, the effect of protein matrixes on the properties of microcapsules was evaluated. RESULTS We investigated the effects of storage on astaxanthin ester microcapsules and the corresponding rehydration solution at 40 °C under a nitrogen atmosphere, as well as in darkness. The results showed that the stability of products prepared based on whey protein (WP) and corn-gluten was superior to that of products prepared based on lactoferrin, soy protein and sodium caseinate. The bioavailability of astaxanthin ester microcapsules encapsulated with different proteins and examined by means of astaxanthin concentrations in the serum and liver after oral administration was compared. All five protein wall materials could significantly improve the bioavailability of astaxanthin ester. The microcapsules prepared based on WP had the highest bioavailability, with a value of 10.69 ± 0.75 μg·h mL-1 , which was 3.15 times higher compared to that of the control group. CONCLUSION The results of the present study showed that protein encapsulation, especially WP encapsulation, could effectively improve the stability, water solubility and bioavailability of astaxanthin esters. Thus, WP can be used as the main wall material in delivery systems. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|