1
|
Li Y, Wei J, Wang J, Wang Y, Yu P, Chen Y, Zhang Z. Covalent organic frameworks as superior adsorbents for the removal of toxic substances. Chem Soc Rev 2025; 54:2693-2725. [PMID: 39841538 DOI: 10.1039/d4cs00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, etc. The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed. The complex host-guest interactions mainly include electrostatic, π-π interactions, hydrogen bonding, hydrophobic interactions, and molecular sieving effects. In addition, the adsorption performance of various COF-based adsorbents will be compared, and strategies such as reasonable adjustment of pore size, introduction of functionalities, and preparation of composite materials can effectively improve the adsorption efficiency of toxins. Finally, we also point out the challenges and future development directions that COFs may face in the field of toxicant removal. It is expected that this review will provide valuable insights into the application of COF-based adsorbents in the removal of toxicants and the development of new materials.
Collapse
Affiliation(s)
- Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Peishuang Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yao Chen
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Xu G, Yang C, Zhang H, Li B. Room-temperature synthesis of fluorinated covalent organic framework coupled with liquid chromatography-mass spectrometry for determination of per- and polyfluoroalkyl substances in drinking water. J Chromatogr A 2025; 1739:465541. [PMID: 39577265 DOI: 10.1016/j.chroma.2024.465541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
The routine monitoring of per- and polyfluoroalkyl substances (PFASs) in drinking water has become an important task in the field of public health. In this study, a fluorinated covalent organic framework (COF) was synthesized at room temperature using tetra-(4-aminophenyl) methane (TAM) and 2,3,5, 6-tetrafluoro-terephthalal (TFTA) as building blocks and named as TAM-TFTA-COF. The adsorption characteristics of PFASs on the TAM-TFTA-COF were investigated through adsorption model-fitting and molecular calculation. The TAM-TFTA-COF was served as the solid phase extraction (SPE) cartridge packing for the enrichment of PFASs. Combined with liquid chromatography-tandem mass spectrometry, the proposed method showed good linearity in the range of 1.25-375 ng·L-1, low limits of detection (0.03-0.24 ng·L-1), and excellent intraday and interday precisions with RSD <10.3 %. Furthermore, this analytical method can be utilized for the determination of PFASs in tap water, spring water, and lake water with satisfactory accuracy.
Collapse
Affiliation(s)
- Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Baoyu Li
- Test Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan, China
| |
Collapse
|
3
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
5
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
6
|
Li X, Sun M, Feng Y, Liu Y, Wang Y, Feng J, Sun M. Ionic liquid-functionalized covalent organic frameworks on the surface of silica for online solid-phase extraction. J Chromatogr A 2024; 1732:465200. [PMID: 39096780 DOI: 10.1016/j.chroma.2024.465200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/22/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
A covalent organic framework (COF) was gown on porous silica with 1,3,5-tri(4-aminophenyl)benzene and 2,5-divinyl-1,4-phenyldiformaldehyde as monomers, and two ionic liquids were grafted to COF by a click reaction. The materials before and after the modification of ionic liquids were separately packed into solid-phase extraction columns (10 × 4.6 mm, i.d.), which were coupled with liquid chromatography to construct online analysis systems. The extraction mechanisms of polycyclic aromatic hydrocarbons, bisphenols, diphenylalkanes and benzoic acids were investigated on these materials. There were π-π, hydrogen-bond and electrostatic interactions on ionic liquid-functionalized sorbents. After the comparison among these materials, the best sorbent was used, and the analytical method was established and successfully applied to the detection of some estrogens from actual samples. For the analytical method, the detection limit was as low as 0.005 μg L-1, linear range was as wide as 0.017-10.0 μg L-1, and enrichment ratio was as high as 3635. The recoveries in actual samples were 70 %-129 %.
Collapse
Affiliation(s)
- Xiaomin Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mingxia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yang Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yanming Liu
- Shandong Institute for Food and Drug Control, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Jinan 250101, PR China
| | - Yanli Wang
- Shandong Institute for Food and Drug Control, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Jinan 250101, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
7
|
Hou S, Zhang M, Huo Y, Chen X, Qian W, Zhang W, Zhang S. Recent advances and applications of ionic covalent organic frameworks in food analysis. J Chromatogr A 2024; 1730:465113. [PMID: 38959656 DOI: 10.1016/j.chroma.2024.465113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Ionic covalent organic frameworks with both crystallinity and charged sites have attracted significant attention from the scientific community. The versatile textural structures, precisely defined channels, and abundant charged sites of ionic COFs offer immense potential in various areas such as separation, sample pretreatment, ion conduction mechanisms, sensing applications, catalytic reactions, and energy storage systems. This review presents a comprehensive overview of facile preparation methods for ionic covalent organic frameworks (iCOFs), along with their applications in food sample pretreatment techniques such as solid-phase extraction (SPE), magnetic solid-phase extraction (MSPE), and dispersive solid-phase extraction (DSPE). Furthermore, it highlights the extensive utilization of iCOFs in detecting various food contaminants including pesticides, contaminants from food packaging, veterinary drugs, perfluoroalkyl substances, and poly-fluoroalkyl substances. Specifically, this review critically discusses the limitations, challenges, and future prospects associated with employing iCOF materials to ensure food safety.
Collapse
Affiliation(s)
- Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mengjiao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yichan Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xin Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenping Qian
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Wenming Road 100, Luohe, Henan 462000, PR China; Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Wenming Road 100, Luohe, Henan 462000, PR China; Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
8
|
Qiao Z, Liu Y, Hou S, Bai Y, Zhen S, Yang S, Xu H. Spherical fluorinated covalent organic polymer for highly efficient and selective extraction of fipronil and its metabolites in soil. Talanta 2024; 274:126033. [PMID: 38581855 DOI: 10.1016/j.talanta.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Covalent organic polymers (COPs) have garnered considerable attention as promising adsorbents of online solid phase extraction (online SPE). Morphology modulation provides an appealing solution to enhance adsorption efficiency and reduce back-pressure in the absorbent. However, the synthesis of COPs with regular geometric shapes and specific adsorption selectivity remains challenging. In this study, a uniform spherical fluorinated COP (F-sCOP, average diameter: 2.14 μm) was successfully synthesized by Schiff base reaction of 1,3,5-triformylphoroglucinol (TP) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The F-sCOP had a large surface area (BET: 346.2 m2 g-1), remarkable enrichment capacity (enrichment factors: 186-782), high selectivity toward fipronil and its metabolites (adsorption efficiency >93.1%), and admirable service life (>60 times). Based on the adsorbent, a novel μ-matrix cartridge extraction-online-μ-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) method was constructed and used to track trace fipronil and its metabolites in soil. The proposed method exhibited a wide linear range (0.05-1000 ng g-1), low quantitation limits (LOQs: 0.0027-0.011 ng g-1), high recoveries (90.1-119.6%) and good repeatability (RSD ≤10.5%, n = 3) for fipronil analysis. This study paves the way for pesticide analysis in soil risk assessment.
Collapse
Affiliation(s)
- Zhaoyu Qiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Zhen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
9
|
Chen Y, Zhang X, Ma J, Gong J, A W, Huang X, Li P, Xie Z, Li G, Liao Q. All-in-one strategy to construct bifunctional covalent triazine-based frameworks for simultaneous extraction of per- and polyfluoroalkyl substances and polychlorinated naphthalenes in foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133084. [PMID: 38039811 DOI: 10.1016/j.jhazmat.2023.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) are of growing concern due to their toxic effects on the environment and human health. There is an urgent need for strategies to monitor and analyze the coexistence of PFASs and PCNs, especially in food samples at trace levels, to ensure food safety. Herein, a novel β-cyclodextrin (β-CD) derived fluoro-functionalized covalent triazine-based frameworks named CD-F-CTF was firstly synthesized. This innovative framework effectively combines the porous nature of the covalent organic framework and the host-guest recognition property of β-CD enabling the simultaneous extraction of PFASs and PCNs. Under the optimal conditions, a simple and rapid method was developed to analyze PFASs and PCNs by solid-phase extraction (SPE) based simultaneous extraction and stepwise elution (SESE) strategy for the first time. When coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), this method achieved impressive detection limits for PFASs (0.020 -0.023 ng/g) and PCNs (0.016 -0.075 ng/g). Furthermore, the excellent performance was validated in food samples with recoveries of 76.7-107 % (for PFASs) and 78.0-108 % (for PCNs). This work not only provides a simple and rapid technique for simultaneous monitoring of PFASs and PCNs in food and environmental samples, but also introduces a new idea for the designing novel adsorbents with multiple recognition sites.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province 510623, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
10
|
Xia G, Hu H, Huang Y, Ruan G. Controllable synthesis of uniform flower-shaped covalent organic framework microspheres as absorbent for solid-phase extraction of trace 2,4-dichlorophenol. Mikrochim Acta 2024; 191:91. [PMID: 38216807 DOI: 10.1007/s00604-024-06178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Controllable synthesis of micro-flower covalent organic frameworks (MFCOFs) with controllable size, monodisperse, spherical, and beautiful flower shape was realized by using 2,5-diformylfuran (DFF) and p-phenylenediamine (p-PDA) as building blocks at room temperature. High-quality MFCOFs (5 - 7 μm) were synthesized by controlling the kind of solvent, amounts of monomers, catalyst content, and reaction time. The synthesized MFCOFs possessed uniform mesopores deriving from the intrinsic pores of frameworks and wide-distributed pores belonging to the gap between the petals. The MFCOFs-packed solid-phase extraction (SPE) column shows adsorption capacity of about 8.85 mg g-1 for 2,4-dichlorophenol (2,4-DCP). The MFCOF-based SPE combined with the HPLC method was established for the determination of 2,4-DCP in environmental water. The linear range of this method is 20-1000 ng mL-1 (R2 > 0.9994), and limit of detection (S/N = 3) is 10.9 ng mL-1. Spiked recoveries were 94.3-98.5% with relative standard deviations lower than 2.3%.
Collapse
Affiliation(s)
- Guangping Xia
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Haoyun Hu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
- Guilin Institute of Information Technology, Guilin, Guangxi, 541004, China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| |
Collapse
|
11
|
Xie Z, Hu Y, Lin J, Li G, Zhong Q. Calix[4]arene-based covalent organic frameworks with host-guest recognition for selective adsorption of six per- and polyfluoroalkyl substances in food followed by UHPLC-MS/MS detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132198. [PMID: 37541121 DOI: 10.1016/j.jhazmat.2023.132198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Long-term ingestion or exposure to food contaminated with per- and polyfluoroalkyl substances (PFASs) may cause potential harm to human health. Due to the low contents of PFASs in complex food matrices, it is of great significance to develop adsorbents with excellent properties to enrich PFASs before analysis. Herein, calix[4]arene (CX4) was used as building block to prepare ordered crystalline covalent organic frameworks (COFs). The perfect combination of the host-guest recognition ability of CX4 and the porosity of COFs makes the CX4-COFs selective and high adsorption capacity for linear molecular PFASs (261-1055 mg/g). The adsorption behavior and mechanism were verified by isotherm adsorption experiments and simulation calculations. The CX4-COFs were then used as adsorbents for membrane solid-phase extraction (M-SPE), combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) to determine PFASs in food. The method has low detection limits (0.11-0.28 ng/kg) and good precision (1.3%-9.8%), and has been successfully applied to the simultaneous enrichment and determination of six PFASs in fish, shrimp and shellfish. Satisfactory recoveries (79.9%-118%) were obtained. This study provides a new strategy for preparing CX4-COFs containing macrocyclic molecules with different morphologies and expands the application of COFs as attractive enrichment media for sample pretreatment.
Collapse
Affiliation(s)
- Zenghui Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiana Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
12
|
Fan J, Li J, Zhou W, Gao H, Lu R, Guo H. An 'on-off-on' fluorescent switch based on a luminous covalent organic framework for the rapid and selective detection of glyphosate. LUMINESCENCE 2023; 38:1729-1737. [PMID: 37400417 DOI: 10.1002/bio.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Glyphosate, the most used herbicide in the world, has a residue problem that cannot be ignored. However, glyphosate itself does not have fluorescence emission and lacks the conditions for fluorescence detection. In this work, a rapid and selective fluorescence detection method of glyphosate was designed by an 'on-off-on' fluorescent switch based on a luminous covalent organic framework (L-COF). Only the fixed concentration of Fe3+ as an intermediate could trigger the fluorescent switch and no incubation step was required. The proposed method showed good accuracy with a correlation coefficient of 0.9978. The method's limits of detection and quantitation were 0.88 and 2.93 μmol/L, which were lower than the maximum allowable residue limits in some regulations. Environmental water samples and tomatoes were selected as actual samples to verify the application in a complex matrix. A satisfactory mean recovery from 87% to 106% was gained. Furthermore, Fe3+ could induce fluorescence quenching of L-COF through the photo-induced electron transfer (PET) effect, while the addition of glyphosate could block the PET effect to achieve detection. These results demonstrated the proposed method had abilities to detect glyphosate and broaden the application of L-COF.
Collapse
Affiliation(s)
- Jiaxuan Fan
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | | | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Yu J, Luo L, Shang H, Sun B. Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications. BIOSENSORS 2023; 13:636. [PMID: 37367001 DOI: 10.3390/bios13060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The rapid development of advanced material science boosts novel chemical analytical technologies for effective pretreatment and sensitive sensing applications in the fields of environmental monitoring, food security, biomedicines, and human health. Ionic covalent organic frameworks (iCOFs) emerge as a class of covalent organic frameworks (COFs) with electrically charged frames or pores as well as predesigned molecular and topological structures, large specific surface area, high crystallinity, and good stability. Benefiting from the pore size interception effect, electrostatic interaction, ion exchange, and recognizing group load, iCOFs exhibit the promising ability to extract specific analytes and enrich trace substances from samples for accurate analysis. On the other hand, the stimuli response of iCOFs and their composites to electrochemical, electric, or photo-irradiating sources endows them as potential transducers for biosensing, environmental analysis, surroundings monitoring, etc. In this review, we summarized the typical construction of iCOFs and focused on their rational structure design for analytical extraction/enrichment and sensing applications in recent years. The important role of iCOFs in the chemical analysis was fully highlighted. Finally, the opportunities and challenges of iCOF-based analytical technologies were also discussed, which may be beneficial to provide a solid foundation for further design and application of iCOFs.
Collapse
Affiliation(s)
- Jing Yu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Liuna Luo
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hong Shang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
14
|
Lu XF, Nan ZX, Li X, Li X, Liu T, Ji W, Guo DS. Online solid-phase extraction based on size-controllable spherical covalent organic framework for efficient determination of polybrominated diphenyl ethers in foods. Food Chem 2023; 410:135359. [PMID: 36608555 DOI: 10.1016/j.foodchem.2022.135359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
An analytical method of microspheric brominated covalent organic framework (Br-COF)-online solid-phase extraction integrated with high-performance liquid chromatography (online SPE-HPLC) was proposed for efficiently enriching six polybrominated diphenyl ethers (PBDEs) in foods. The Br-COF microspheres were facilely prepared with uniformity and dispersion by a size-controllable synthesis at the room temperature. Attributed to multiple interactions of the halogen bonding, Van der Waals forces, hydrophobic interaction along with size-matching effect, Br-COF performed satisfactory extraction capacity for PBDEs compared with commercial adsorbents. Five primary influencing factors were optimized, including loading solvent, loading flow rate, elution solvent, elution flow rate and elution volume. Under the optimal parameters, the implement displayed excellent linear ranges (0.5-500 ng mL-1) and low detection limits (0.01-0.05 ng mL-1). The relative recoveries in six spiked food samples ranged from 87.8 to 119.7 % with relative standard deviations below 10 %. This research estabished a promising platform for quantitatively determining trace PBDEs in complex foods.
Collapse
Affiliation(s)
- Xiao-Fan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Zi-Xuan Nan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xinyu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xuemei Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tuanwei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
15
|
Yang M, Ji W. Facile Synthesis of Quinolinecarboxylic Acid-Linked Covalent Organic Framework via One-Pot Reaction for Highly Efficient Removal of Water-Soluble Pollutants. Molecules 2023; 28:molecules28093752. [PMID: 37175162 PMCID: PMC10179942 DOI: 10.3390/molecules28093752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
To efficiently eliminate highly polar organic pollutants from water has always been a difficult issue, especially in the case of ultralow concentrations. Herein, we present the facile synthesis of quinolinecarboxylic acid-linked COF (QCA-COF) via the Doebner multicomponent reaction, possessing multifunction, high specific surface area, robust physicochemical stability, and excellent crystallinity. The marked feature lies in the quinolinyl and carboxyl functions incorporated simultaneously to QCA-COF in one step. The major cis-orientation of carboxyl arms in QCA-COF was speculated by powder X-ray diffraction and total energy analysis. QCA-COF demonstrates excellent adsorption capacity for water-soluble organic pollutants such as rhodamine B (255.7 mg/g), methylene blue (306.1 mg/g), gentamycin (338.1 mg/g), and 2,4-dichlorophenoxyacetic acid (294.1 mg/g) in water. The kinetic adsorptions fit the pseudo-second order model and their adsorption isotherms are Langmuir model. Remarkably, QCA-COF can capture the above four water-soluble organic pollutants from real water samples at ppb level with higher than 95% removal efficiencies and excellent recycling performance.
Collapse
Affiliation(s)
- Mingzhu Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
16
|
Han H, Ding S, Geng Y, Qiao Z, Li X, Wang R, Zhang X, Ji W. Preparation of a pyridyl covalent organic framework via Heck cross-coupling for solid-phase microextraction of perfluoropolyether carboxylic acids in food. Food Chem 2023; 403:134310. [DOI: 10.1016/j.foodchem.2022.134310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
|
17
|
Gallo V, Della Posta S, Gentili A, Gherardi M, De Gara L, Fanali C. Back‐extraction applied to green matrix solid‐phase dispersion for fungicides determination in tomatoes. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Valeria Gallo
- Department of Science and Technology for Humans and the Environment University Campus Bio‐Medico of Rome Rome Italy
| | - Susanna Della Posta
- Department of Science and Technology for Humans and the Environment University Campus Bio‐Medico of Rome Rome Italy
| | | | - Monica Gherardi
- Department of medicine, epidemiology, occupational and environmental hygiene, Chemical agents rIsk laboratory National Institute for assurance against accidents at works Rome Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment University Campus Bio‐Medico of Rome Rome Italy
| | - Chiara Fanali
- Department of Science and Technology for Humans and the Environment University Campus Bio‐Medico of Rome Rome Italy
| |
Collapse
|
18
|
Li S, Ma J, Guan J, Li J, Wang X, Sun X, Chen L. Selective cationic covalent organic framework for high throughput rapid extraction of novel polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130125. [PMID: 36303337 DOI: 10.1016/j.jhazmat.2022.130125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFASs) raise global concerns due to their toxic effects on environment and human health. However, researches on analytical methods of novel PFASs are lacking. Here, a kind of selective cationic covalent organic framework (iCOF) was designed and loaded on the surface of cotton as an adsorbent. Then, a simple solid-phase extraction (SPE) method based on the cotton@iCOF was developed for high throughput rapid extraction of six novel PFASs in water samples, coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. Several important SPE parameters, such as the amount of iCOF, sample pH, desorption conditions and salinity were systematically investigated. Under optimal conditions, the limits of detection and quantification of this SPE-UHPLC-MS/MS method were as low as 0.08-2.14 ng/L and 0.28-7.15 ng/L, respectively. The recoveries were 77.9-117.6 % for the tap water and surface water, and F-53 B in surface water were detected. Notably, this SPE process was rapid (1 h for 500 mL water sample) compared with commercial SPE (normal 2-3 h), owing to little resistance of cotton@iCOF and omission of nitrogen blowing process, and high throughput with 12 samples concurrently extracted. Additionally, various characterization means and density functional theory (DFT) calculations showed that ion-exchange effect, hydrophobic interaction, hydrogen bonding and ordered channel structure synergistically contributed to the PFASs adsorption on cotton@iCOF. The cotton@iCOF-based SPE method with simplicity, rapidity, selectivity and efficiency provided new research ideas for the analysis and control of ionic emerging pollutants in water.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jing Guan
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Li X, Ji W, Wang R, Zhang L, Miao R, Wang S. Imprinted covalent organic frameworks prepared by thiol-ene click reaction for selective solid-phase microextraction of aminoglycosides from milk and honey. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Carbon aerogels derived from waste paper for pipette-tip solid-phase extraction of triazole fungicides in tomato, apple and pear. Food Chem 2022; 395:133633. [PMID: 35816989 DOI: 10.1016/j.foodchem.2022.133633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 07/02/2022] [Indexed: 01/13/2023]
Abstract
In order to develop environmentally friendly, economical and facile preparation method of carbon aerogels (CAs), the waste printing paper as the raw material was combined with graphene oxide and carboxylic multi-walled carbon nanotubes to produce CAs (ρ = 44 mg cm-3). The CAs with different composition were investigated, the addition of graphene oxide led to the reduction of adsorption sites and the reduction of extraction performance. But the carbon nanotubes made CAs have a better pore structure. The CAs as adsorbent were loaded into a pipette-tip for solid-phase extraction of hexaconazole and diniconazole. Coupled with gas chromatography, an analytical method was established under the optimized conditions. The limits of detection were between 0.08 and 0.32 mg kg-1, the linear ranges were 0.96-200.0 mg kg-1 and 0.24-200.0 mg kg-1. The relative recoveries were in the range of 81.0-119%. The results indicated that the method had potential application for the determination of triazole fungicides.
Collapse
|
21
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M. Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit Rev Anal Chem 2022; 54:565-598. [PMID: 35757859 DOI: 10.1080/10408347.2022.2089838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent organic frameworks (COFs) are a class of emerging materials that are synthesized based on the covalent bonds between different building blocks. COFs possess unique attributes in terms of high porosity, tunable structure, ordered channels, easy modification, large surface area, and great physical and chemical stability. Due to these features, COFs have been extensively applied as adsorbents in various extraction modes. Enhanced extraction performance could be reached with modified COFs, where COFs are presented as composites with other materials including nanomaterials, carbon and its derivatives, silica, metal-organic frameworks, molecularly imprinted polymers, etc. This review article describes the recent advances, developments, and applications of COF-based materials being utilized as adsorbents in the extraction methods. The COFs, their properties, their synthesis approaches as well as their composite structures are reviewed. Most importantly, suggested mechanisms for the extraction of analyte(s) by COF-based materials are also discussed. Finally, the current challenges and future prospects of COF-based materials in extraction methods are summarized and considered in order to provide more insights into this field.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
24
|
Zhang C, Yuan H, Lu Z, Li Y, Zhao L, Zhang Z, Li G. β
‐ketoenamine‐linked covalent organic framework absorbent for online micro‐solid phase extraction of trace levels bisphenols in plastic samples. J Sep Sci 2022; 45:1493-1501. [DOI: 10.1002/jssc.202100905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hongmei Yuan
- School of Pharmacy Zunyi Medical University Zunyi 563000 China
| | - Zeyi Lu
- School of Pharmacy Zunyi Medical University Zunyi 563000 China
| | - Yuhuang Li
- School of Pharmacy Zunyi Medical University Zunyi 563000 China
| | - Lirong Zhao
- School of Pharmacy Zunyi Medical University Zunyi 563000 China
| | - Zhuomin Zhang
- School of Chemistry Sun Yat‐sen University Guangzhou 510006 China
| | - Gongke Li
- School of Chemistry Sun Yat‐sen University Guangzhou 510006 China
| |
Collapse
|
25
|
Song X, Wang R, Wang X, Han H, Qiao Z, Sun X, Ji W. An amine-functionalized olefin-linked covalent organic framework used for the solid-phase microextraction of legacy and emerging per- and polyfluoroalkyl substances in fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127226. [PMID: 34555760 DOI: 10.1016/j.jhazmat.2021.127226] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the environmental persistence and various health problems associated with per- and polyfluoroalkyl substances (PFASs), they have come under increased public scrutiny. However, the efficient extraction of PFASs from complex media remains challenging. Herein, an olefin-linked covalent organic framework (COF-CN) has been prepared via a Knoevenagel condensation reaction, followed by reduction using LiAlH4 to form an amine-functionalized COF (COF-NH2). The characterization results demonstrated that the crystal structure was maintained during the post-modification step. Isothermal and kinetic adsorption studies showed the higher affinity of COF-NH2 toward PFASs. Based on density functional theory, the adsorption mechanism of the stable six-member-ring structure formed between COF-NH2 and PFASs via hydrogen bonding was tentatively revealed. After optimizing the solid-phase microextraction parameters, legacy and emerging PFASs were efficiently extracted from fish using the COF-NH2 coating, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry. The method exhibited ideal linearity, low limits of quantification, excellent precision, and high relative recoveries. Finally, the bioconcentration kinetics for goldfish was studied, which can provide a feasible platform for investigating the accumulate ion and toxicity of PFASs.
Collapse
Affiliation(s)
- Xin Song
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyue Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhaoyu Qiao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaowei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|