1
|
Ding M, Wu W, Liu R, Niu B, Chen H, Fang X, Chen H, Shen C, Gao H. Preparation and application of thyme essential oil@halloysite nanotubes-loaded multifunctional pullulan/gelatin/PVA aerogels. Int J Biol Macromol 2025; 309:142917. [PMID: 40203906 DOI: 10.1016/j.ijbiomac.2025.142917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Blueberries are susceptible to microbial contamination and mechanical damage after harvesting, thereby accelerating their quality deterioration. Therefore, in the present work, thyme essential oil@halloysite nanotubes (TEO@HNTs)-loaded pullulan/gelatin/PVA (PGP) aerogels with antimicrobial activities and cushioning properties were developed to address these issues. The results showed that TEO achieved a 91.1 % encapsulation efficiency in HNTs and hydrogen bonding interactions were formed between TEO and HNTs. TEO@HNTs improved the crystallinity, thermal stability, compression properties, and surface hydrophobicity of the PGP aerogels. The TEO@HNTs-loaded aerogels exhibited a sustained release of TEO and antimicrobial activity against E. coli (inhibition zone of 13.92 mm), S. aureus (inhibition zone of 16.55 mm), and B. cinerea. Moreover, the aerogels offered good cushioning for blueberries when subjected to mechanical impact, thus maintaining their quality during storage. In addition, cell cytotoxicity analysis showed that cell viability exceeded 94 %, indicating the excellent biocompatibility of the TEO@HNTs-loaded aerogels. The above results suggested promising prospects for the development of a multifunctional aerogel to maintain the quality of food products, such as blueberries, which are susceptible to microbial contamination and mechanical damage.
Collapse
Affiliation(s)
- Mingke Ding
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chaoyi Shen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Li C, Yuan J, Zhang H, Liu N, Wang Z, Zheng A, Bo X. Taste-masking mechanism of brivaracetam oral solution using cyclodextrin and sodium carboxymethyl cellulose. Int J Pharm 2025; 675:125368. [PMID: 40043962 DOI: 10.1016/j.ijpharm.2025.125368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 04/01/2025]
Abstract
Brivaracetam is a novel antiepileptic medication that can be indicated for the management of epilepsy in pediatric patients over one month old. To facilitate its administration to children, an oral solution is the most suitable option. However, the inherently bitter taste of brivaracetam poses a challenge in terms of palatability, necessitating the development of a taste masking strategy for the solution. In this study, a palatable brivaracetam oral solution was prepared by meticulously screening various taste masking techniques. Then the interaction relationship between brivaracetam and pivotal excipients (sodium carboxymethyl cellulose (CMC-Na) and 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD)) within the optimized formulation was investigated by molecular dynamics simulations. It turned out that brivaracetam did not encapsulate within HP-β-CD, but instead forms a robust association through hydrogen bonding and π-stacking interactions, facilitated by the presence of CMC-Na. Further exploration through molecular docking elucidated that the optimized formulation effectively masks the bitter taste by diminishing the binding affinity of brivaracetam to bitter taste receptors. In summary, this study achieved taste masking of brivaracetam under solution conditions by investigated the interactions of brivaracetam and key excipient interactions as well as the mechanisms of taste masking of optimized formulations, providing valuable insights for similar pharmaceutical applications.
Collapse
Affiliation(s)
- Conghui Li
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Junlin Yuan
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Hui Zhang
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Nan Liu
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zengming Wang
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China.
| |
Collapse
|
3
|
Li G, Liu Z, Luo Z, Yi J, Liu Z, Jiang Y. Optimization and characterization of apple essence microencapsulation utilizing β-cyclodextrin/gum arabic/montmorillonite for fresh-cut apple preservation. Food Chem 2025; 470:142732. [PMID: 39752749 DOI: 10.1016/j.foodchem.2024.142732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
Natural apple essence (AE) has been widely used as a flavor enhancer due to its distinct aroma and taste, but its high volatility restricts its broader applications in food products. This study addresses the need for an effective microencapsulation technique to overcome the volatility of AE. The objective was to optimize and characterize the AE microencapsulation using β-cyclodextrin (β-CD), gum arabic (GA), and montmorillonite (MMT) as wall materials. The encapsulation process was optimized by integrating the AHP-CRITIC model with Plackett-Burman and Box-Behnken design methods. SEM, FTIR, and XRD analyses confirmed successful encapsulation and interactions between the AE and the wall materials. The optimized AE microencapsulation was then applied to fresh-cut apples, resulting in significant enhancement in preservation of aroma, taste, and sensory quality. These findings suggest that the developed microencapsulation approach is effective in maintaining storage quality of fresh-cut apples and holds potential for broader applications in the food industry.
Collapse
Affiliation(s)
- Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Zhuyin Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Zhenyu Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China.
| |
Collapse
|
4
|
Li B, Li X, Li S, Chen C, Xiao T, Xu Y. Supramolecular cyclodextrin deep eutectic solvent-strengthened chitosan eutectogel as a novel percutaneous delivery system of resveratrol for anti-psoriasis. Int J Biol Macromol 2025; 299:140156. [PMID: 39848382 DOI: 10.1016/j.ijbiomac.2025.140156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Psoriasis is a chronic and incurable inflammatory skin disease usually requiring long-term disease management. Natural phytochemical resveratrol (RES) has been known for high efficiency and low toxicity, exhibiting good anti-psoriasis potential. However, its biological activity is limited by poor solubility, chemical instability, and insufficient skin retention. Herein, we developed an adhesive eutectogel loaded with RES constructed through electrostatic and hydrogen bonding cross-linking between cyclodextrin-levulinic acid supramolecular deep eutectic solvent (DES) and chitosan (CS). A series of characterizations combined with molecular dynamics simulations demonstrated that such DES not only significantly increased the solubility and stability of RES, but also acted as the cross-linker and plasticizer in eutectogel preparation. When applied to the skin surface, the eutectogel formed a soft film in situ that established tight contact with the skin, thereby enhancing RES sustained penetration into the skin. In an imiquimod-induced psoriasis-like mice model, the eutectogel effectively alleviated psoriasis symptoms, inhibited the excessive proliferation of keratinocytes, and regulated the expression of IL-23/IL-17 axis-related factors, whose therapeutic effect was better than that of commercially available calcipotriol ointment. Overall, The DES-strengthened eutectogel offers a promising topical drug delivery platform for psoriasis treatment and expands the applications of green polysaccharide medical materials.
Collapse
Affiliation(s)
- Bin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaojuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuying Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Virzì NF, Diaz-Rodriguez P, Concheiro A, Otero A, Mazzaglia A, Pittalà V, Alvarez-Lorenzo C. Combining antibacterial and wound healing features: Xanthan gum/guar gum 3D-printed scaffold tuned with hydroxypropyl-β-cyclodextrin/thymol and Zn 2. Carbohydr Polym 2025; 351:123069. [PMID: 39778999 DOI: 10.1016/j.carbpol.2024.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Biofilm formation on biological and material surfaces represents a heavy health and economic burden for both patient and society. To contrast this phenomenon, medical devices combining antibacterial and pro-wound healing abilities are a promising strategy. In the present work, Xanthan gum/Guar gum (XG/GG)-based scaffolds were tuned with thymol and Zn2+ to obtain wound dressings that combine antibacterial and antibiofilm properties and favour the healing process. The tuning process preserved the 3D extrusion-based printability of the XG/GG ink. Scaffolds swelling profile was assessed in PBS pH 7.4, and the resistance to compressive forces was studied using a texturometer. The scaffolds microarchitectures were analyzed by SEM, while ATR-FTIR spotlighted the chemical modifications of the customized materials. Thymol and Zn2+ release was analyzed in biologically relevant media, showing a burst release in the first hours. The antibacterial properties were confirmed against S. aureus, P. aeruginosa, and S. epidermidis by isothermal microcalorimetry and biofilm viable cell counting. Incorporation of hydroxypropyl-β-cyclodextrin (HPβCD) improved thymol loading (7- and 14-times higher thymol content) and enhanced the antimicrobial and antioxidant performances of the dressing, while the presence of Zn2+ strongly potentiated the antimicrobial activity, showing a potent antibiofilm response in both Gram-positive and Gram-negative strains of clinical concern. The thymol and Zn2+ combination led to a reduction of 99.95 %, 99.99 %, and 98.26 %, of biofilm formation against S. aureus, P. aeruginosa, and S. epidermidis, respectively. Furthermore, the scaffolds demonstrated good hemocompatibility, cytocompatibility, tissue integration and pro-angiogenic features in an in ovo CAM model.
Collapse
Affiliation(s)
- Nicola Filippo Virzì
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Otero
- Departamento de Microbiología y Parasitología, Facultad de Biología, Edificio CiBUS and Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonino Mazzaglia
- National Council of Research, Institute of Nanostructured Materials (CNR-ISMN), URT of Messina c/o, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Chen W, Deng J, Wang D, Yang H, Yang J, Puangsin B, He X, Shi Z. Slow-release antimicrobial preservation composite coating based on bamboo-derived xylan-A new way to preserve blueberry freshness. Food Chem 2025; 463:141291. [PMID: 39303466 DOI: 10.1016/j.foodchem.2024.141291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the biocompatibility and environmental friendliness of xylan-based materials have demonstrated great potential in the field of food packaging and coatings. In this study, the cationized xylan based composite coating (CXC) was developed using a hybrid system of cationic-modified bamboo xylan (CMX) and sodium alginate (SA) combined with thyme oil microcapsules (TM). The optimized CXC-B was composed of 1.27 % TM, 2.42 % CMX (CMX: SA = 3:2), and 96.31 % distilled water. When applied to the surface of a blueberry, the CXC-B treatment extended the ambient storage time of the fruit to 10 days while substantially reducing its morbidity (P < 0.05) and protecting its texture, flavor, and nutritional integrity. The resulting composite coating provides a promising solution to the problem of blueberry perishability during ambient storage.
Collapse
Affiliation(s)
- Wenge Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China
| | - Jia Deng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China.
| | - Dawei Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Haiyan Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jing Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Buapan Puangsin
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand.
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China.
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming 650224, China.
| |
Collapse
|
7
|
Hu Y, Feng X, Xu H, Yang J, Yang W. Polycaprolactone/polylactic acid nanofibers incorporated with butyl hydroxyanisole /HP-β-CD assemblies for improving fruit storage quality. Int J Biol Macromol 2024; 283:137637. [PMID: 39547608 DOI: 10.1016/j.ijbiomac.2024.137637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
In this study, the inclusion complex was prepared with butyl hydroxyanisole (BHA) as the functional substance and 2-hydroxypropyl beta-cyclodextrin (HP-β-CD) as the main molecule by ultrasound mediation. The inclusion complex was mixed with polycaprolactone (PCL)/polylactic acid (PLA), and nanofiber films loaded with different concentrations of BHA/HP-β-CD inclusion complex were prepared by electrospinning for fruit preservation. The scanning electron microscopy and infrared spectroscopy characterization results showed that HP-β-CD successfully embedded BHA in the cavity. The encapsulation of BHA increases the fiber diameter and thermal stability and decreases the crystallinity and hydrophobicity. The oxidation resistance experiment showed that the nanofiber film had a strong free radical scavenging ability. The BHA release rate of the nanofiber membrane was determined by high-performance liquid chromatography, and the release curve results showed that the inclusion complex prepared by ultrasonic self-assembly could significantly prolong the BHA release time. In addition, nanofiber films containing inclusion complex showed an effective fresh-keeping effect within 7 days of mango storage. In conclusion, a series of characterization tests show that the nanofiber film prepared in this study has a good market prospect in food preservation.
Collapse
Affiliation(s)
- Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| | - Xiaomin Feng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Huijin Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Jiyuan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
8
|
Shi C, Jia L, Tao H, Li C, Aziz T, Alhomrani M, Cui H, Lin L. Effects of guar gum/chitosan edible films functionalized with citronellal/HPβCD inclusion complex on Harbin red sausage preservation. Int J Biol Macromol 2024; 282:137312. [PMID: 39515733 DOI: 10.1016/j.ijbiomac.2024.137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Harbin red sausage is a traditional local pork meat product in China, but it is susceptible to microbial contamination and lipid oxidation, leading to quality deterioration. Herein, guar gum (GG)/chitosan (CS) edible films functionalized with citronellal/hydroxypropyl-β-cyclodextrin inclusion complex (CIT/HPβCD-IC) were fabricated for Harbin red sausage preservation. Results demonstrated CIT/HPβCD-IC was successfully prepared and observed by SEM due to the bathochromic shift of maximum absorption peak of CIT, and the formation of new bonds was confirmed by FTIR analysis, suggesting the embedding of CIT into HPβCD cavity. The changes of functional groups stretching vibrations suggested successful loading of CIT/HPβCD-IC into the GG/CS edible films. Furthermore, the incorporation of CIT/HPβCD-IC enhanced the microstructural, mechanical and barrier properties, and improved the antibacterial activities, biodegradability and thermal stability of the GG/CS edible films. Particularly, the GG/CS edible films incorporated with 1 % CIT/HPβCD-IC (GG/CS-IC 1 %) enhanced the storage stability of Harbin red sausage at 4 °C by decreasing the weight loss rate, maintaining the pH, color, and textural stabilities, retarding the microbial growth and lipid oxidation of the sausage samples. Findings here suggested that GG/CS-IC 1 % edible films showed great potential as novel multi-functional edible packaging materials for Harbin red sausage preservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China.
| |
Collapse
|
9
|
Zhang Z, Niu J, Wang J, Zheng Q, Miao W, Lin Q, Li X, Jin Z, Qiu C, Sang S, Ji H. Advances in the preparation and application of cyclodextrin derivatives in food and the related fields. Food Res Int 2024; 195:114952. [PMID: 39277230 DOI: 10.1016/j.foodres.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Cyclodextrin (CD) derivatives have recently gained worldwide attention, which have versatile advantages and restrained the defects of parent CDs. The superior properties of CD derivatives in encapsulation, stabilization, and solubilization facilitate their application in food, biomedicine, daily chemicals, and textiles. In this review, the preparation, classification, and main benefits of CD derivatives are systematically introduced. By introducing targeted groups into the parent CD molecule, they exhibit significant improvement in their required characteristic. Besides, the important point closely related to application, the safety assessment, has also been highlighted. Most tested CD derivatives have been verified to be relatively safe in a limited dosage. Then, the applications of CD derivatives have been described in detail from the food to its related field. In food field, CD derivatives play an important role in the stability and bioavailability of bioactive compounds, control flavor release, and improve the antimicrobial and antioxidant properties of packaging materials. These advantages can also be expanded to the related field, offering innovative solutions that enhance product quality, human health, and environmental sustainability. This review highlights the broad applications and potential of CD derivatives, underscoring their role in driving advancements across multiple industries.
Collapse
Affiliation(s)
- Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingxian Niu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiaoxin Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbo Miao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Kou X, Gao N, Xu X, Zhu J, Ke Q, Meng Q. Preparation, structural analysis of alcohol aroma compounds/β-cyclodextrin inclusion complexes and the application in strawberry preservation. Food Chem 2024; 457:140160. [PMID: 38917569 DOI: 10.1016/j.foodchem.2024.140160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The dynamic combination of aromas and cyclodextrins is an important means to achieve their stability and controllability, and accurately revealing their interaction rules is the key to designing and constructing high-quality aroma nanocarriers. In this study, the inclusion mechanism between alcohol aroma compounds with different structures and β-cyclodextrin (β-CD) was studied by combining molecular dynamics simulation and experimental methods. Results showed that the selected alcohol aroma compounds formed inclusion complexes (ICs) with β-CD in a 1:1 ratio, while alcohol aroma compounds containing cyclic structures were more tightly bound to β-CD. Van der Waals forces were the primary forces driving the formation and stabilization of the ICs. Cinnamyl alcohol/β-CD ICs showed the most significant antimicrobial effect and notably prolonged the shelf life of strawberries. This study aimed to provide theoretical support for precisely designing and preparing highly stable flavours and fragrances, as well as expanding their application range.
Collapse
Affiliation(s)
- Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Nan Gao
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiwei Xu
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiamin Zhu
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
11
|
Wang Z, Zang C, Hu G, Li J, Yu Y, Yang W, Hu Y. PCL/Locust bean gum nanofibers loaded with HP-β-CD/Epicatechin clathrate compounds for fruit packaging. Int J Biol Macromol 2024; 276:133940. [PMID: 39025179 DOI: 10.1016/j.ijbiomac.2024.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
In this work, the hydroxypropyl-β-cyclodextrin (HP-β-CD)/Epicatechin (EC) clathrate compounds were rapidly prepared based on an ultrasound-mediated method, and Polycaprolactone (PCL)/Locust bean gum (LBG) nanofibers loaded clathrate compounds were fabricated by electrostatic spinning (ELS) for fruit packaging. The results of infrared spectrum and crystal type analysis proved that clathrate compounds were successfully prepared. With the addition of clathrate compounds, the diameter of fibers increased from 553.43 to 1273.47 nm, and hydrogen bonds were formed between clathrate compounds and fibrous membranes, which improved the thermal stability, reduced the crystallinity, and enhanced the hydrophilicity and gas permeability of fibrous membranes. The fibrous membranes indicated sustained release of EC for 240 h, retaining the activity of EC and demonstrating good bacteriostatic ability in vitro and in vivo. The test results showed that the antibacterial fibrous membranes prepared in this work have a positive application prospect for fruit packaging.
Collapse
Affiliation(s)
- Ziteng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Chao Zang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Guoxing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Jixiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
12
|
Zhang Y, Reymick OO, Duan B, Ding S, Wang R, Tao N. Combination of Cinnamaldehyde/β-cyclodextrin inclusion complex and L-phenylalanine effectively reduces the postharvest green mold in citrus fruit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106040. [PMID: 39277367 DOI: 10.1016/j.pestbp.2024.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/17/2024]
Abstract
The essential oil and β-cyclodextrin inclusion complex was able to inhibit the growth of Penicillium digitatum, a damaging pathogen that causes green mold in citrus fruit. In this study, cinnamaldehyde-β-cyclodextrin inclusion complex (β-CDCA) for controlling citrus green mold was synthesized by the co-precipitation method. Characterization of β-CDCA revealed that the aromatic ring skeleton of cinnamaldehyde (CA) was successfully embedded into the cavity of β-CD to form the inclusion complex. β-CDCA inhibited P. digitatum at a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 4.0 g/L. FT-IR spectroscopy analysis, calcofluor white staining, extracellular alkaline phosphatase (AKP) activity and propidium iodide (PI) staining of hyphae morphology showed that β-CDCA may damage the cell ultrastructure and membrane permeability of P. digitatum. The study further demonstrated that hydrogen peroxide (H2O2), malondialdehyde (MDA), and reactive oxygen species (ROS) markedly accumulated in 1/2 MIC β-CDCA treated hyphae. This implied that β-CDCA inhibited growth of P. digitatum by the triggering oxidative stress, which may have caused cell death by altering cell membrane permeability. In addition, in vivo results showed that β-CDCA alone or combined with L-phenylalanine (L-PHe) displayed a comparable level to that of prochloraz. Therefore, β-CDCA combined with L-PHe can thus be used as an eco-friendly preservative for the control green mold in postharvest citrus fruit.
Collapse
Affiliation(s)
- Yonghua Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Okwong Oketch Reymick
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China; Department of Science, Technical and Vocational Education, College of Education & External Studies, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Bin Duan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Shenghua Ding
- Dongting Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, PR China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
13
|
Li X, Liu J, Dou J, Li C, Jiang Y, Dawood A, Wei J, Wei Y, Xiong Y, Luo W, Algharib S. Enhanced Cellular Delivery of Tildipirosin by Xanthan Gum-Gelatin Composite Nanogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4860-4870. [PMID: 38394629 DOI: 10.1021/acs.langmuir.3c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Tildipirosin has no significant inhibitory effect on intracellular bacteria because of its poor membrane permeability. To this end, tildipirosin-loaded xanthan gum-gelatin composite nanogels were innovatively prepared to improve the cellular uptake efficiency. The formation of the nanogels via interactions between the positively charged gelatin and the negatively charged xanthan gum was confirmed by powder X-ray diffraction and Fourier transform infrared. The results indicate that the optimal tildipirosin composite nanogels possessed a 3D network structure and were shaped like a uniformly dispersed ellipse, and the particle size, PDI, and ζ potential were 229.4 ± 1.5 nm, 0.26 ± 0.04, and -33.2 ± 2.2 mV, respectively. Interestingly, the nanogels exhibited gelatinase-responsive characteristics, robust cellular uptake via clathrin-mediated endocytosis, and excellent sustained release. With those pharmaceutical properties provided by xanthan gum-gelatin composite nanogels, the anti-Staphylococcus aureus activity of tildipirosin was remarkably amplified. Further, tildipirosin composite nanogels demonstrated good biocompatibility and low in vivo and in vitro toxicities. Therefore, we concluded that tildipirosin-loaded xanthan gum-gelatin composite nanogels might be employed as a potentially effective gelatinase-responsive drug delivery for intracellular bacterial infection.
Collapse
Affiliation(s)
- Xianqiang Li
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui 233100, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jinfeng Dou
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui 233100, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongtao Jiang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Ali Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang 830000, China
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang 830000, China
| | - Youyi Xiong
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui 233100, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Samah Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| |
Collapse
|
14
|
Shen C, Yang X, Wang D, Li J, Zhu C, Wu D, Chen K. Carboxymethyl chitosan and polycaprolactone-based rapid in-situ packaging for fruit preservation by solution blow spinning. Carbohydr Polym 2024; 326:121636. [PMID: 38142080 DOI: 10.1016/j.carbpol.2023.121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Nanofiber packaging has not yet gained practical application in fruit preservation because of some limitations, such as low production rate and utilization, and failure due to poor adhesion to the fruit. Herein, to solve this issue, a novel fruit packaging method based on solution blow spinning (SBS), called in-situ packaging, was pioneered. Specifically, carboxymethyl chitosan (CMCH) and polycaprolactone (PCL) were chosen as substrate materials and cherry tomatoes were selected as demonstration subjects. CMCH/PCL nanofibers were deposited directly onto the surface of cherry tomatoes by SBS, forming a tightly adherent and stable fiber coating in 8 min. Also, this in-situ packaging could be easily peeled off by hand. The in-situ packaging was an excellent carrier for active substances and was effective in inhibiting gray mold on cherry tomatoes. The in-situ packaging film formed a barrier on the surface of cherry tomatoes to limit moisture penetration, resulting in reduced respiration of fruits, which led to reduced weight and firmness loss. In addition, metabolomics and color analysis revealed that the in-situ packaging delayed ripening of cherry tomatoes after harvest. Overall, the in-situ packaging method developed in the present work provides a new solution for post-harvest fruit preservation.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangzheng Yang
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Da Wang
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Jiangkuo Li
- Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, PR China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
15
|
Kang C, Zhang H, Sun C, Cao J, Yang H, Chen J, Wang Y, Sun C. The antifungal activity and mechanism of Perillaldehyde and its stabilized encapsulation technology for fruit preservation. POSTHARVEST BIOLOGY AND TECHNOLOGY 2024; 207:112613. [DOI: 10.1016/j.postharvbio.2023.112613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
16
|
Qu W, Feng Y, Xiong T, Qayum A, Ma H. Preparation, structural and functional characterization of corn peptide-chelated calcium microcapsules using synchronous dual frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 102:106732. [PMID: 38150958 PMCID: PMC10765482 DOI: 10.1016/j.ultsonch.2023.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The utilization of peptide-chelated calcium is low due to the influence of factors such as solubility, heat and digestive environmental conditions; therefore, it is crucial to protect, prolong and stabilize this nutrient in order to enhance its efficacy. This study was conducted to prepare corn peptide-chelated calcium microcapsules using β-cyclodextrin (β-CD) as the wall material through an improved ultrasonic-assisted method. The structure, solubility, thermal stability, and in vitro gastrointestinal digestion of these microcapsules were thoroughly investigated and analyzed. The microcapsules were prepared using the following recommended conditions: a chelate concentration of 5 mg/mL, a mass ratio of chelate to β-CD of 1:8 g/g, and a synchronous dual-frequency ultrasound (20/28 kHz) at a power of 75 W, a duty ratio of 20/5 s/s, and a time of 20 min. These specific parameters were carefully selected to ensure the optimal fabrication of the microcapsules. The results showed that the utilization of dual-frequency ultrasound resulted in a significant increase in both the encapsulation rate and yield, which were enhanced by 15.84 % and 15.68 %, respectively, reaching impressive values of 79.17 % and 90.60 %. Moreover, the results of the structure index analysis provided further confirmation that ultrasonic treatment had a significant impact on the structure of the microcapsules, leading to a noticeable reduction in particle size and transformation into nanoparticles. Furthermore, the microcapsules demonstrated excellent solubility within a wide pH range of 2 to 10, with solubility ranging from 93.54 % to 88.68 %. Additionally, these microcapsules exhibited remarkable thermal stability, retaining a minimum of 84.8 % of their stability when exposed to temperatures ranging from 40 to 80 °C. Moreover, during gastric and intestinal digestion, these microcapsules exhibited a high slow-release rate of 44.66 % and 51.6 %, indicating their ability to gradually release calcium contents. The inclusion of dual-frequency ultrasound in the preparation of high calcium microcapsules yielded promising outcomes. Overall, our work presents a novel method for synthesizing corn peptide-chelated calcium microcapsules with desirable properties such as good solubility, excellent thermal stability, and a significant slow-release effect. These microcapsules have the potential to serve as fortified high calcium supplements.
Collapse
Affiliation(s)
- Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yuhang Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Lv J, Wu P, Fang Y, Zhang W, Liu D, Wu M, Shang L, Li H, Zhao Y. Deep Eutectic Solvents Based on L-Arginine and 2-Hydroxypropyl-β-Cyclodextrin for Drug Carrier and Penetration Enhancement. AAPS PharmSciTech 2023; 24:187. [PMID: 37700066 DOI: 10.1208/s12249-023-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
By selecting L-arginine as the hydrogen bond acceptor (HBA) and 2-hydroxypropyl-β-cyclodextrin (2HPβCD) as the hydrogen bond donor (HBD), deep eutectic solvents (DESs) with various water content were prepared at the 4:1 mass ratio of L-arginine to 2HPβCD with 40 to 60% of water, and were studied for its application in transdermal drug delivery system (TDDS). The hydrogen bond networks and internal chemistry structures of the DESs were measured by attenuated total reflection Fourier transform infrared (ATR-FTIR) and 1H-nuclear magnetic resonance spectroscopy (1H-NMR), which demonstrated the successful synthesis of DESs. The viscosity of DES was decreased from 10,324.9 to 3219.6 mPa s, while glass transition temperature (Tg) of the DESs was increased from - 60.8 to - 51.4 °C, as the added water was increased from 45 to 60%. The solubility of ibuprofen, norfloxacin, and nateglinide in DES with 45% of water were increased by 79.3, 44.1, and 3.2 times higher than that in water, respectively. The vitro study of transdermal absorption of lidocaine in DESs showed that the cumulative amounts of lidocaine reached 252.4 µg/cm2, 226.1 µg/cm2, and 286.1 µg/cm2 at 8 h for DESs with 45%, 50%, and 60% of water, respectively. The permeation mechanism of DES with lower content of water (45%) was mainly by changing the fluidization of lipids, while changing the secondary structure of keratin in stratum corneum (SC) at higher water content (50% and 60%). These nonirritant and viscous fluid like DESs with good drug solubility and permeation enhancing effects have broad application prospect in the field of drug solubilization and transdermal drug delivery system.
Collapse
Affiliation(s)
- Jianhua Lv
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
| | - Pan Wu
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yaru Fang
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
| | - Wenchang Zhang
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
| | - Dongwen Liu
- Foshan Hospital of TCM, Foshan, Guangdong, 528000, People's Republic of China
| | - Mi Wu
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China.
| | - Lei Shang
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China.
- Suzhou Biomedical Research & Development Center, Suzhou, 215000, People's Republic of China.
| | - Huaiguo Li
- Foshan Hospital of TCM, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yan Zhao
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China.
| |
Collapse
|
18
|
Christaki S, Spanidi E, Panagiotidou E, Athanasopoulou S, Kyriakoudi A, Mourtzinos I, Gardikis K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1274. [PMID: 37765082 PMCID: PMC10535610 DOI: 10.3390/ph16091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins have gained significant and established attention as versatile carriers for the delivery of bioactive compounds derived from natural sources in various applications, including medicine, food and cosmetics. Their toroidal structure and hydrophobic cavity render them ideal candidates for encapsulating and solubilizing hydrophobic and poorly soluble compounds. Most medicinal, food and cosmetic ingredients share the challenges of hydrophobicity and degradation that can be effectively addressed by various cyclodextrin types. Though not new or novel-their first applications appeared in the market in the 1970s-their versatility has inspired numerous developments, either on the academic or industrial level. This review article provides an overview of the ever-growing applications of cyclodextrins in the delivery of bioactive compounds from natural sources and their potential application benefits.
Collapse
Affiliation(s)
- Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Eleni Panagiotidou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Sophia Athanasopoulou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Konstantinos Gardikis
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| |
Collapse
|
19
|
Kong P, Thangunpai K, Zulfikar A, Masuo S, Abe JP, Enomae T. Preparation of Green Anti- Staphylococcus aureus Inclusion Complexes Containing Hinoki Essential Oil. Foods 2023; 12:3104. [PMID: 37628104 PMCID: PMC10453407 DOI: 10.3390/foods12163104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to prepare anti-Staphylococcus aureus inclusion complexes (ICs) of Hinoki essential oil (HEO) with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD). An ultrasound-assisted kneading method was applied for the complexation for the first time. The recovery yield, embedding fraction and loading capacity of the HEO/β-CD ICs were 92.5%, 78.0% and 11.9%, respectively, while the corresponding values were 80.8%, 73.7% and 12.9% for the HEO/2-HP-β-CD ICs. As well, a comparative study confirmed the efficiency of the ultrasound-assisted kneading method was higher than the traditional kneading method. The results of SEM, XRD, GC-MS and FT-IR suggested the successful formation of ICs. A significant anti-Staphylococcus aureus activity of the fabricated ICs was demonstrated using a colony counting method. Notably, when the dose in liquid culture medium was 20 g L-1, inhibitory rates of 99.8% for HEO/β-CD ICs and 100% for HEO/2-HP-β-CD ICs were achieved. Furthermore, the hydrophilic property of the ICs was proved by water contact angle measurements, implying they have the potential to act as anti-Staphylococcus aureus agents for blending with hydrophilic biodegradable materials for diverse food packaging utilizations.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (P.K.); (K.T.); (A.Z.)
| | - Kotchaporn Thangunpai
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (P.K.); (K.T.); (A.Z.)
| | - Ainun Zulfikar
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (P.K.); (K.T.); (A.Z.)
- Materials and Metalurgical Engineering Department, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (S.M.); (J.P.A.)
| | - Junichi Peter Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (S.M.); (J.P.A.)
| | - Toshiharu Enomae
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (S.M.); (J.P.A.)
| |
Collapse
|
20
|
Zhang Y, Tan Y, OuYang Q, Duan B, Wang Z, Meng K, Tan X, Tao N. γ-Cyclodextrin encapsulated thymol for citrus preservation and its possible mechanism against Penicillium digitatum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105501. [PMID: 37532321 DOI: 10.1016/j.pestbp.2023.105501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
The volatility of essential oils greatly limits their industrial applications. Here, we successfully prepared γ-cyclodextrin (γ-CD) inclusion compounds (γ-CDTL) containing thymol (TL) for the control of green mold caused by Penicillium digitatum (P. digitatum) in citrus fruit. In vitro experiment showed that the minimum fungicidal concentration (MFC) of γ-CDTL against the hyphae growth of P. digitatum was 2.0 g/L, and 8 × MFC treatment significantly reduced the occurrence of green mold in citrus fruit and had no adverse effect on fruit quality in vivo test compared to prochloraz. Scanning electron microscopy (SEM), x-ray diffraction (XRD), fourier transform-infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), physical properties and sustained release properties were also performed, results indicated that the hydrogen bonds between TL and γ-CD were the basis for the formation of γ-CDTL. We further investigated the inhibition mechanism of γ-CDTL. SEM and TEM experiments showed that γ-CDTL treatment caused severe damage to the hyphal morphology and cells in 30 min and disrupted the permeability of P. digitatum mycelial cell walls by increasing the chitinase activity, thus accelerating the leakage of intracellular lysates. However, the integrity of the cell membrane was obviously damaged only after 60 min of treatment. In conclusion, we prepared a novel inclusion complex γ-CDTL with obvious antifungal effects and preliminarily elucidated its inclusion mechanism and antifungal mechanism. γ-CDTL might be a potent alternative to chemical fungicides for controlling the postharvest decay of citrus.
Collapse
Affiliation(s)
- Yonghua Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Yuanzhen Tan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Bin Duan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Ziting Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Kuixian Meng
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xiaoli Tan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China.
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
21
|
Shen C, Ma Y, Wu D, Liu P, He Y, Chen K. Preparation of covalent organic framework-based nanofibrous films with temperature-responsive release of thymol for active food packaging. Food Chem 2023; 410:135460. [PMID: 36641909 DOI: 10.1016/j.foodchem.2023.135460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Thymol (THY) is commonly used in active food packaging, however because of its high volatility, poor water solubility, and strong aromatic odor, the application of THY is facing challenges. Herein, covalent organic frameworks (COFs) were synthesized in room temperature by asymmetric monomer exchange method for THY encapsulation, and solution blow spinning was used to fabricate the THY@COF/polycaprolactone (PCL) nanofibrous films. The synthesized COFs had a large specific surface area, porous structure, and loading capacity of 30.35% for THY, and THY@COFs possessed good thermal stability. Characterization analysis showed that THY@COFs were successfully incorporated into the PCL films and increased the barrier property of the films. Besides, the films showed good biocompatibility and antibacterial activity. Moreover, THY@COF/PCL films exhibited temperature-responsive THY release profiles, which is important for practical preservation applications, especially for preserving food in warm environments. Overall, THY@COF/PCL films possess promising potential in active food packaging.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yuting Ma
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou 310027, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou 310027, PR China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
22
|
Yu C, Naeem A, Liu Y, Guan Y. Ellagic Acid Inclusion Complex-Loaded Hydrogels as an Efficient Controlled Release System: Design, Fabrication and In Vitro Evaluation. J Funct Biomater 2023; 14:jfb14050278. [PMID: 37233388 DOI: 10.3390/jfb14050278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Oxidants play a crucial role in the development of oxidative stress, which is linked to disease progression. Ellagic acid is an effective antioxidant with applications in the treatment and prevention of several diseases, since it neutralizes free radicals and reduces oxidative stress. However, it has limited application due to its poor solubility and oral bioavailability. Since ellagic acid is hydrophobic, it is difficult to load it directly into hydrogels for controlled release applications. Therefore, the purpose of this study was to first prepare inclusion complexes of ellagic acid (EA) with hydroxypropyl-β-cyclodextrin and then load them into carbopol-934-grafted-2-acrylamido-2-methyl-1-propane sulfonic acid (CP-g-AMPS) hydrogels for orally controlled drug delivery. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to validate ellagic acid inclusion complexes and hydrogels. There was slightly higher swelling and drug release at pH 1.2 (42.20% and 92.13%) than at pH 7.4 (31.61% and 77.28%), respectively. Hydrogels had high porosity (88.90%) and biodegradation (9.2% per week in phosphate-buffered saline). Hydrogels were tested for their antioxidant properties in vitro against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, the antibacterial activity of hydrogels was demonstrated against Gram-positive bacterial strains (Staphylococcus aureus and Escherichia coli) and Gram-negative bacterial strains (Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, 1688 Meiling Road, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, 1688 Meiling Road, Nanchang 330006, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
23
|
Zhang Z, Li X, Sang S, Julian McClements D, Chen L, Long J, Jiao A, Jin Z, Qiu C. Preparation, properties and interaction of curcumin loaded zein/HP-β-CD nanoparticles based on electrostatic interactions by antisolvent co-precipitation. Food Chem 2023; 403:134344. [DOI: 10.1016/j.foodchem.2022.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
24
|
Naeem A, Yu C, Zang Z, Zhu W, Deng X, Guan Y. Synthesis and Evaluation of Rutin–Hydroxypropyl β-Cyclodextrin Inclusion Complexes Embedded in Xanthan Gum-Based (HPMC-g-AMPS) Hydrogels for Oral Controlled Drug Delivery. Antioxidants (Basel) 2023; 12:antiox12030552. [PMID: 36978800 PMCID: PMC10044933 DOI: 10.3390/antiox12030552] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Oxidants play a significant role in causing oxidative stress in the body, which contributes to the development of diseases. Rutin—a powerful antioxidant—may be useful in the prevention and treatment of various diseases by scavenging oxidants and reducing oxidative stress. However, low solubility and oral bioavailability have restricted its use. Due to the hydrophobic nature of rutin, it cannot be easily loaded inside hydrogels. Therefore, first rutin inclusion complexes (RIC) with hydroxypropyl-β-cyclodextrin (HP-βCD) were prepared to improve its solubility, followed by incorporation into xanthan gum-based (hydroxypropyl methylcellulose-grafted-2-acrylamido -2-methyl-1-propane sulfonic acid) hydrogels for controlled drug release in order to improve the bioavailability. Rutin inclusion complexes and hydrogels were validated by FTIR, XRD, SEM, TGA, and DSC. The highest swelling ratio and drug release occurred at pH 1.2 (28% swelling ratio and 70% drug release) versus pH 7.4 (22% swelling ratio, 65% drug release) after 48 h. Hydrogels showed high porosity (94%) and biodegradation (9% in 1 week in phosphate buffer saline). Moreover, in vitro antioxidative and antibacterial studies (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli) confirmed the antioxidative and antibacterial potential of the developed hydrogels.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (A.N.); (Y.G.)
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xuezhen Deng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (A.N.); (Y.G.)
| |
Collapse
|
25
|
Li Z, Zhao W, Liang N, Yan P, Sun S. Tumor Targeting and pH-Sensitive Inclusion Complex Based on HP-β-CD as a Potential Carrier for Paclitaxel: Fabrication, Molecular Docking, and Characterization. Biomacromolecules 2023; 24:178-189. [PMID: 36538015 DOI: 10.1021/acs.biomac.2c01023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, a tumor-targeting and pH-sensitive inclusion complex based on the host-guest recognition between the chitosan and folic acid grafted HP-β-CD (FA-CS-CD) and stearic acid modified 2-benzimidazolemethanol (BM-SA) was designed and fabricated for the controlled delivery of paclitaxel (PTX). Through the combination of computational simulations and experiments, the interaction between FA-CS-CD, BM-SA, and PTX was investigated, and the optimized preparation method was obtained. For the optimized PTX-loaded FA-CS-CD/BM-SA inclusion complex, the particle size and zeta potential were 146 nm and +15.4 mV, respectively. In vitro drug release study revealed the pH-triggered drug release behavior of the inclusion complex. Both in vitro and in vivo evaluations demonstrated that the PTX-loaded FA-CS-CD/BM-SA inclusion complex exhibited enhanced antitumor efficiency and minimized systemic toxicity. This system might be a promising carrier for PTX.
Collapse
Affiliation(s)
- Zixue Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin150080, China
| | - Wei Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin150080, China
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin150025, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin150080, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin150080, China
| |
Collapse
|
26
|
Multifunctional film based on gelatin with titanium dioxide and thymol@β-cyclodextrins for fresh-keeping packaging. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Xu Y, Chen L, Zhang Y, Huang Y, Cao J, Jiang W. Antimicrobial and controlled release properties of nanocomposite film containing thymol and carvacrol loaded UiO-66-NH2 for active food packaging. Food Chem 2022; 404:134427. [DOI: 10.1016/j.foodchem.2022.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
28
|
Dai J, Hu W, Yang H, Li C, Cui H, Li X, Lin L. Controlled release and antibacterial properties of PEO/casein nanofibers loaded with Thymol/β-cyclodextrin inclusion complexes in beef preservation. Food Chem 2022; 382:132369. [PMID: 35152025 DOI: 10.1016/j.foodchem.2022.132369] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/04/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
There are still many limitations in the application of natural active compounds in meat preservation. Herein, thymol was first inserted into the cavity of β-cyclodextrin (β-CD) to form a stable inclusion complex (THY/β-CD-IC). The computational investigation showed that the optimized complexation energy for THY/β-CD-IC was -12.95 kcal mol-1. It contributed to the improvement of the thermal stability of thymol in the inclusion compound. Furthermore, the functionalized nanofibers (THY/β-CD-IC-NFs) loaded with THY/β-CD-IC were successfully fabricated by electrospinning of the mixture of casein and polyethylene oxide. When dealing with protease-producing bacteria, controllable release of thymol from THY/β-CD-IC-NFs was achieved through the response of casein to the hydrolysis of bacterial protease. The application results indicated that the prepared THY/β-CD-IC-NFs had a long-term antimicrobial activity for chilled beef preservation during 7-days storage. The information from this study presents a feasible strategy for the development of natural extracts for use in meat preservation.
Collapse
Affiliation(s)
- Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Hongying Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
29
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
30
|
Zhang Q, Qin W, Hu X, Yan J, Liu Y, Wang Z, Liu L, Ding J, Huang P, Wu J. Efficacy and Mechanism of Thymol/KGM/LG Edible Coating Solution on Inhibition of Mucor circinelloides Isolated From Okra. Front Microbiol 2022; 13:880376. [PMID: 35651497 PMCID: PMC9149372 DOI: 10.3389/fmicb.2022.880376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
With the increasing demand and quality requirement for the natural nutritious food in modern society, okra has attracted much attention because of its high nutritional value and remarkable functionality. However, the occurrence of postharvest diseases of fresh okra severely limited the application and the value of okra. Therefore, in this study, the dominant pathogens causing postharvest diseases such as soft rot were isolated from naturally decaying okra. It was identified as Mucor circinelloides by its morphological characteristics and standard internal transcribed spacer ribosomal DNA sequence. Furthermore, the biological characteristics of M. circinelloides were studied, and the inhibitory effect of thymol/KGM/LG (TKL) edible coating solution on M. circinelloides and its possible mechanism was discussed. In addition, TKL edible coating solution had a dose-dependent inhibitory effect on M. circinelloides, with a 50% inhibitory concentration (EC50) of 113.55 mg/L. The TKL edible coating solution at 960 mg/L of thymol completely inhibited mycelial growth and spore germination of M. circinelloides. The results showed that the best carbon source of M. circinelloides was maltose, the best nitrogen source was beef extract and potassium nitrate, the best pH was 6, the best temperature was 28°C, the best NaCl concentration was 0.5%, and the light was conducive to the growth of M. circinelloides. It was also observed by scanning electron microscope (SEM) that TKL was more likely to destroy the cell wall integrity of M. circinelloides, inhibit spore morphology and change mycelium structure. Meanwhile, the activity of chitinase (CHI), an enzyme related to cell wall synthesis of M. circinelloides, was significantly decreased after being treated by TKL with thymol at 100 mg/L (TKL100). The content of Malondialdehyde (MDA) in M. circinelloides decreased significantly from 12 h to 48 h, which may cause oxidative damage to the cell membrane. The activity polygalacturonase (PG), pectin methylgalacturonase (PMG), and cellulase (Cx) of M. circinelloides decreased significantly. Therefore, the results showed that TKL had a good bacteriostatic effect on okra soft rot pathogen, and the main bacteriostatic mechanism might be the damage of cell membrane, degradation of the cell wall, inhibition of metabolic activities, and reduction of metabolites, which is helpful to further understand the inhibitory effect of TKL on okra soft rot pathogen and its mechanism.
Collapse
Affiliation(s)
- Qinqiu Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xinjie Hu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jing Yan
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhuwei Wang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Lang Liu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Peng Huang
- Department of Quality Management and Inspection and Detection, Yibin University, Yibin, China
| | - Jiya Wu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
31
|
Shen C, Wu M, Sun C, Li J, Wu D, Sun C, He Y, Chen K. Chitosan/PCL nanofibrous films developed by SBS to encapsulate thymol/HPβCD inclusion complexes for fruit packaging. Carbohydr Polym 2022; 286:119267. [DOI: 10.1016/j.carbpol.2022.119267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
|
32
|
Epigallocatechin-3-gallate + L-theanine/β-cyclodextrin inclusion complexes enhance epigallocatechin-3-gallate bioavailability and its lipid-lowering and weight loss effects. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Liu Y, Sameen DE, Ahmed S, Wang Y, Lu R, Dai J, Li S, Qin W. Recent advances in cyclodextrin-based films for food packaging. Food Chem 2022; 370:131026. [PMID: 34509938 DOI: 10.1016/j.foodchem.2021.131026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins are garnering increasing attention because they offer several benefits. For instance, cyclodextrins can form several complexes and supramolecular structures not only for food packaging but also for applications in other fields of science. In this review, we discussed the physical and chemical properties of cyclodextrins and the mechanism of their inclusion complex formation. The use of cyclodextrins in various types of food packaging is elaborated upon. We also explain the effects of cyclodextrins on the packaging of fruits, vegetables, meat, fish, and processed foods. Furthermore, some feasible suggestions for future applications are provided. In addition to the positive attributes of cyclodextrins, there are some limitations and drawbacks, which are discussed briefly in this review. In summary, this review can serve as a guide for researchers exploring cyclodextrins for the development of various packaging films.
Collapse
Affiliation(s)
- Yaowen Liu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China; CaliforniaNano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Dur E Sameen
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Saeed Ahmed
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Wang
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Rui Lu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- Collegeof Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
34
|
Wu CC, Zhang HT, Gao ZX, Qu JJ, Zhu L, Zhan XB. Enhanced solubility of curcumin by complexation with fermented cyclic β-1,2-glucans. J Pharm Biomed Anal 2022; 211:114613. [DOI: 10.1016/j.jpba.2022.114613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
|
35
|
Yan M, Dong S, Shen X, Lu C, Ye H, Zhang T. Lactoferrin-thymol complex for the disinfection of gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Food Funct 2021; 12:11165-11173. [PMID: 34633016 DOI: 10.1039/d1fo02153b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Seeking all-nature derived antibacterial agents with effective disinfection function, high human safety as well as environment-friendly characteristics are highly required in the food industry. Herein, we report the lactoferrin-thymol (LF-Thy) complex as an effective killing agent against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The multi-spectroscopy results clearly demonstrate the combination of LF and Thy to form the LF-Thy complex, accompanied with LF conformation variations including the increase in the hydrophobicity of amino acid residues and changes in the types of secondary conformation distribution in LF. Molecular docking results show that LF exhibits three possible binding sites and five predicted stable binding modes for Thy with the help of hydrogen bonding and hydrophobic interactions. Moreover, LF-Thy demonstrated a significantly higher antibacterial ability compared to LF and displays effective disinfection function against E. coli and S. aureus. The minimum inhibitory concentration (MIC) of LF toward E. coli and S. aureus is >40 mg mL-1 and 40 mg mL-1, which decreases to 10 mg mL-1 and 5 mg mL-1 after combination with Thy, respectively. This work demonstrates the promising antibacterial activities of the LF-Thy complex and provides an alternative agent for combating bacterial infection in the food industry, which holds great potential for promoting the development of the all-natural healthcare food complex.
Collapse
Affiliation(s)
- Mi Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Shuyue Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Chengwen Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|