1
|
Liu T, Xu J, Xiao W, Zhou L, Chen Y, Qiao X, Deng S, Du Z, Tang Y. Seasonal Coloration and Ecological Adaptations of Adventitious Roots of Four Salicaceous Species in Jiuzhaigou World Natural Heritage Site, Southwestern China. Ecol Evol 2025; 15:e71218. [PMID: 40242798 PMCID: PMC12000238 DOI: 10.1002/ece3.71218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Jiuzhaigou is a world natural heritage with extraordinary beauty of wetlands largely developed on tufa landforms. The wetlands are dominated by shrubs and trees. A striking feature of dense and plentiful adventitious roots is found during summer, and the color changes to unnoticeable during winter. Despite the visual prominence of this phenomenon, its biochemical mechanisms and ecological significance remain unexplored. Integrating field surveys, anatomical analyses, and biochemical profiling to decipher coloration dynamics and their potential as environmental bioindicators, results indicate that dense adventitious roots were found only with willow and poplar species in the tufa wetlands in Shuzheng and Rize valleys. Adventitious roots displayed specialized adaptations, including well-developed aerenchyma, degenerated mechanical tissue and xylem, and a floating habit on the water surface, which enhances oxygen uptake in aquatic habitats. Seasonal color variations followed a distinct temporal pattern, transitioning from red or pink hues in summer to reddish-brown in spring and autumn, and maroon or gray in winter. Proanthocyanidins were identified as principal pigments, with their oxidation into quinones under the influence of temperature and light driving the observed color transitions. The proanthocyanidins redox dynamics reflect seasonal fluctuations in air temperature and solar irradiance, providing a novel biomarker for assessing climate impacts on wetland ecosystems. The close link between seasonal color change of adventitious roots and the aquatic environment sheds new light on effective ecosystem management in karst areas.
Collapse
Affiliation(s)
- Ting Liu
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengduSichuanChina
- College of Architecture and EnvironmentSichuan UniversityChengduSichuanChina
| | - Junhuai Xu
- China Southwest Architecture Design and Research Institute Co. Ltd.CSCEC Green Construction Engineering Research CenterChengduSichuanChina
- College of Biomass Science and EngineeringSichuan UniversityChengduSichuanChina
| | - Weiyang Xiao
- Jiuzhaigou Administrative BureauZhangzhaJiuzhaigou, SichuanChina
| | - Lv Zhou
- Jiuzhaigou Administrative BureauZhangzhaJiuzhaigou, SichuanChina
| | - Yingzhou Chen
- College of Architecture and EnvironmentSichuan UniversityChengduSichuanChina
| | - Xue Qiao
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengduSichuanChina
| | - Sha Deng
- College of Biomass Science and EngineeringSichuan UniversityChengduSichuanChina
| | - Zongliang Du
- College of Biomass Science and EngineeringSichuan UniversityChengduSichuanChina
| | - Ya Tang
- College of Architecture and EnvironmentSichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Ponder A, Krakówko K, Kruk M, Kuliński S, Magoń R, Ziółkowski D, Jariene E, Hallmann E. Organic and Conventional Coffee Beans, Infusions, and Grounds as a Rich Sources of Phenolic Compounds in Coffees from Different Origins. Molecules 2025; 30:1290. [PMID: 40142065 PMCID: PMC11946014 DOI: 10.3390/molecules30061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Coffee is a beverage that contains a high concentration of bioactive compounds, particularly polyphenols. These compounds significantly contribute to the polyphenol intake in the diet and have been shown to have beneficial effects on consumer health. The objective of this research was to conduct a comparative analysis of the polyphenolic composition of coffee beans and infusions obtained from coffee beans sourced from both organic and conventional farming practices while taking into consideration variations in roast intensity and geographical origin. The lyophilized coffee grounds and infusions derived from these grounds were also subjected to analysis. The antioxidant activity was measured by using the radical ABTS, and the quantitative and qualitative analysis of polyphenolic compounds was conducted by HPLC. The conventional coffee samples were richer in chlorogenic acid, catechin, and caffeic acid. However, the coffee beans from organic farming contained more gallic acid, epigallocatechin gallate, and quercetin than those grown conventionally. We did not observe significant differences among the coffee plant production sites in Ethiopia, Sumatra, and Peru, but Peru had the poorest amount of polyphenols when compared to Ethiopia and Sumatra. Coffee infusions prepared from organic coffee beans were characterized by a significantly high sum of identified polyphenols. A higher content of caffeine was observed in the organic coffee bean samples than in the conventional coffee bean samples. Conventional coffee beans were characterized by stronger antioxidant activity than organic beans. Coffees from different parts of the world were characterized by different profiles of polyphenol compounds. Moreover, the coffee beans from Ethiopia were characterized by the highest caffeine content. However, among the different geographical areas of coffee beans, the highest antioxidant activity was detected in the coffee beans from Sumatra. Coffee grounds also have the potential to be used as compounds for the cultivation of horticultural plants, and they can be used as a source of numerous health-promoting compounds in the food and cosmetics industries.
Collapse
Affiliation(s)
- Alicja Ponder
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (A.P.); (K.K.)
| | - Karol Krakówko
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (A.P.); (K.K.)
| | - Marcin Kruk
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Sebastian Kuliński
- Faculty of Pedagogy and Health Education and Dietetics, The University of the West Indies, Cave Hill Rd., Box 1341, Wanstead BB11000, Barbados;
| | - Rafał Magoń
- Department of Security Science, Faculty of Applied Sciences, Academy of the Higher School of Banking, Cieplaka 1C, 41-300 Dąbrowa Górnicza, Poland;
| | - Daniel Ziółkowski
- Faculty of Electronics, gen. Sylwestra Kaliskiego 2, Military University of Technology, 00-908 Warsaw, Poland;
| | - Elvyra Jariene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania;
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (A.P.); (K.K.)
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaicio 58, 44248 Kaunas, Lithuania
| |
Collapse
|
3
|
Wen M, Hu W, Li L, Long P, Han Z, Ke JP, Deng Z, Zhu M, Zhang L. Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing. Food Chem 2025; 463:141222. [PMID: 39270495 DOI: 10.1016/j.foodchem.2024.141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
While key aroma and taste compounds of Keemun Congou black teas (KCBT) form during aeration and thermal stages, it is still unknown whether these processing stages also produce non-volatile color-contributing metabolites. Through integrating metabolomics with correlation and ridge regression analyses, 190 metabolites were identified as marker compounds that reclassified 15 KCBT samples collected from five processing stages into four groups. Meanwhile, the results of quantification and heatmap analysis showed that the concentrations of theaflavins and theasinensins significantly increased, as catechin decreased, after rolling, while flavonoid aglycones and polyunsaturated fatty acids increased throughout drying. Regression analysis between marker compound levels and total color difference values (∆E) revealed that the major color contributors were 3,5-dicaffeoylquinic acid, glucosyl-dehydrodigallic acid, theacitrin A, kaempferol-O-robinobioside, and (-)-epigallocatechin, with regression coefficients (absolute value) exceeding 4 × 10-2. Overall, the present study confirmed that rolling and drying were the two vital stages responsible for the color formation of KCBT.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhiyang Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Xu H, Wu M, Wei W, Ren W, Zheng Z. Chrysanthemum morifolium Ramat. as a traditional tea material: Unraveling the influence of kill-green process on drying characteristics, phytochemical compounds, and volatile profile. Food Res Int 2025; 200:115478. [PMID: 39779126 DOI: 10.1016/j.foodres.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums. Results showed that the kill-green process increased the freedom degree of immobile water, reduced the relative content of free water, and induced microstructure alterations, thus enhancing the water diffusion and shortening the subsequent drying time by up to 46.15 %. Compared to SK, HHAIK more rapidly inactivated PPO and POD, causing an improved color profile of dried samples. Dried samples treated with HHAIK for 60 s exhibited higher retention of 9 individual phenolics, total sugar, amino acids, and volatile compounds, thus resulting in higher sensorial acceptance than those treated with SK for 60 s. This study offers theoretical insights and technical support for the future development of high-quality chrysanthemum products.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhian Zheng
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
5
|
Ai Z, Xiao Z, Liu M, Zhou L, Yang L, Huang Y, Xiong Q, Li T, Liu Y, Xiao H, Guo J, Sun W, Mowafy S, Rao H. Evaluation of innovative drying technologies in Gardenia jasminoides Ellis drying considering product quality and drying efficiency. Food Chem X 2024; 24:102052. [PMID: 39717399 PMCID: PMC11664278 DOI: 10.1016/j.fochx.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Gardenia jasminoides Ellis is widely used as healthy food and herbal medicine for its anti-inflammatory, analgesic, antihypertensive, and antiviral functions. The drying behavior and physicochemical quality of Gardenia jasminoides Ellis were studied to evaluate its adaptability under four drying techniques: hot air drying (HAD), medium-and short-wave infrared drying (MSWID), pulsed vacuum drying (PVD), and radio frequency-HAD (RF-HAD). Compared with HAD and MSWID, PVD and RF-HAD can form beneficial microporous channels for moisture migration inside Gardenia jasminoides Ellis, thus shortening drying time by 32.56-42.51 % and increasing geniposide content by 3.31-13.77 %, while better preserving the brightness and redness. In addition, Pearson correlation analysis confirmed the RF-HAD dried samples showed the best antioxidant activity with the highest content of active ingredients (chlorogenic acid, geniposide), and there was a significant positive correlation between sample color and yellow pigment content. After comprehensive comparison, RF-HAD is proposed to be the most suitable method for Gardenia jasminoides Ellis drying. This research could provide scientific basis and technical support for promoting the high quality development of industrial processing of Gardenia jasminoides Ellis.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Zhifeng Xiao
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Muhua Liu
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Lingqu Zhou
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingjian Yang
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Yijie Huang
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Qiangqiang Xiong
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Tao Li
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Jiale Guo
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Wenling Sun
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Samir Mowafy
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Honghui Rao
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| |
Collapse
|
6
|
Wang M, Fei C, Zhou Y, Dai Y, Ren L, Zhang X, Yin F. Effect of chemical components on color variation during processing of Crataegi Fructus. Food Sci Biotechnol 2024; 33:3245-3255. [PMID: 39328220 PMCID: PMC11422337 DOI: 10.1007/s10068-024-01576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/28/2024] Open
Abstract
The color and chemical composition of Crataegi Fructus (CF) vary greatly during processing, but few studies have explored the relationship between them. To address this issue, the effect of chemical composition on the color change of CF during processing was evaluated by mass spectrometry and color detection. A total of 107 compounds, including organic acids, flavonoids, furans, terpenoids, lignans and alkaloids, were identified from 26 representative samples by UHPLC-Q-TOF-MS, among them, the first three compounds changed most significantly during CF processing. Based on Spearman's rho correlation and multiple linear regression analysis, 85 variables from 107 compounds were identified to be associated with color value (P < 0.01). There are 12 compounds that are considered to be the key substances that cause color changes. This study not only realized the objectification of color evaluation, but also verified the relationship between color and chemical composition in food processing. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01576-2.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yaqian Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Yanpeng Dai
- Shandong Academy of Chinese Medicine, Jinan, 250000 People's Republic of China
| | - Lijia Ren
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400 People's Republic of China
| | - Xian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| |
Collapse
|
7
|
Perini da Silva MM, Tarone AG, Giomo GS, Ferrarezzo EM, Guerreiro Filho O, Teramoto JRS. Predicting best planting location and coffee cup quality from chemical parameters: An evaluation of raw Arabica coffee beans from São Paulo over two harvests. Food Res Int 2024; 195:114911. [PMID: 39277217 DOI: 10.1016/j.foodres.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Arabica coffee is one of the most consumed beverages in the world. The chemical components present in raw Arabica coffee beans (RACB) are directly related to the cup quality of the beverage. Environmental and genetic factors influence the content and profile of these components. Then, this work aimed to evaluate different chemical parameters of RACB from 3 varieties planted in 3 different experimental farms located within the "Alta Mogiana" terroir harvested in 2021 and 2022 to identify a better variety for each farm to produce a high cup quality Arabica coffee. The harvest period had a strong influence on most of the studied parameters because atypical weather conditions occurred in the 2021 harvest. The RACB harvested in 2022 yielded better results and supposedly will produce a beverage of high cup quality. Samples harvested in this period presented mainly average moisture levels closer to optimum (11.02 against 8.56 % in 2021); low total titratable acidity (98.00 against 169.75 mL 0.1 M NaOH/100 g in 2021); high amounts of free amino acids (0.96 against 0.93 g GAE/100 g in 2021), low amounts of CGA (4.27 against 4.85 g/100 g in 2021) and caffeine (1.08 against 1.76 g/100 g in 2021) and high amounts of trigonelline (1.12 against 0.96 g/100 g in 2021). The Rome Sudan variety had the best combination of chemical results, mainly when cultivated in Farm 2 in 2022, presenting high amounts of protein content (15.24 %) and free amino acids (0.96 g GAE/100 g), low total titratable acidity (98.3 mL 0.1 M NaOH/100 g), low amounts of CGA (4.55 g/100 g) and caffeine (1.29 g/100 g) and high amounts of trigonelline (1.11 g/100 g). The analysis of chemical compounds could predict the best farm to cultivate each variety studied and was a guide to foresee a higher cup quality of RACB beverages.
Collapse
Affiliation(s)
- Milena Melim Perini da Silva
- Plant Phytochemistry Section, Plant Genetic Resource Research Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil
| | - Adriana Gadioli Tarone
- Plant Phytochemistry Section, Plant Genetic Resource Research Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil
| | - Gerson Silva Giomo
- Coffee Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil
| | | | | | - Juliana Rolim Salomé Teramoto
- Plant Phytochemistry Section, Plant Genetic Resource Research Center, Agronomic Institute - IAC, 13075-630 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Li Y, Xiao S, Zhang Q, Wang N, Yang Q, Hao J. Development and standardization of spectrophotometric assay for quantification of thermal hydrolysis-origin melanoidins and its implication in antioxidant activity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135021. [PMID: 38944987 DOI: 10.1016/j.jhazmat.2024.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Melanoidins are brown recalcitrant polymers originating from the thermal hydrolysis pretreatment (THP) of organic solid waste (OSW). Owing to their various formation pathways and complex structures, there is currently no reliable method to quantify melanoidins. In this study, a spectrophotometric method was developed to determine melanoidins concentration in different OSW. Three typical model Maillard reaction systems (glucose-glycine, glucose/fructose-20 amino acids, and dextran-bovine serum albumin) were used to acquire the characteristic peaks and establish standard curves. The results showed that a standard curve using glucose/fructose-20 amino acids model melanoidins at 280 nm was the optimal quantification method, because it had the best correlation with the physicochemical indicators of melanoidins and semi-quantification results calculated by excitation-emission matrix fluorescence. In addition, the applicability of the proposed method was evaluated using multiple real melanoidins samples extracted from thermally pretreated OSW under different THP conditions and food-derived melanoidins as well, demonstrating its validity and advantages. This study is the first to provide a simple, effective, and accurate method for quantifying THP-origin melanoidins from different sources. Remarkably, as a specific and important application scenario, the proposed quantification method was employed to investigate the concentration dependence of melanoidins antioxidation in thermally pretreated OSW.
Collapse
Affiliation(s)
- Yingying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Siwei Xiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
9
|
Liu K, Song A, Li H, Li C. Xanthan gum ink based on Lycium ruthenicum anthocyanin as an indicator of color change for monitoring freshness of cold fresh meat. Int J Biol Macromol 2024; 276:133788. [PMID: 38992540 DOI: 10.1016/j.ijbiomac.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The continuous development of intelligent food packaging has led to an increased focus on using freshness-indicating inks, which could provide a high level of quality control and consumer experience. This study aimed to further promote the application of xanthan gum ink in food freshness indication by optimizing its performance in screen printing. A novel freshness-indicating ink was prepared using Lycium ruthenicum anthocyanin (LRA) as the core indicator, glucose as the pigment carrier, soybean oil as the linker, and xanthan gum (XG) as the thickener. Scanning electron microscopy (SEM) demonstrated that the ink was uniformly distributed on paper using screen printing. Rheological and particle size analyses revealed that the incorporation of XG significantly enhanced the interaction force between droplets in the ink system. Further tests on viscosity, fineness, and initial dryness indicated that XG, a natural microbial polysaccharide with excellent stability, could effectively improve the flowability of the ink. Specifically, at a 0.3 % XG content, the ink exhibited a unimodal particle size distribution with an average particle size of 851.02 nm and a zeta potential of -27 mV. This indicated the ink system was stable and uniform, with optimal rheological properties and printing suitability. Furthermore, the printed freshness indication labels exhibited a significant change in color as the freshness of the refrigerated meat changed. This study develops a natural and safe method for monitoring the freshness of refrigerated meat and provides an optimized idea for applying indicator inks.
Collapse
Affiliation(s)
- Kaya Liu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Hao Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
10
|
Sánchez-Riaño AM, Vega-Oliveros C, Ladino-Garzón WL, Orozco-Blanco DA, Bahamón-Monje AF, Gutiérrez-Guzmán N, Amorocho-Cruz CM. Effects of cherries Sanitization methods and fermentation times on quality parameters of coffee beans. Heliyon 2024; 10:e33508. [PMID: 39044990 PMCID: PMC11263638 DOI: 10.1016/j.heliyon.2024.e33508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
For the first time, the dual effect of coffee cherry sanitization methods to control the microbial load in processing and the influence of fermentation time on coffee quality parameters was evaluated. Two assays were carried out by wet processing: I) Sanitization of the coffee cherry (ST1: Unclassified processed cherries; ST2: Classified and sanitized cherries with drinking water; ST3: Classified and sanitized cherries with a chemical agents and II) Fermentation times (FT1: 12 h; FT2: 24 h; FT3: 48 h; FT4: 72 h and FT5: 96 h). pH, temperature, and dissolved oxygen were monitored during fermentation. Counts of Lactic Acid Bacteria - LAB, mesophiles, and yeasts were carried out on the coffee mass before and after fermentation. Caffeine and chlorogenic acid contents were determined by HPLC-DAD and the sensory profile by methodology for specialty coffees (SCA). The main findings showed that: sanitization with Timsen® did not significantly influence the evolution of pH during fermentation (p > 0.05), but it can reduce to a small extent the action of LAB at the end of the process. It was observed that the temperature of the coffee mass tends to balance with the ambient temperature, with significant effects (p < 0.05) of sanitization (ST2 and ST3) on the stability of this variable during fermentation. Timsen® as a disinfectant affected microbial populations and improved the sensory profile in the cup. In prolonged coffee fermentations (FT3, FT4 and FT5), the pH of the coffee mass tended to stabilize after 36 h, regardless of the process time. Likewise, a correlation was evident between a higher microbial load correlated with better sensory profiles in FT4 and FT5. Neither the sanitization process nor the fermentation time significantly affected the caffeine and chlorogenic acid contents of the coffee, both in its green and roasted states. Consequently, the sanitization of cherry coffee with Timsen® and prolonged fermentation times favor the safety and coffee final quality in the cup.
Collapse
Affiliation(s)
- Andrea Milena Sánchez-Riaño
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| | - Carolina Vega-Oliveros
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| | - Wilmer Licerio Ladino-Garzón
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| | - Dayana Alejandra Orozco-Blanco
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| | - Andrés Felipe Bahamón-Monje
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| | - Nelson Gutiérrez-Guzmán
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| | - Claudia Milena Amorocho-Cruz
- Universidad Surcolombiana, Facultad de Ingeniería, Grupo de Investigación Agroindustria USCO, Centro Surcolombiano de Investigación en Café – CESURCAFÉ, Código Postal, 410001, Avenida Pastrana Borrero Carrera 1a, Neiva, Huila, Colombia
| |
Collapse
|
11
|
Xie L, Liu J, Wu H, Zhong Y, Liu X, Li G, Liu Z. A Comparison Analysis of Quality and Metabolic Compounds in Lilies with Different Drying Treatments. Foods 2024; 13:2206. [PMID: 39063290 PMCID: PMC11275255 DOI: 10.3390/foods13142206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to investigate the variations in the nutritional composition, antioxidant capacity, and metabolite profile of lilies subjected to different drying treatments, including vacuum freeze drying (VFD), hot air drying (HAD), vacuum drying (VD), and infrared drying (ID). The results show that VFD provided better preservation of the original coloration and displayed the highest levels of total amino acid content, total phenolic content, total flavonoid content, and polysaccharide and alkaloid content. Our results reveal that VFD treatment can be employed to obtain high-quality lilies with desirable appearance characteristics and nutrient compositions. Metabolomics analysis identified a total of 464 metabolites from various dried lilies. Differential metabolite screening found 150 differential metabolites across all pairwise comparisons. Hierarchical clustering analysis (HCA) indicated that lilies subjected to VFD treatment exhibited a higher abundance of steroids, saponin, flavonoids, and phenolic glycoside, whereas those subjected to HAD, VD, or ID treatments showed relatively elevated levels of specific amino acids or derivatives. This study elucidates the significant impact of various drying treatments on the quality and metabolic profile of lilies, thereby providing valuable insights for enhancing the nutritional quality of processed lilies.
Collapse
Affiliation(s)
- Lixia Xie
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (J.L.); (H.W.); (Y.Z.); (X.L.)
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiajia Liu
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (J.L.); (H.W.); (Y.Z.); (X.L.)
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Haoyu Wu
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (J.L.); (H.W.); (Y.Z.); (X.L.)
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yueyan Zhong
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (J.L.); (H.W.); (Y.Z.); (X.L.)
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China; (L.X.); (J.L.); (H.W.); (Y.Z.); (X.L.)
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhi Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417099, China
| |
Collapse
|
12
|
Zhai H, Dong W, Fu X, Li G, Hu F. Integration of widely targeted metabolomics and the e-tongue reveals the chemical variation and taste quality of Yunnan Arabica coffee prepared using different primary processing methods. Food Chem X 2024; 22:101286. [PMID: 38562182 PMCID: PMC10982556 DOI: 10.1016/j.fochx.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
UPLC-Q-TOF-MS and electronic tongue analysis were applied to analyse the metabolic profile and taste quality of Yunnan Arabica coffee under seven primary processing methods. The total phenolic content ranged from 34.44 to 44.42 mg/g DW, the e-tongue results revealed the strongest umami sensor response value in the sample prepared with traditional dry processing, while the samples prepared via honey processing II had the strongest astringency sensor response value. Metabolomics analysis identified 221 differential metabolites, with higher contents of amino acids and derivatives within dry processing II sample, and increased contents of lipids and phenolic acids in the honey processing III sample. The astringency and aftertaste-astringency of the coffee samples positively correlated with the trigonelline, 3,5-di-caffeoylquinic acid and 4-caffeoylquinic acid content. The results contributed to a better understanding of how the primary processing process affects coffee quality, and supply useful information for the enrichment of coffee biochemistry theory.
Collapse
Affiliation(s)
- Huinan Zhai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, Inner Mongolia 014109, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Xingfei Fu
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| | - Guiping Li
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| | - Faguang Hu
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| |
Collapse
|
13
|
Nafisah N, Syamsiana IN, Putri RI, Kusuma W, Sumari ADW. Implementation of fuzzy logic control algorithm for temperature control in robusta rotary dryer coffee bean dryer. MethodsX 2024; 12:102580. [PMID: 38322137 PMCID: PMC10844861 DOI: 10.1016/j.mex.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Indonesia is one of the coffee producers ranked third in the world in the supply of coffee beans. To maintain competitiveness international market, it is necessary to maintain and improve the quality of coffee beans. OBJECTIVE One crucial aspect of maintaining the quality of coffee beans is maintaining the moisture content of green coffee beans. One of the water content settings is using the drying method. While traditional drying methods often experience weather and long-time constraints. RESULTS This study designed an innovative coffee bean dryer based on fuzzy logic to overcome the problem. This system uses temperature control with Mamdani's fuzzy logic control interference algorithm, input and delta errors, and output percentage valve opening. This method achieved a moisture content following SNI standards of 12% and a 0.00015% / s drying rate for each coffee bean mass increased by 1kg. This method is also more efficient and stable in maintaining the temperature at a value of 50°C. METHODS The drying equipment also estimates the drying time by considering variations in the mass of coffee beans. This dryer can provide an effective solution to maintain optimal coffee bean quality. CONCLUSION The second semi-wash method of drying coffee beans using a fuzzy logic-based coffee bean drier has proven successful for drying coffee beans to a moisture content of 12% in a period of 90 min to 195.65 min with a drying capacity of 1 kilogram to 10kg at 50°C.•The coffee beans utilized in the studies are robusta coffee beans from plantations on Mount Kawi's slopes in East Java, Indonesia.•The trial sample was 1 kilogram of green coffee beans removed from the horn skin.•According to SNI standards, the drying performed is the second in the postharvest semi-wash procedure to achieve a moisture content of 12%.
Collapse
Affiliation(s)
- Nihayatun Nafisah
- Department of Electrical Engineering, State Polytechnic of Malang, Malang, 65141, Indonesia
| | - Ika Noer Syamsiana
- Department of Electrical Engineering, State Polytechnic of Malang, Malang, 65141, Indonesia
| | - Ratna Ika Putri
- Department of Electrical Engineering, State Polytechnic of Malang, Malang, 65141, Indonesia
| | - Wijaya Kusuma
- Department of Electrical Engineering, State Polytechnic of Malang, Malang, 65141, Indonesia
| | - Arwin Datumaya Wahyudi Sumari
- Department of Electrical Engineering, State Polytechnic of Malang, Malang, 65141, Indonesia
- Faculty of Industrial Technology, Adisutjipto Institute of Aerospace Technology, Yogyakarta 55198, Indonesia
| |
Collapse
|
14
|
Yulianti Y, Adawiyah DR, Herawati D, Indrasti D, Andarwulan N. Identification of antioxidant and flavour marker compounds in Kalosi-Enrekang Arabica brewed coffee processed using different postharvest treatment methods. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1165-1179. [PMID: 38562591 PMCID: PMC10981654 DOI: 10.1007/s13197-024-05948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
This research aims to predict the presence of marker compounds that differentiate tubruk brew from coffee beans with different postharvest processing. This research also aims to predict compounds correlating with antioxidant activity and sensory flavour attributes. This research used Kalosi-Enrekang Arabica coffee beans, which were processed with three different postharvest processing (honey, full-washed and natural), roasted at medium level, and brewed using the tubruk method. Each brew was analyzed for chemical profiles using LC-MS and GC-MS, antioxidant analysis using the DPPH IC50 and FRAP methods, and sensory analysis for flavour using the QDA and SCAA methods for cupping scores. OPLS-DA analysis revealed the presence of marker compounds from each brew, and the dried fruit flavour attribute was to be an inter-process marker. After that, OPLS analysis showed marker compounds that correlate to antioxidant activity and flavour attributes. Rhaponticin is thought to be one of the marker compounds in natural coffee brews and is one of the compounds that correlates to the antioxidant activity of the DPPH method (IC50); prunin is thought to be one of the marker compounds for full-washed coffee brews and is one of the compounds that correlates to the activity antioxidants of FRAP method. Triacetin, which is thought to be a marker compound in natural brewed coffee, correlates with fruity flavour. 3-acetylpyridine, as a marker in honey-brewed coffee, correlates with nutty flavour. Even though there are differences in dominant flavours, the cupping score shows the brew is categorized as a specialty. This research shows that different post-harvest processing processes influence the compound profile, antioxidant activity and flavour attributes of Tubruk brewed coffee. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05948-8.
Collapse
Affiliation(s)
- Yulianti Yulianti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
- Department of Agricultural Technology, Faculty of Agriculture, Gorontalo University, Gorontalo, 96211 Indonesia
| | - Dede Robiatul Adawiyah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Dian Herawati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Dias Indrasti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| |
Collapse
|
15
|
Mengesha D, Retta N, Woldemariam HW, Getachew P. Changes in biochemical composition of Ethiopian Coffee arabica with growing region and traditional roasting. Front Nutr 2024; 11:1390515. [PMID: 38868553 PMCID: PMC11168431 DOI: 10.3389/fnut.2024.1390515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Updating the biochemical composition of coffee beans across the years is necessary. This is important to understand the vulnerability of coffee toward climate adaptation longitudinally. Accordingly, in this study the influence of growing area and traditional roasting on the biochemical composition of five common Ethiopian Arabica coffee beans collected in the harvest year of 2021/22 were investigated. With an average of 11.34 g/100 g, the Hararge and Jimma coffee beans had the highest crude fat content (p < 0.05). The crude protein content of the five varieties was in the range of 13-15 g/100 g, with respective highest and lowest contents in the (Hararge and Nekemte) and (Sidama and Yirgachefe) coffee beans (p < 0.05). The total phenolic content (TPC) of the coffee beans was in the order of Jimma (46.52) > Nekemte (44.55) > Sidama (44.31) > Hararge (39.02) > Yirgachefe (34.25) mg GAE/100 g. The 50% inhibitory concentration (IC50) of ascorbic acid, coffee bean extract from Jimma and Hararge against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical was 19.86, 20.22 and 20.02 μg/mL, respectively. The respective highest and lowest caffeine concentration was obtained in the Yirgachefe (10.38) and Hararge (7.55 g/100 g) coffee beans (p < 0.05). The Jimma, Sidama, and Nekemte coffee varieties had the highest chlorogenic acid content of 45 g/100 g (p > 0.05); whereas the lowest content was in Hararge coffee (36.78 g/100 g). While the caffeine concentration did not show significant (p > 0.05) difference, with all the coffee beans the roasting has reduced significantly the TPC, trigonelline and mainly the chlorogenic acid (p < 0.05). These data can update the existing facts on biochemical diversity of coffee beans in the country which can be used for evidence based innovations of climate adaptation in predicting the quality of coffee. Further recommendation of optimizing the traditional coffee processing method is supported from this study.
Collapse
Affiliation(s)
- Dhaba Mengesha
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Negussie Retta
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Food Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Paulos Getachew
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Banti M, Atlaw T. Effect of processing methods on physicochemical and cup quality of coffee at Jimma, Ethiopia. Heliyon 2024; 10:e30480. [PMID: 38737234 PMCID: PMC11088319 DOI: 10.1016/j.heliyon.2024.e30480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Coffee quality is a complex attribute influenced by a variety of factors, including postharvest processing methods. The goal of this study was to investigate the impact of coffee processing methods on coffee quality (raw, cup, and biochemical makeup) in Jimma, which represents the midland areas. Coffee samples were collected for Jimma agricultural research center and processed with three methods (washed, Semi-washed and dry process). The result indicated that washed coffee beans scored significantly the highest color (13.43) and odor [10] score than the other processing methods. The statistically best raw quality score (35.57 %) was therefore reported for washed coffee in Jimma. Cup quality attributes however were not significantly affected by processing methods. Among chemical composition studied, lipid was significantly affected by processing methods and highest lipid 13.74 and 13.17 g/100g was reported for semi-washed and washed coffee beans respectively. Generally, washed and semi-washed coffee were preferable in terms of bean color and odor quality. Correlations were found among cup quality attributes and chemical compositions. However, further research into the accessibility and economics of coffee processing methods in the area is necessary.
Collapse
Affiliation(s)
- Misgana Banti
- Food Science and Nutrition Research, Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Asella, Ethiopia
| | - Tegene Atlaw
- Food Science and Nutrition Research, Ethiopian Institute of Agricultural Research, Jimma Agricultural Research Center, Jimma, Ethiopia
| |
Collapse
|
17
|
Li J, Wang W, Xu W, Deng Y, Lv R, Zhou J, Liu D. Evaluation of multiscale mechanisms of ultrasound-assisted extraction from porous plant materials: Experiment and modeling on this intensified process. Food Res Int 2024; 182:114034. [PMID: 38519197 DOI: 10.1016/j.foodres.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/24/2024]
Abstract
Ultrasound-assisted extraction (UAE) is an intensified mass transfer process, which can utilize natural resources effectively, but still lacks detailed mechanisms for multiscale effects. This study investigates the mass transfer mechanisms of UAE combined with material's pore structure at multiscale. Porous material was prepared by roasting green coffee beans (GCB) at 120 °C (RCB120) and 180 °C (RCB180), and their UAE efficiency for phytochemicals (caffeine, trigonelline, chlorogenic acid, caffeic acid) were evaluated by experiment and modeling. Besides, the physicochemical properties, mass transfer kinetics, and multi-physical field simulation were studied. Results indicated that positive synergy effects on extraction existed between ultrasound and material's pore structure. Higher mass transfer coefficients of UAE (GCB 0.16 min-1, RCB120 0.38 min-1, RCB180 0.46 min-1) was achieved with higher total porosity (4.47 %, 9.17 %, 13.52 %) and connected porosity (0 %, 3.79 %, 5.98 %). Moreover, simulation results revealed that micro acoustic streaming and pressure difference around particles were the main driving force for enhancing mass transfer, and the velocity (0.29-0.36 m/s) increased with power density (0.64-1.01 W/mL). The microscale model proved that increased yield from UAE-RCB was attributed to internal convection diffusion within particles. This study exploited a novel benefit of ultrasound on extraction and inspired its future application in non-thermal food processing.
Collapse
Affiliation(s)
- Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianwei Zhou
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Food Laboratory of Zhongyuan, Luohe 462044, China; The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China.
| |
Collapse
|
18
|
Long P, Li Y, Han Z, Zhu M, Zhai X, Jiang Z, Wen M, Ho CT, Zhang L. Discovery of color compounds: Integrated multispectral omics on exploring critical colorant compounds of black tea infusion. Food Chem 2024; 432:137185. [PMID: 37633133 DOI: 10.1016/j.foodchem.2023.137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
The present study provided a highly efficient and systematic workflow for identifying colorants of food and beverage. Generally, the objective colorimeter and subjective human eye had different systems to identify colors, which makes the color description very challenging. Here, the Lab/LCH color system was applied to clearly illustrate color changes. Our workflow was applied to determine and verify the differential colorant substances between two groups of black tea infusions. Regarding color parameters, the infusions of black tea from Camellia sinensis and Camellia assamica differed significantly. The differential substances between black tea infusions were correlated to color parameters by mass spectrometry and nuclear magnetic resonance based multivariate statistical analysis and verified by machine learning tool. Pyroglutamic acid-glucose Amadori product, quercetin-3-O-glucoside, quinic acid and theabrownins were identified as main color contributors to black teas' color difference, which were also verified by addition test with standard black tea infusion.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yaxin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
19
|
Li MX, Shi YB, Zhang JB, Wan X, Fang J, Wu Y, Fu R, Li Y, Li L, Su LL, Ji D, Lu TL, Bian ZH. Rapid evaluation of Ziziphi Spinosae Semen and its adulterants based on the combination of FT-NIR and multivariate algorithms. Food Chem X 2023; 20:101022. [PMID: 38144802 PMCID: PMC10740088 DOI: 10.1016/j.fochx.2023.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Ziziphi Spinosae Semen (ZSS) is a valued seed renowned for its sedative and sleep-enhancing properties. However, the price increase has been accompanied by adulteration. In this study, chromaticity analysis and Fourier transform near-infrared (FT-NIR) combined with multivariate algorithms were employed to identify the adulteration and quantitatively predict the adulteration ratio. The findings suggested that the utilization of chromaticity extractor was insufficient for identification of adulteration ratio. The raw spectrum of ZMS and HAS adulterants extracted by FT-NIR was processed by SNV + CARS and 1d + SG + ICO respectively, the average accuracy of machine learning classification model was improved from 77.06 % to 97.58 %. Furthermore, the R2 values of the calibration and prediction set of the two quantitative prediction regression models of adulteration ratio are greater than 0.99, demonstrating excellent linearity and predictive accuracy. Overall, this study demonstrated that FT-NIR combined with multivariate algorithms provided a significant approach to addressing the growing issue of ZSS adulteration.
Collapse
Affiliation(s)
- Ming-xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-bo Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiu-ba Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Wan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rao Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lian-lin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tu-lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-hua Bian
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| |
Collapse
|
20
|
Lapčíková B, Lapčík L, Barták P, Valenta T, Dokládalová K. Effect of Extraction Methods on Aroma Profile, Antioxidant Activity and Sensory Acceptability of Specialty Coffee Brews. Foods 2023; 12:4125. [PMID: 38002183 PMCID: PMC10669957 DOI: 10.3390/foods12224125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Specialty coffees from various geographical origins were processed using different extraction methods. Four extraction techniques were employed: cold brew (CB), espresso (ES), French press (FR), and aeropress (AE). The potential health benefits of coffee brews were linked to their antioxidant activity, as determined by the DPPH assay, and total polyphenol content (TPC) measured through the Folin-Ciocalteu reducing-capacity assay. The Columbia (C) espresso coffee type (omni-roasting) exhibited the highest antioxidant activity (86.31 ± 0.70) μmol/100 mL, with a TPC value of (44.41 ± 0.35) mg GAE/g. Quantitative analyses of caffeine and chlorogenic acid were conducted using high-performance liquid chromatography (HPLC). The evaluation of coffee aroma profiles involved the application of headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and was complemented by sensory analysis following the Specialty Coffee Association (SCA) standard protocol. The predominant volatile compounds found in all samples included furans, phenols, pyrazines, and terpenes. The EY espresso type (medium dark roasting) had the highest levels of most coffee volatiles. The C cold brew type (omni-roasting) was rated as the preferred coffee in terms of its sensory characteristics and flavour. In summary, ES and CB were found to be more effective extraction methods for the parameters assessed.
Collapse
Affiliation(s)
- Barbora Lapčíková
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic or (B.L.); (P.B.)
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic; (T.V.); (K.D.)
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic or (B.L.); (P.B.)
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic; (T.V.); (K.D.)
| | - Petr Barták
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic or (B.L.); (P.B.)
| | - Tomáš Valenta
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic; (T.V.); (K.D.)
| | - Kateřina Dokládalová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic; (T.V.); (K.D.)
| |
Collapse
|
21
|
Tantapakul C, Krobthong S, Jakkaew P, Sittisaree W, Aonbangkhen C, Yingchutrakul Y. Potential of Arabica Coffee Beans from Northern Thailand: Exploring Antidiabetic Metabolites through Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Metabolomic Profiling across Diverse Postharvest Processing Techniques. Foods 2023; 12:3893. [PMID: 37959013 PMCID: PMC10648821 DOI: 10.3390/foods12213893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Coffee, a widely consumed beverage worldwide, undergoes postharvest methods that influence its physicochemical characteristics, while roasting modulates its composition, affecting sensory attributes. This study investigates the impact of distinct postharvest methods (washed and natural) on the antidiabetic activities, including α-amylase and DPP4, as well as the phytochemical profiling of geological indicator (GI) coffee beans (Coffea arabica L.). The results indicate notable differences in antidiabetic activity and phytochemical profiles between washed and natural processing methods. Coffee beans processed naturally exhibit significant suppression of DPP4 and α-amylase activities (p-value < 0.01) compared to beans processed using the washed technique. TLC profiling using the ratios of the solvent systems of ethyl acetate/dichloromethane (DCM) and acetone/DCM as separation solvents reveals dominant spots for the washed technique. LC-MS/MS-based untargeted metabolomics analysis using principle component analysis (PCA) clearly segregates samples processed by the natural and washed techniques without any overlap region. A total of 1114 phytochemicals, including amino acids and short peptides, are annotated. The natural processing of coffee beans has been shown to yield a slightly higher content of chlorogenic acid (CGA) compared to the washed processing method. Our findings highlight the distinct bioactivities and phytochemical compositions of GI coffee beans processed using different techniques. This information can guide consumers in choosing coffee processing methods that offer potential benefits in terms of alternative treatment for diabetes.
Collapse
Affiliation(s)
- Cholpisut Tantapakul
- The Research Unit of Natural Product Utilization, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Prasara Jakkaew
- School of Information Technology, Mae Fah Luang University, Thasud, Muang, Chiang Rai 57100, Thailand
| | | | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
22
|
Liu Z, Cheng Y, Chao Z. A Comprehensive Quality Analysis of Different Colors of Medicinal and Edible Honeysuckle. Foods 2023; 12:3126. [PMID: 37628125 PMCID: PMC10453482 DOI: 10.3390/foods12163126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Honeysuckle (the dried flower bud or opening flower of Lonicera japonica Thunb.), a medicinal and edible substance, has is greatly popular among consumers for its remarkable health effects, such as antioxidant, antibacterial, and anti-inflammatory effects. However, due to the influences of processing methods, storage conditions, and other factors, honeysuckles show different colors which can directly reflect the quality and the price on the market. In order to comprehensively compare the quality of different colors, 55 batches of honeysuckle samples were collected and analyzed. Their color parameters, chlorophyll content (chl), total phenol content (TPC), total flavonoid content (TFC), antioxidant activity (AA), main active compounds, and metabolites were measured. As a result, the initial green-white (GW) samples, a kind of highest-quality honeysuckle, had the smallest a* value, largest h*, chl, TPC, TFC, and AA values, and highest content of chlorogenic acid and cynaroside. There was a significant difference between GW samples and a series of discolored samples. As the color darkened or lightened, the quality gradually decreased. The yellow-brown (YB) samples were of the worst quality and were no longer available for clinical and health purposes. A series of differential metabolites, such as quercetin-7-O-glucoside and secologanoside, could be used as important references to evaluate the quality of differently colored samples. The metabolic profile of honeysuckle provided new insights into the process of color change and laid a foundation for further honeysuckle quality control. The correlation results showed that the a* and h* values significantly affect the abovementioned quality indicators and the 10 main active compounds. In other words, the color difference could directly reflect the quality and clinical efficacy. Multiple regression analysis was carried out using combined L*, a*, and b* values to predict the quality of honeysuckle. This is the first time the quality of different color honeysuckle samples on the post-harvest link has been systematically compared and a demonstration of medicinal and edible substances with different colors has been provided.
Collapse
Affiliation(s)
| | | | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.C.)
| |
Collapse
|
23
|
Xiong T, Mei X, Wu Y, Wang L, Shi J, Sui Y, Cai S, Cai F, Chen X, Fan C. Insights into nutrition, flavor and edible quality changes of golden pomfret ( Trachinotus ovatus) fillets prepared by different cooking methods. Front Nutr 2023; 10:1227928. [PMID: 37485390 PMCID: PMC10361837 DOI: 10.3389/fnut.2023.1227928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction In recent years, Asia has seen an increase in demand for golden pomfret (Trachinotus ovatus). Especially in instant (ready-to-eat) and prepared (ready-to-cock) food processing industry. Thermal processing is a vital part of food processing. However, no comprehensive analysis has been reported on its flavor, nutrition and edible quality changes during the key thermal processing. Methods Accordingly, in this study, we evaluated the effects of different cooking methods (steaming, frying, microwaving and baking) on the color, texture, cooking loss, nutrition composition, volatile flavor substances and other indicators of golden pomfret filets. Results and Discussion The results showed that the steamed samples (SS) had the lowest cooking loss and fat content, the highest moisture content, complete appearance and the lowest levels of hardness and chewiness. Fried samples (FS) had a notable difference in fatty acid composition. The content of unsaturated fatty acids (UFAs) increased significantly, while the relative content of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) decreased from 7.88 to 1.42%, lower than other groups. The essential amino acid index (EAAI) of microwaved samples (MS) was 94.89, which was higher than other groups. Baked samples (BS) had the highest relative content of umami amino acids (UAAs) and sweet amino acids (SAAs), which was 8.08 mg/100 mg and 5.19 mg/100 mg, respectively. Hexanal and nonanal were detected in control samples (CK), SS, FS, MS and BS. While pyrazine compounds were detected only in FS and BS. Steaming and microwaving treatment of golden pomfret resulted in better nutritional preservation, which was more conducive to human health. Frying and baking treatment of golden pomfret had better taste and flavor and higher sensory scores. The nutrition, flavor and edible quality of golden pomfret under different cooking methods were related and interactive. Cooking loss and fat content can be used as simple evaluation indicators to compare the overall quality of different cooking methods. This study provides a reference for the thermal processing technology and industrial production of golden pomfret.
Collapse
Affiliation(s)
- Tian Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the P.R. China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
| | - Xin Mei
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the P.R. China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jianbin Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yong Sui
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sha Cai
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fang Cai
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xueling Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuanhui Fan
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs of the P.R. China, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
24
|
Jia Z, Wan L, Huang Z, Zhang W. Quality Evaluation of Hainan Robusta Coffee Bean Oil Produced by Ultrasound Coupled with Coconut Oil Extraction. Foods 2023; 12:foods12112235. [PMID: 37297479 DOI: 10.3390/foods12112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigates the treatment of coconut oil using thermosonic treatment in combination with green coffee beans. Under a defined ratio of coconut oil to green coffee beans, the effect of different thermosonic time on the quality parameters, active substance content, antioxidant capacity, and thermal oxidative stability of coconut oil were investigated as a strategy to potentially improve the quality of oil. Results showed that the β-sitosterol content of CCO (coconut coffee oil) treated with the thermal method combined with green coffee bean treatment reached up to 393.80 ± 11.13 mg/kg without affecting the lipid structure. In addition, DPPH clearance equivalents increased from 5.31 ± 1.30 mg EGCG/g to 71.34 ± 0.98 mg EGCG/g, and the ABTS clearance equivalent was 45.38 ± 0.87 mg EGCG/g versus 0 for the untreated sample. The improvement in thermal oxidation stability of treated coconut oil is also significant. The TG (Thermogravimetry) onset temperature was elevated from 277.97 °C to 335.08 °C and the induction time was elevated up to 24.73 ± 0.41 h from 5.17 ± 0.21 h. Thermosonic treatment in combination with green coffee beans is an ideal option to improve the quality of coconut oil. The results of this article provide new ideas for the development of plant-blended oil products and the new utilization of coconut oil and coffee beans.
Collapse
Affiliation(s)
- Zheng Jia
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Liting Wan
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Mannino G, Kunz R, Maffei ME. Discrimination of Green Coffee ( Coffea arabica and Coffea canephora) of Different Geographical Origin Based on Antioxidant Activity, High-Throughput Metabolomics, and DNA RFLP Fingerprinting. Antioxidants (Basel) 2023; 12:antiox12051135. [PMID: 37238001 DOI: 10.3390/antiox12051135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The genus Coffea is known for the two species C. arabica (CA) and C. canephora (CC), which are used to prepare the beverage coffee. Proper identification of green beans of coffee varieties is based on phenotypic and phytochemical/molecular characteristics. In this work, a combination of chemical (UV/Vis, HPLC-DAD-MS/MS, GC-MS, and GC-FID) and molecular (PCR-RFLP) fingerprinting was used to discriminate commercial green coffee accessions from different geographical origin. The highest content of polyphenols and flavonoids was always found in CC accessions, whereas CA showed lower values. ABTS and FRAP assays showed a significant correlation between phenolic content and antioxidant activity in most CC accessions. We identified 32 different compounds, including 28 flavonoids and four N-containing compounds. The highest contents of caffeine and melatonin were detected in CC accessions, whereas the highest levels of quercetin and kaempferol derivatives were found in CA accessions. Fatty acids of CC accessions were characterized by low levels of linoleic and cis octadecenoic acid and high amounts of elaidic acid and myristic acid. Discrimination of species according to their geographical origin was achieved using high-throughput data analysis, combining all measured parameters. Lastly, PCR-RFLP analysis was instrumental for the identification of recognition markers for the majority of accessions. Using the restriction enzyme AluI on the trnL-trnF region, we clearly discriminated C. canephora from C. arabica, whereas the cleavage performed by the restriction enzymes MseI and XholI on the 5S-rRNA-NTS region produced specific discrimination patterns useful for the correct identification of the different coffee accessions. This work extends our previous studies and provides new information on the complete flavonoid profile, combining high-throughput data with DNA fingerprinting to assess the geographical discrimination of green coffee.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Ronja Kunz
- Department of Chemistry, University of Cologne, Zülpicher Straße 47, D-50939 Köln, Germany
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| |
Collapse
|
26
|
Şimşek A, Çiçek B, Turan E. The effect of chlorogenic acid from green coffee as a natural antioxidant on the shelf life and composition of hazelnut paste. Eur Food Res Technol 2023; 249:1-10. [PMID: 37362348 PMCID: PMC10165577 DOI: 10.1007/s00217-023-04277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
In this study, the effect of chlorogenic acid obtained as an antioxidant from Green Coffee Extract (GCE) on the shelf life of Hazelnut Paste (HP) was investigated at 4, 25, and 40 °C for 3 months. The analysis of variance showed that the effect of AR (Additive Ratio) × T (Temperature) × t (Storage Time) interaction on Peroxide Number (PV), tocopherols, and phenolics (TPC) of GCE-HP mixtures was found to be significant (P < 0.05). ARxt factor on Hunter L*, a*, and b* color values, DPPH-radical scavenging activity and antioxidant activity (AA), Txt factor on oleic/linoleic acid ratio (O/L), and ARxT and ARxt interactions on free fatty acid were more effective (P < 0.05). Regression equations of O/L, PV, AA, and TPC can be used to calculate the shelf life of HP due to high R2 values (87.14-94.46%). In addition, according to the O/L regression equation, the shelf life of the HP control samples was 28 days at 22 °C, increased to 60 days at 0.5%-GCE and 90 days at 25.68 °C at 0.75%-GCE (R2 = 87.14%, P < 0.001). GCE (0.5-0.75%) was a promising antioxidant in increasing the shelf life of HP.
Collapse
Affiliation(s)
- Atilla Şimşek
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu, 52200 Türkiye
| | - Burçin Çiçek
- Ministry of Agriculture and Forestry, Hopa District Directorate Agriculture, Artvin, 08600 Türkiye
| | - Emre Turan
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu, 52200 Türkiye
| |
Collapse
|
27
|
Zhuxin L, Biao Y, Badamkhand D, Yifan C, Honghong S, Xiao X, Mingqian T, Zhixiang W, Chongjiang C. Carboxylated chitosan improved the stability of phycocyanin under acidified conditions. Int J Biol Macromol 2023; 233:123474. [PMID: 36720327 DOI: 10.1016/j.ijbiomac.2023.123474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Phycocyanin, a natural blue colorant, derived from Spirulina platensis, is now widely used in the food industry. However, its main drawbacks are loss of color and denature of structure in an acidic environment. In this study, carboxylated chitosan (0.1 %-1 % w/v) was chosen as an additive in acid-denatured phycocyanin for preserving phycocyanin's blue color and natural structure. Zeta-potential and particle size revealed that the carboxylated chitosan with high negative charge adsorbed on phycocyanin and provided stronger electrostatic repulsion to overcome the protein aggregation. Ultraviolet-visible absorption spectrum and fluorescence spectroscopy showed that the carboxylated chitosan recovered the microenvironment of tetrapyrrole chromophores and β-subunits, which led the secondary structure changed and the trimers depolymerized into the monomers changed by the acidic environment. Furthermore, Fourier transform infrared spectroscopy revealed highly negatively charged carboxylated chitosan with the groups (NH2, COOH and OH) could restored the microenvironment of tetrapyrrole chromophores and β-subunits of phycocyanin, and interact with phycocyanin through hydrogen bonding, NH bonding, ionic bonding and van der Waals, which led to a change in secondary structure and depolymerization of trimers into monomers. Our study demonstrated the carboxylated chitosan played a beneficial role in recovering the structure of acid-denatured phycocyanin and its blue color.
Collapse
Affiliation(s)
- Li Zhuxin
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuan Biao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Dashnyam Badamkhand
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Cao Yifan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shan Honghong
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xu Xiao
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Tan Mingqian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wang Zhixiang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Cao Chongjiang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
28
|
Lu T, Sun Y, Huang Y, Chen X. Effects of roasting on the chemical compositions, color, aroma, microstructure, and the kinetics of changes in coffee pulp. J Food Sci 2023; 88:1430-1444. [PMID: 36924029 DOI: 10.1111/1750-3841.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Roasting is a critical process that affects the quality attributes of coffee beans; however, how roasting conditions affect the physical, chemical, biological, and organoleptic changes of coffee pulp needs more research. In the present study, we investigated the effects of roasting temperatures and times on chemical compositions and quality attributes of coffee pulp. The results showed that the contents of total soluble sugar (TSS) and free amino acid (FAA) followed a temporal pattern of first increasing and then decreasing under the roasting temperatures between 100 and 160°C. Total phenolic content (TPC) and antioxidant activity of coffee pulp significantly (p < 0.05) increased after roasting, reaching the maximum values of 83.09 mg gallic acid equivalent (GAE) /g and 360.45 µM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) /g, respectively, when coffee pulp was roasted at 160°C for 18 min. Drying rates of coffee pulp fitted the Logarithmic kinetic model, while color (L*, a*, and b*) changes and 5-caffeoylquinic acid degradation followed the first-order kinetic model. Electronic nose analysis showed that the main aroma compounds of the coffee pulp are sulfur-containing organics that were reduced with the extended roasting time. Scanning electronic microscopy analysis presented the loosened, shrunk, and cracked microstructure on the surface of the roasted coffee pulp, which might contribute to the increased TSS, FAA, TPC, and antioxidant activity of coffee pulp roasted under specific conditions. In conclusion, our research provides valuable information for preparing high-quality coffee pulp tea. PRACTICAL APPLICATION: This article investigates the effects of roasting on the chemical composition, color, flavor, microstructure, and the kinetics of changes in the moisture, color, and 5-caffeoylquinic acid (5-CQA) of the coffee pulp. We have found that high-temperature and short-time roasting helps retain the total phenolic contents, antioxidant activity, and aroma. The drying kinetic fits the Logarithmic model, and the changes in color and 5-CQA fit the first-order kinetic model. This study provides meaningful information for preparing coffee pulp tea with high-quality attributes and antioxidant activity.
Collapse
Affiliation(s)
- Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Bouhzam I, Cantero R, Balcells M, Margallo M, Aldaco R, Bala A, Fullana-i-Palmer P, Puig R. Environmental and Yield Comparison of Quick Extraction Methods for Caffeine and Chlorogenic Acid from Spent Coffee Grounds. Foods 2023; 12:779. [PMID: 36832852 PMCID: PMC9955646 DOI: 10.3390/foods12040779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
This study aims to provide an overview of different extraction methods to obtain chlorogenic acid (CA) and caffeine (Caf) from spent coffee grounds (SCG). This overview shows that the quantity extracted is highly dependent on the type of SCG, so experiments using the same SCG are needed to compare different methods. Three easy and simple extraction methods will be tested at a laboratory scale and environmentally compared. All three experiments were of 1 min duration: first, using supramolecular solvent; second, with water and vortex; and third, with water assisted by ultrasound. Water extraction assisted by ultrasound at room temperature yielded the greatest quantity of chlorogenic acid and caffeine, with 1.15 mg CA/g and 0.972 mg Caf/g, respectively. Extraction using supra-solvent leads to a lower content of CA in the supra-phase since it has more affinity for the water-based inferior phase. An environmental assessment using life cycle assessment has been carried out to compare water and supra extraction methods for the manufacture of two different commercial products: a face cream and an eye contour serum. Results show that the type of solvent and the amount of active substance extracted have a great influence on the environmental results. The results presented here are important for companies willing to obtain these active substances at an industrial scale.
Collapse
Affiliation(s)
- Ibtissam Bouhzam
- Department of Computer Science and Industrial Engineering, University of Lleida (UdL), Pla de la Massa, 8, 08700 Igualada, Spain
| | - Rosa Cantero
- Department of Computer Science and Industrial Engineering, University of Lleida (UdL), Pla de la Massa, 8, 08700 Igualada, Spain
| | - Mercè Balcells
- Department of Chemistry, University of Lleida (UdL), Rovira _Roure 191, 25198 Lleida, Spain
| | - María Margallo
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| | - Rubén Aldaco
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| | - Alba Bala
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003 Barcelona, Spain
| | - Pere Fullana-i-Palmer
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003 Barcelona, Spain
| | - Rita Puig
- Department of Computer Science and Industrial Engineering, University of Lleida (UdL), Pla de la Massa, 8, 08700 Igualada, Spain
| |
Collapse
|
30
|
Accumulation of Antioxidative Phenolics and Carotenoids Using Thermal Processing in Different Stages of Momordica charantia Fruit. Molecules 2023; 28:molecules28031500. [PMID: 36771165 PMCID: PMC9920897 DOI: 10.3390/molecules28031500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The bitter taste of M. charantia fruit limits its consumption, although the health benefits are well known. The thermal drying process is considered as an alternative method to reduce the bitterness. However, processing studies have rarely investigated physiochemical changes in fruit stages. The antioxidant activities and physiochemical properties of various fruit stages were investigated using different thermal treatments. The color of the thermally treated fruit varied depending on the temperature. When heat-treated for 3 days, the samples from the 30 °C and 90 °C treatments turned brown, while the color of the 60 °C sample did not change significantly. The antioxidant activities were increased in the thermally processed samples in a temperature-dependent manner, with an increase in phenolic compounds. In the 90 °C samples, the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity presented a 6.8-fold higher level than that of nonthermal treatment in mature yellow fruit (S3), whereas the activity showed about a 3.1-fold higher level in immature green (S1) and mature green (S2) fruits. Regardless of the stages, the carotenoid content tended to decrease with increasing temperature. In terms of antioxidant activities, these results suggested that mature yellow fruit is better for consumption using thermal processing.
Collapse
|
31
|
Huang Y, Sun Y, Lu T, Chen X. Effects of hot-air drying on the bioactive compounds, quality attributes, and drying and color change kinetics of coffee leaves. J Food Sci 2023; 88:214-227. [PMID: 36533940 DOI: 10.1111/1750-3841.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Drying is a key step that affects the chemical composition and quality of tea. In the present study, we reported the impacts of drying temperature and time on drying and color change kinetics, phytochemical composition, antioxidant activity, and surface microstructure of coffee leaves during hot-air drying. The results showed that drying temperature was positively (p < 0.05) correlated with the drying rate (DR), color index a* and total color change ΔE, and total soluble sugar (TSS), while negatively correlated with color indexes b* and L*, soluble protein content, and the DPPH scavenging capacity. Drying time has similar impacts on the color indexes and soluble protein as drying temperature. The content of total free amino acid and TSS increased by 62.5% and 47.4%, respectively, when coffee leaves were dried at 160°C for 24 min, under which the total phenolic content and DPPH and ABTS scavenging capacities reached the maximum of 108.04 mg GAE/g, 515.07 µmol Trolox/g, and 606.70 µmol Trolox/g, respectively. Drying significantly decreased the contents of chlorogenic acids and mangiferin and antioxidant activity, while high-temperature short-time drying helped retain phenolic compounds in coffee leaves. The DR fitted Page kinetic model. The color changes fitted the first-order kinetic models and the activation energies ranged from 16.00 to 31.06 kJ·mol-1 . Prolonged drying time caused serious wrinkles on the surface of coffee leaves and the stomata closed. PRACTICAL APPLICATION: Drying decreased soluble protein while increasing free amino acid and soluble sugar. High-temperature short-time drying helps retain phenolics in the coffee leaves. The color change of coffee leaves during drying follows first-order kinetic. Prolonged drying time resulted in loosened texture of coffee leaves. Our study suggested that drying coffee leaves at 160°C for 24 min results in the coffee leaf tea being of better quality.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Jeszka-Skowron M, Frankowski R, Zgoła-Grześkowiak A, Płatkiewicz J. Comprehensive Analysis of Metabolites in Brews Prepared from Naturally and Technologically Treated Coffee Beans. Antioxidants (Basel) 2022; 12:antiox12010095. [PMID: 36670958 PMCID: PMC9855040 DOI: 10.3390/antiox12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Coffee is one of the most popular beverages in the world. Therefore, this study analyzed 49 coffee samples of Arabica and Robusta species of different geographical origins and the treatment of beans including three degrees of roasting with the use of LC-MS/MS. This is the first study to present a comprehensive analysis of Kopi Luwak coffee brew metabolites in comparison to fully washed coffees and the drying post-harvest treatment of Arabica or Robusta coffee brews. Kopi Luwak showed higher levels of caffeine and theophylline in comparison to the analyzed washed and unwashed Arabica coffees, as well as a different proportion of caffeoylquinic isomers. There was no difference between Kopi Luwak and other Arabica coffees in terms of the concentration of vitamin B3, amines, and phenolic acids. This was confirmed in PCA. The steaming and roasting of beans as well as the addition of black beans influence the concentration of 4-CQA and the nicotinic, ferulic, and quinic acids content.
Collapse
|
33
|
Bandian L, Moghaddam M, Bahreini M, Vatankhah E. Antibacterial characteristics and mechanisms of some herbal extracts and ϵ-polylysine against two spoilage bacterial. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Yuan H, Xu L, Chang M, Meng J, Feng C, Geng X, Cheng Y, Liu Z. Effects of different cooking methods on volatile flavor compounds, nutritional constituents, and antioxidant activities of Clitocybe squamulosa. Front Nutr 2022; 9:1017014. [PMID: 36337648 PMCID: PMC9635447 DOI: 10.3389/fnut.2022.1017014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
To explore a scientific and reasonable cooking method for Clitocybe squamulosa, four cooking methods (boiling, steaming, microwaving, and frying) were applied to C. squamulosa, and the effects of different cooking methods on volatile flavor compounds, nutritional constituents, and antioxidant activities in C. squamulosa were systematically investigated. The results showed that 54, 53, 61, 63, and 49 volatile flavor compounds were detected in raw, boiled, steamed, microwaved, and fried samples, respectively. Large differences in volatile flavor compounds between the four cooking and raw samples were determined by using relative odor activity values (ROAV) and principal component analysis (PCA). In addition, steaming and microwaving could protect the nutrients of C. squamulosa, reduce losses during the cooking process and improve the color of cooked products compared to boiling and frying cooking methods. Meanwhile, cooking treatment exerted different effects on the antioxidant activity of C. squamulosa, and the antioxidant activity of C. squamulosa was the highest after microwave cooking treatment. This research can provide a theoretical basis for the cooking, processing and utilization of C. squamulosa and other wild edible fungi.
Collapse
Affiliation(s)
- Hui Yuan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
- Lijing Xu,
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
- *Correspondence: Mingchang Chang,
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Zongqi Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
35
|
Cwiková O, Komprda T, Šottníková V, Svoboda Z, Simonová J, Slováček J, Jůzl M. Effects of Different Processing Methods of Coffee Arabica on Colour, Acrylamide, Caffeine, Chlorogenic Acid, and Polyphenol Content. Foods 2022; 11:3295. [PMID: 37431043 PMCID: PMC9602387 DOI: 10.3390/foods11203295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
An effect of a processing method (dry and wet) and a degree of roasting (light, medium, and dark) of 15 coffee (Coffea arabica) samples on the content of caffeine, chlorogenic acid (CQA), total polyphenols (TPP), acrylamide (AA), and on the colour parameters L*, a*, and b* was evaluated. Neither processing nor roasting affected caffeine content (p > 0.05). The degree of roasting accounted for 46% and 72% of explained variability of the CQA content and AA content, respectively (p < 0.05). AA content was in the range from 250 (wet-processed, light-roasted samples) to 305 µg·kg-1 (wet-processed, dark-roasted coffees), but the dark roasting only tended (p > 0.05) to increase AA content. Wet-processed, dry-roasted coffee had higher (p < 0.05) TPP content (48.5 mg·g-1) than its dry-processed, dry-roasted counterpart (42.5 mg·g-1); the method of processing accounted for 70% of explained variability of TPP. Both the method of processing and the degree of roasting affected the L*, a*, and b* values (p < 0.01), but the lower values (p < 0.05) of these parameters in the dark-roasted samples were found only within the wet processing. A negative correlation between the AA content and lightness (L*) was established (r = -0.39, p < 0.05). It was concluded that from the consumers' viewpoint, the results of the present study indicate relatively small differences in quality parameters of coffee irrespective of the method of processing or degree of roasting.
Collapse
Affiliation(s)
- Olga Cwiková
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Tomas Komprda
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Viera Šottníková
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Zdeněk Svoboda
- Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Praha, Czech Republic
| | - Jana Simonová
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Jan Slováček
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Miroslav Jůzl
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| |
Collapse
|
36
|
Ai Z, Ren H, Lin Y, Sun W, Yang Z, Zhang Y, Zhang H, Yang Z, Pandiselvam R, Liu Y. Improving drying efficiency and product quality of Stevia rebaudiana leaves using innovative medium-and short-wave infrared drying (MSWID). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Machine and Deep Learning in the Evaluation of Selected Qualitative Characteristics of Sweet Potatoes Obtained under Different Convective Drying Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper discusses the use of various methods to distinguish between slices of sweet potato dried in different conditions. The drying conditions varied in terms of temperature, the values were: 60 °C, 70 °C, 80 °C, and 90 °C. Examination methods included instrumental texture analysis using a texturometer and digital texture analysis based on macroscopic images. Classification of acquired data involved the use of machine learning techniques using various types of artificial neural networks, such as convolutional neural networks (CNNs) and multi-layer perceptron (MLP). As a result, in the convective drying, changes in color darkening were found in products with the following temperature values: 60 °C (L = 83.41), 70 °C (L = 81.11), 80 °C (L = 79.02), and 90 °C (L = 75.53). The best-generated model achieved an overall classification efficiency of 77%. Sweet potato dried at 90 °C proved to be completely distinguishable from other classes, among which classification efficiency varied between 61–83% depending on the class. This means that image analysis using deep convolutional artificial neural networks is a valuable tool in the context of assessing the quality of convective-dried sweet potato slices.
Collapse
|
38
|
Effect of Combined Infrared and Hot Air Drying Strategies on the Quality of Chrysanthemum (Chrysanthemum morifolium Ramat.) Cakes: Drying Behavior, Aroma Profiles and Phenolic Compounds. Foods 2022; 11:foods11152240. [PMID: 35954006 PMCID: PMC9367946 DOI: 10.3390/foods11152240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a seasonal plant with high medicinal and aesthetic value, and drying is an effective practice to enhance its storability after harvesting. The effects of hot air drying (HAD), combined infrared and hot air drying (IR-HAD), and sequential IR-HAD and HAD (IR-HAD + HAD) on the drying behavior, color, shrinkage, aroma profiles, phenolic compounds, and microstructure of chrysanthemum cakes were studied. Results showed that the increasing temperature resulted in a decrease in drying time and an increase in drying rate and moisture diffusivity. The Logarithmic and Page models exhibited superior fit in describing the dehydration process. Among the three drying strategies, IR-HAD was more effective in reducing energy consumption, improving shrinkage, water holding capacity, water binding capacity and cellular microstructure, while IR-HAD + HAD showed better inhibitory effect on color deterioration. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis revealed that different drying strategies dramatically influenced the aroma profiles in samples, and IR-HAD obtained the highest concentration of volatiles. The results of ultra-performance liquid chromatography (UPLC) indicated that the introduction of infrared radiation contributed to increasing the contents of chlorogenic acid, luteolin, total phenolic and flavonoid. These suggested that IR-HAD was a promising technique for drying medicinal chrysanthemum.
Collapse
|
39
|
Effect of Selected Physical Parameters of Lignite Substrate on Morphological Attributes, Yield and Quality of Cucumber Fruits Fertigated with High EC Nutrient Solution in Hydroponic Cultivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmentally friendly substrates that are biodegradable may provide an alternative to mineral wool, which is commonly used in hydroponic growing technology. Little is known about the relationship between the physical characteristics of lignite substrate and cucumber yield. The study analyzed the effect of bulk density and water holding capacity of lignite substrate in comparison to mineral wool and EC of nutrient solution on plant morphological parameters, yield and fruit quality of greenhouse cucumber. A positive relation was found between the bulk density of lignite mats and the increase in the number of leaves per week, shoot diameter as well as leaf length and leaf area (calculated as the product of leaf length × width) in cucumbers grown in this medium. Bulk density of lignite growing mats also affected the macro- and micro-nutrient content of cucumber leaves. The physical properties of the substrate and the high EC of the medium had a significant effect on the hardness, color and lutein content of cucumber fruits. The content of biologically active compounds in cucumber fruits depended on the water holding capacity of the medium and the water readily available to plants; these parameters were lower in the lignite medium compared to mineral wool. However, when the lignite substrate was used in hydroponic cucumber cultivation, for a period of 51 days after planting (DAP) there was an increase of more than 23% in the bulk density of the substrate and an increase of nearly 55% in the water readily available compared to the new lignite mats.
Collapse
|
40
|
YULIANTI Y, ANDARWULAN N, ADAWIYAH DR, HERAWATI D, INDRASTI D. Physicochemical characteristics and bioactive compound profiles of Arabica Kalosi Enrekang with different postharvest processing. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.67622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yulianti YULIANTI
- IPB University, Indonesia; IPB University, Indonesia; Gorontalo University, Indonesia
| | | | | | - Dian HERAWATI
- IPB University, Indonesia; IPB University, Indonesia
| | - Dias INDRASTI
- IPB University, Indonesia; IPB University, Indonesia
| |
Collapse
|
41
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 PMCID: PMC8601035 DOI: 10.1016/j.indcrop.2021.114265] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 06/01/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
42
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 DOI: 10.1016/j.indcrop.2021.114264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
43
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|