1
|
Fan W, Wang A, Che X, Xu S, Chen M, Chi Z. Lipid profiles of green conversion from corn-ethanol co-product via Aspergillus niger. BIORESOURCE TECHNOLOGY 2025; 426:132384. [PMID: 40074091 DOI: 10.1016/j.biortech.2025.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
High-value recycling of agro-industrial by-products is the focus of global sustainable development. A method of the recovery and utilization of corn-ethanol co-product to produce functional lipids via Aspergillus niger (A. niger) was proposed. The lipid changes in distillers dried grains with solubles (DDGS) were monitored via lipidomics. 648 lipids (five classes, 29 subclasses) were identified, including 75 fatty acyls, 203 glycerolipids, 184 glycerophospholipids, 169 sphingolipids, and 17 glucosylsphingoshine. Glycerolipids were the most abundant lipids, accounting for 31%. As fermentation proceeded, the concentration of lipids with 1-9 unsaturated bonds steadily increased. Oleic acid and linoleic acid were the main accumulated fatty acids. The pathways enrichment results showed glycerophospholipid metabolism, glycerolipids metabolism, sphingolipid metabolism, and biosynthesis of unsaturated fatty acids were the key metabolic pathways involved during DDGS fermentation. These results provided a comprehensive knowledge of the lipid profiles in fermented DDGS and proposed a new approach for high-value utilization of DDGS.
Collapse
Affiliation(s)
- Weiwei Fan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ayong Wang
- City Inspection and Testing Center of Qixia, Shandong Province 265300, PR China
| | - Xiaoying Che
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Siyu Xu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
2
|
Li J, Xin W, Liu D, Wang M, Liu M, Bi K, Liu Y, Zhang Z. Synergistic effect of high-pressure thermal sterilization and muramidase on Bacillus subtilis spores: alterations in intrasporal components, inner membrane permeability, and structural integrity. Arch Microbiol 2025; 207:129. [PMID: 40261396 DOI: 10.1007/s00203-025-04331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The sporicidal mechanism of high-pressure thermal sterilization (HPTS) combined with muramidase against Bacillus subtilis spores was investigated. Results demonstrated that HPTS at 600 MPa/75°C with 0.3% muramidase achieved a 6.09 log reduction in Bacillus subtilis spores. The combined processing significantly increased the leakage of protein, nucleic acid, and dipicolinic acid, while significantly reducing Na+/K+-ATPase activity (P < 0.05). Scanning electron microscopy revealed notable morphological changes in spores after combined processing. A significant increase in propidium iodide (PI)-infiltrated spores indicated enhanced spore inner membrane permeability (P < 0.05). molecular composition analysis further showed disordered arrangement of fatty acid acyl chains, structural alterations in nucleic acids and proteins, and increased the peptidoglycan layer flexibility. These findings provided insights into the sporicidal mechanism of HPTS combined with muramidase.
Collapse
Affiliation(s)
- Jiajia Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weishan Xin
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Dunhua Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Mengze Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Mingan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ke Bi
- Key Laboratory of Agro-Products Processing, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Zhong Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Qiao F, Wang S, He J, Hung W, Ma X, Gong P, Li J, Sun T, De Souza C, Zhang L, Lin K. Investigating the role of membrane lipid composition differences on spray drying survival in Lactobacillus bulgaricus using non-targeted Lipidomics. Food Chem 2024; 459:140336. [PMID: 39003859 DOI: 10.1016/j.foodchem.2024.140336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
The cell membrane, consisting of a phospholipid bilayer, is an important defense system of lactic acid bacteria (LAB) against adverse conditions. However, this membrane gets damaged during the process of spray drying of LAB into powder. In this study, two strains of Lactobacillus bulgaricus L9-7 and L4-2-12 with significantly different survival rates of about 22.49% and 0.43% after spray drying were explored at the cell membrane level. A total of 65 significantly different lipid species were screened from the cell membranes of two strains, with cardiolipin (CL) 15:1_22:6_24:0_28:0 being the crucial lipid species affecting membrane resistance. Finally, the KEGG enrichment analysis revealed that glycerophospholipid metabolism was the most predominant pathway, and eleven lipid species were annotated, including CL. Overall, this paper provides valuable insights into enhancing the heat tolerance of LAB.
Collapse
Affiliation(s)
- Fengzhi Qiao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Shaolei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Xia Ma
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Pimin Gong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jiadong Li
- Innochina Biotech Co., Ltd, Shanghai, 201400, China
| | - Ting Sun
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lanwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Kai Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Chen M, Gong L, Zhu L, Fang X, Zhang C, You Z, Chen H, Wei R, Wang R. Lipidomics combined with random forest machine learning algorithms to reveal freshness markers for duck eggs during storage in different rearing systems. Poult Sci 2024; 103:104201. [PMID: 39197340 PMCID: PMC11399630 DOI: 10.1016/j.psj.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The differences in lipids in duck eggs between the 2 rearing systems during storage have not been fully studied. Herein, we propose untargeted lipidomics combined with a random forest (RF) algorithm to identify potential marker lipids based on ultra-performance liquid chromatography‒mass spectrometry (UPLPC-MS/MS). A total of 106 and 16 differential lipids (DL) were screened in egg yolk and white, respectively. In yolk, metabolic pathway analysis of DLs revealed that glycerophospholipid metabolism and sphingolipid metabolism were the key metabolic pathways in the traditional free-range system (TFS) during storage, glycosylphosphatidylinositol-anchored biosynthesis and glyceride metabolism were the key pathways in the floor-rearing system (FRS). In egg white, the key pathway in both systems is the biosynthesis of unsaturated fatty acids. Combined with RF algorithm, 12 marker lipids were screened during storage. Therefore, this study elucidates the changes in lipids in duck eggs during storage in 2 rearing systems and provides new ideas for screening marker lipids during storage. This approach is highly important for evaluating the quality of egg and egg products and provides guidance for duck egg production.
Collapse
Affiliation(s)
- Mengying Chen
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China; College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lan Gong
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| | - Lei Zhu
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| | - Xiaomin Fang
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| | - Can Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaorong You
- Gaoyou Duck Egg Association, Yangzhou 225600, China
| | | | - Ruicheng Wei
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China.
| | - Ran Wang
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| |
Collapse
|
5
|
Jia W, Wang X, Shi L. Interference of endogenous benzoic acid with the signatures of sulfonic acid derivatives and carbohydrates in fermented dairy products. FUNDAMENTAL RESEARCH 2024; 4:1523-1532. [PMID: 39734529 PMCID: PMC11670729 DOI: 10.1016/j.fmre.2022.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Endogenous benzoic acid causes detrimental effects on public health, but the underlying mechanisms often remain elusive. Benzoic acid (0.00-40.00 mg L -1) was detected from sixty fermented goat milk samples in six replicates, indicating the existence of endogenous benzoic acid. Herein, we investigated the effects of benzoic acid on the variations of metabolome and proteome signatures in fermented goat milk via integrative metabolomics (LOQ 2.39-98.98 μg L -1) and proteomics approach based on UHPLC-Q-Orbitrap HRMS. Explicitly, benzoic acid reduced the content of taurine (7.06-4.80 mg L -1) and hypotaurine (3.86-1.74 mg L -1) due to a significant decrease in the levels of glutamate decarboxylase 1 by benzoic acid. The reduction in lactose (7.13-5.31 mg L -1) and d-galactose (4.39-3.37 mg L -1) content was related to the decrease in α-lactalbumin and β-galactosidase levels, respectively, in fermented goat milk containing 40.00 mg L -1 benzoic acid. Meanwhile, the levels of maltose (22.84-16.53 mg L -1) and raffinose (4.19-3.10 mg L -1) progressively decreased with increasing benzoic acid concentrations (0.00-40.00 mg L -1), which had detrimental effects on the nutritional quality of fermented goat milk. Additionally, the concentration of benzoic acid and fermentation temperature are the most important factors to control the loss of nutrients in fermented dairy products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Li Y, Ma Y, Zhu H, Liu Y, Pan S, Chen X, Wu T. Identifying distinct markers in two Sorghum varieties for baijiu fermentation using untargeted metabolomics and molecular network approaches. Food Chem X 2024; 23:101646. [PMID: 39139485 PMCID: PMC11321435 DOI: 10.1016/j.fochx.2024.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The quality of strong-flavor Baijiu, a prominent Chinese liquor, is intricately tied to the choice of sorghum variety used in fermentation. However, a significant gap remains in our understanding of how glutinous and non-glutinous sorghum varieties comprehensively impact Baijiu flavor formation through fermentation metabolites. This study employed untargeted metabolomics combined with feature-based molecular networking (FBMN) to explore the unique metabolic characteristics of these two sorghum varieties during fermentation. FBMN analysis revealed 267 metabolites within both types of fermented sorghum (Zaopei) in the cellar. Further multidimensional statistical analyses highlighted sphingolipids, 2,5-diketopiperazines, and methionine derivatives as critical markers for quality control. These findings represent a significant advancement in our understanding and provide valuable insights for regulating the quality of Baijiu flavors.
Collapse
Affiliation(s)
- Yulan Li
- School of Food and Biotechnology, Xihua University, No.9999 Guangchang Road, Chengdu 610039, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yin Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin 644100, China
| | - Shijiang Pan
- Sichuan Yibin Agriculture and Rural Affairs Bureau, Yibin 644100, China
| | - Xi Chen
- SCIEX Analytical Instrument Trading Co., Shanghai, 200335, China
| | - Tao Wu
- School of Food and Biotechnology, Xihua University, No.9999 Guangchang Road, Chengdu 610039, China
| |
Collapse
|
7
|
Fan Z, Jia W, Du A, Shi L. Complex pectin metabolism by Lactobacillus and Streptococcus suggests an effective control approach for Maillard harmful products in brown fermented milk. FUNDAMENTAL RESEARCH 2024; 4:1171-1184. [PMID: 39431140 PMCID: PMC11489481 DOI: 10.1016/j.fmre.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Harmful Maillard reaction products (HMRPs) derived from brown fermented milk pose a potential threat to human health, but the conversion mechanism during the manufacturing process remains elusive and urgently needs to be controlled. Acrylamide (FC 2.14, adjusted p-value = 0.041), 5-hydroxymethylfurfural (FC 2.61, adjusted p-value = 0.026) and methylglyoxal (FC 2.07, adjusted p-value = 0.019) were identified as the significantly increased HMRPs after browning in this study and the analysis of proteomics integrated with untargeted metabolomics demonstrated that the degradation of HMRPs was jointly accomplished by Streptococcus thermophilus and Lactobacillus bulgaricus. The galactose oligosaccharide metabolism in Streptococcus thermophilus was identified as a key biochemical reaction for HMRPs degradation, and the hydrolysates of pectin could be utilized as prebiotics for Streptococcus thermophilus. Eighteen classes of enzymes of L. bulgaricus and Streptococcus thermophilus related to energy metabolism were upregulated in the pectin-added group, indicating that the entry of acrylamide and methylglyoxal into the tricarboxylic acid cycle was accelerated. NAD-aldehyde dehydrogenase and alanine dehydrogenase are enzymes belonging to Streptococcus thermophilus, and their downregulation accelerated the efflux of acetate, which was beneficial for the proliferation of L. bulgaricus and prevented the conversion of pyruvate to l-alanine, thus facilitating the energy metabolism. The recoveries and relative standard deviations of the intraday and interday precision experiments were 89.1%-112.5%, 1.3%-8.4% and 2.1%-9.4%, respectively, indicating that the developed approach was credible. Sensory evaluation results revealed that the brown fermented milk added with pectin had a better flavor, which was due to the fact that the supplement of polysaccharide promoted the fatty acid metabolism of lactic acid bacteria and increased the aroma substances including octoic acid and valeric acid. This study provided an insight into the formation and degradation mechanism of HMRPs in brown fermented milk, aiming to reduce the intake of advanced glycation end products in the diet.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Xie G, Chen M, Yang Y, Xie Y, Deng K, Xie L. Comprehensive untargeted lipidomics study of black morel (Morchella sextelata) at different growth stages. Food Chem 2024; 451:139431. [PMID: 38663248 DOI: 10.1016/j.foodchem.2024.139431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
The black morel (Morchella sextelata) is a valuable edible and medicinal mushroom appreciated worldwide. Here, lipidomic profiles and lipid dynamic changes during the growth of M. sexletata were analyzed using ultra-performance liquid chromatography coupled with mass spectrometry. 203 lipid molecules, including four categories and fourteen subclasses, were identified in mature fruiting bodies, with triacylglycerol being the most abundant (37.00 %). Fatty acid composition analysis revealed that linoleic acid was the major fatty acid among the free fatty acids, glycerolipids and glycerophospholipids. The relative concentration of lipids in M. sextelata changed significantly during its growth, from which 12 and 29 differential lipid molecules were screened out, respectively. Pathway analysis based on these differential lipids showed that glycerophospholipid metabolism was the major pathway involved in the growth of M. sextelata. Our study provides a comprehensive understanding of the lipids in M. sextelata and will facilitate the development and utilization of M. sextelata.
Collapse
Affiliation(s)
- Guangbo Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Innovation Center of Electronic Information & Traditional Chinese Medicine, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Maoyuan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yanran Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| |
Collapse
|
9
|
Hu R, Duan C, Lan Y. Investigating the Effects of Distillation System, Geographical Origin, and Aging Time on Aroma Characteristics in Brandy Using an Untargeted Metabonomic Approach. Foods 2024; 13:1922. [PMID: 38928861 PMCID: PMC11202679 DOI: 10.3390/foods13121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and geographical origins. Through the predictive ability of PLS-DA models, it was found that higher alcohols, C13-norisopenoids, and furans could serve as key markers to discriminate between continuous stills and pot stills, and the contents of C6/C9 compounds, C13-norisoprenoids, and sesquiterpenoids were significantly affected by brandy origin. A network analysis illustrated that straight-chain fatty acid ethyl esters gradually accumulated during aging, and several higher alcohols, furfural, 5-methylfurfural, 4-ethylphenol, TDN, β-damascenone, naphthalene, styrene, and decanal were also positively correlated with aging time. This study provides effective methods for distinguishing brandies collected from different distillation systems and geographical origins and summarizes an overview of the changes in volatile compounds during the aging process.
Collapse
Affiliation(s)
- Ruiqi Hu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
10
|
Wang Y, Cai Z, Sang X, Deng W, Zeng L, Wang J, Zhang J. Lc-ms-based lipidomics analyses revealed changes in lipid profiles in Asian sea bass (Lates calcarifer) with dielectric barrier discharge (DBD) atmospheric plasma treatment. Food Chem 2024; 439:138098. [PMID: 38043272 DOI: 10.1016/j.foodchem.2023.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
A comprehensive LC-MS-based lipidomics analysis of Asian sea bass (Lates calcarifer) muscle after dielectric barrier discharge (DBD) atmospheric plasma treatment was performed. Through the analysis, 1500 lipid species were detected, phosphatidylcholine (PC, 27.80%) was the most abundant lipid, followed by triglyceride (TG, 20.50%) and phosphatidylethanolamine (PE, 17.10%). Among them, 125 lipid species were detected and identified as differentially abundant lipids in Asian sea bass (ASB). PCA and OPLS-DA showed that ASB lipids changed significantly after DBD treatment. Moreover, glycerophospholipid metabolism was key metabolic pathways, as PC, PE, and lysophosphatidylcholine (LPC) were key lipid metabolites. The findings concerning fatty acids revealed that the saturated fatty acids (SFA) content of ASB after DBD treatment increased by 8.54%, while the content of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decreased by 13.77% and 9.16%, respectively. Our study establishes a foundation for the lipid oxidation mechanism of ASB following DBD treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Wang Y, Cai Z, Sang X, Deng W, Zeng L, Wang J, Zhang J. LC-MS-based lipidomics analyses of alterations in lipid profiles of Asian sea bass (Lates calcarifer) induced by plasma-activated water treatment. Food Res Int 2024; 177:113866. [PMID: 38225136 DOI: 10.1016/j.foodres.2023.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
A lipidomics approach based on liquid chromatography-mass spectrometry was employed to investigate alterations in lipid profiles within the muscles of Asian sea bass (ASB) (Lates calcarifer) post-treatment with plasms-activated water (PAW). Lipidomics studies detected 1500 diverse lipid types in ASB muscles; the phosphatidylcholine (PC) lipid subclass constituted the highest number of lipids (21.07 %), followed by triglycerides (TGs, 20.53 %) and phosphatidylethanolamine (PE, 12.73 %). Comparative analysis between PAW-treated ASB and raw ASB revealed the presence of differentially abundant lipids, with 48 lipids accumulating at high levels and 92 at low levels. Pathway enrichment analysis identified a total of seven lipid-related metabolic pathways; glycerophospholipid metabolism emerged as the predominant pathway. Furthermore, the content of saturated fatty acids in PAW-treated ASB increased from 1059.81 μg/g (raw ASB) to 1099.77 μg/g. Conversely, the content of monounsaturated and polyunsaturated fatty acids decreased from 645.81 μg/g and 875.02 μg/g to 640.80 μg/g and 825.25 μg/g, respectively. Collectively, these results indicate significant alterations in ASB lipid profiles following PAW treatment, establishing a theoretical foundation for understanding the mechanism involved in promoting lipid oxidation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Ao XL, Liao YM, Kang HY, Li HL, He T, Zou LK, Liu SL, Chen SJ, Yang Y, Liu XY. Untargeted Metabolomics and Physicochemical Analysis Revealed the Quality Formation Mechanism in Fermented Milk Inoculated with Lactobacillus brevis and Kluyveromyces marxianus Isolated from Traditional Fermented Milk. Foods 2023; 12:3704. [PMID: 37835356 PMCID: PMC10572762 DOI: 10.3390/foods12193704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms isolated from traditional dairy products in western nan. The results indicated that MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K. marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types, more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus growth via its metabolites, while the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism. Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell growth and metabolic pathways.
Collapse
|
14
|
Jia W, Wu X, Liu N, Xia Z, Shi L. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity. Food Chem 2023; 409:135322. [PMID: 36584532 DOI: 10.1016/j.foodchem.2022.135322] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Postharvest senescence and quality deterioration of fresh tea leaves occurred due to the limitation of processing capacity. Refrigerated storage prolongs the shelf life of fresh tea. In this study, quantitative fusion omics delineated the translational landscape of metabolites and proteins in time-series (0-12 days) refrigerated tea by UHPLC-Q-Orbitrap HRMS. Accurate quantification results showed the content of amino acids, especially l-theanine, decreased with the lengthening of the storage duration (15.57 mg g-1 to 7.65 mg g-1) driven by theanine synthetase. Downregulation of enzyme 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase expression led to methionine degradation (6.29 µg g-1 to 1.78 µg g-1). Refrigerated storage inhibited serine carboxypeptidase-like acyltransferases activity (59.49 % reduction in 12 days) and induced the polymerization of epicatechin and epigallocatechin and generation of procyanidin dimer and δ-type dehydrodicatechin, causing the manifestation of color deterioration. A predictive model incorporating zero-order reaction and Arrhenius equation was constructed to forecast the storage time of green tea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
15
|
Magnetic field-driven biochemical landscape of browning abatement in goat milk using spatial-omics uncovers. Food Chem 2023; 408:135276. [PMID: 36571880 DOI: 10.1016/j.foodchem.2022.135276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Influence of magnetic field (MF) treatment on the glycation of goat milk proteins is yet to be elucidated. Proteomic and metabolomic analyses of brown goat milk samples with and without MF treatment were performed. Assessed glycation degree and structural modification of proteins explained that MF treatment dramatically down-regulated the glycation of brown goat milk protein, possibly due to the aggregation behavior induced by MF treatment, which consumed additional glycation sites as well as altered their accessibility and preference. Integrated datasets uncovered that the energy metabolism-related biological events including carbohydrate metabolism, glycerophospholipid metabolism, TCA cycle may mainly account for the browning abatement mechanism of MF. In addition, MF treatment enhanced both the quality and flavor of brown goat milk. This study suggests the feasibility of MF treatment to reduce glycation in brown goat milk for producing high-quality dairy ingredients and products.
Collapse
|
16
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Study of Yak Colostrum Nutritional Content Based on Foodomics. Foods 2023; 12:foods12081707. [PMID: 37107501 PMCID: PMC10137867 DOI: 10.3390/foods12081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The utilization of yak milk is still in a primary stage, and the nutrition composition of yak colostrum is not systematically characterized at present. In this study, the lipids, fatty acids, amino acids and their derivatives, metabolites in yak colostrum, and mature milk were detected by the non-targeted lipidomics based on (ultra high performance liquid chromatography tandem quadrupole mass spectrometer) UHPLC-MS, the targeted metabolome based on gas chromatography-mass spectrometer (GC-MS), the targeted metabolome analysis based on UHPLC-MS, and the non-targeted metabolome based on ultra high performance liquid chromatography tandem quadrupole time of flight mass spectrometer (UHPLC-TOF-MS), respectively. Meanwhile, the nutrition composition of yak colostrum was compared with the data of cow mature milk in the literatures. The results showed that the nutritive value of yak colostrum was higher by contrast with yak and cow mature milk from the perspective of the fatty acid composition and the content of Σpolyunsaturated fatty acids (PUFAs), Σn-3PUFAs; the content of essential amino acid (EAA) and the ratio of EAA/total amino acid (TAA) in yak colostrum were higher than the value in yak mature milk; and the content of functional active lipids including phosphatidylcholines (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), lyso-phosphatidylcholine (LPC), lyso-phosphatidylglycerol (LPG), lyso-phosphatidylinositol (LPI), sphingomyelin (SM), ganglioside M3 (GM3), ganglioside T3 (GT3), and hexaglycosylceramide (Hex1Cer) in yak colostrum, was higher than the value of yak mature milk. Moreover, the differences of nutritive value between yak colostrum and mature milk were generated by the fat, amino acids and carbohydrate metabolism that were regulated by the ovarian hormone and referencesrenin-angiotensin-aldosterone system in yaks. These research results can provide a theoretical basis for the commercial product development of yak colostrum.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| |
Collapse
|
17
|
Lv J, Ma J, Liu Y, Li P, Wang D, Geng Z, Xu W. Lipidomics analysis of Sanhuang chicken during cold storage reveals possible molecular mechanism of lipid changes. Food Chem 2023; 417:135914. [PMID: 36933423 DOI: 10.1016/j.foodchem.2023.135914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Lipidomic profiles changes of the Sanhuang chicken breast meat during cold storage (4 °C) were analyzed using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS)-based lipidomic analysis. Total lipids content decreased 16.8% after storage. Triacylglycerol (TAG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) significantly decreased, while lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) increased. Particularly, there was a trend that TAGs with fatty acids of 16:0 and 18:1, and phospholipids containing 18:1, 18:2 and 20:4 were more likely to be downregulated. The increase in the ratio of lysophospholipids/phospholipids and the degree of lipid oxidation demonstrated oxidation and enzymatic hydrolysis are potentially responsible for the lipid transformation. Moreover, 12 lipid species (P < 0.05, VIP > 1, FC < 0.8 or >1.25) were identified to be associated with the spoilage of meat. Glycerophospholipid metabolism and linoleic acid metabolism were the key metabolic pathways involved in the lipid transformations of chilled chicken.
Collapse
Affiliation(s)
- Jingxiu Lv
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, PR China
| | - Jingjing Ma
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Pengpeng Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, PR China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China.
| | - Zhiming Geng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| |
Collapse
|
18
|
Lipid metabolic characteristics and marker compounds of ripened Pu-erh tea during pile fermentation revealed by LC-MS-based lipidomics. Food Chem 2023; 404:134665. [DOI: 10.1016/j.foodchem.2022.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
19
|
Jia W, Wu X, Shi L. Naturally forming benzoic acid orientates perilipin to facilitate glyceride-type polyunsaturated fatty acid degradation via fermentation behavior. J Dairy Sci 2023; 106:1650-1671. [PMID: 36710193 DOI: 10.3168/jds.2022-22381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/07/2022] [Indexed: 01/29/2023]
Abstract
Naturally forming benzoic acid in fermented dairy products accumulates in organisms and biomagnifies through collateral transport. The association between benzoic acid agglomeration and susceptible lipid nutrients remains obscure. Horizontal analysis of lipidomic alteration in response to benzoic acid was conducted and the spatially proteomic map was constructed using label-free quantitative proteomics. From synergistic integration of multi-omics in benzoic acid accumulated fermented goat milk model, the biological processes of significant proteins mostly focused on glyceride-type polyunsaturated fatty acids degradation (143.818 ± 0.51 mg/kg to 104.613 ± 0.29 mg/kg). As a physiological barrier shield, perilipin, which is coated on the surface of lipid droplets, protects triacylglycerols from cytosolic lipases, thus preventing triglyceride hydrolysis. The expression of perilipin decreased by 90% compared with the control group, leading to the decrease of triglycerides. Benzoic acid suppressed phosphatidylethanolamines and phosphatidylcholines synthesis by attenuating choline phosphotransferase and ethanolamine phosphotransferase. Less diglyceride generated by the dephosphorylation of phosphatidic acid entered choline phosphotransferase and ethanolamine phosphotransferase-mediated glycerophospholipid metabolisms. Fermentation of goat milk at a low temperature and less incubation time leads to the production of less benzoic acid and mitigation of lipid nutrient loss. The present study delineated the molecular landscape of fermented goat milk containing endogenous benzoic acid and further dissected the trajectory guiding lipid alteration to advance control of benzoic acid residue.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021 China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
| |
Collapse
|
20
|
Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem 2023; 404:134541. [DOI: 10.1016/j.foodchem.2022.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
21
|
Unraveling propylene glycol-induced lipolysis of the biosynthesis pathway in ultra-high temperature milk using high resolution mass spectrometry untargeted lipidomics and proteomics. Food Res Int 2023; 164:112459. [PMID: 36738011 DOI: 10.1016/j.foodres.2023.112459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
In July 2022, the food safety accident that excessive propylene glycol was detected in milk processing factory raised widespread concerns about quality and nutrition of milk with illegal additive. To the best of our knowledge, the influences of propylene glycol to lipids in milk had not been systematically explored. Therefore, spatiotemporal distributions of lipids related to propylene glycol reaction and changes of sensory quality were investigated by food exogenous. Briefly, 10 subclasses (Cer, DG, HexCer, LPC, LPE, PC, PE, PI, SPH and TG) included 147 lipids and 38 pivotal enzymes were annotated. Propylene glycol altered lysophospholipidase and phospholipase A2 through altering structural order in lipids domains surrounding proteins to inhibit glycerophospholipid metabolism and initiated obvious changes in PC (10.45-27.91 mg kg-1) and PE (12.92-49.02 mg kg-1). This study offered insights into influences of propylene glycol doses and storage time on milk metabolism at molecular level to assess the quality of milk.
Collapse
|
22
|
Jia W, Wang X, Shi L. Endogenous hydrocortisone caused metabolic perturbation and nutritional deterioration of animal-derived food in a dose-dependent manner. Food Chem 2023; 401:134145. [DOI: 10.1016/j.foodchem.2022.134145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
|
23
|
Jia W, Di C, Shi L. Applications of lipidomics in goat meat products: Biomarkers, structure, nutrition interface and future perspectives. J Proteomics 2023; 270:104753. [PMID: 36241023 DOI: 10.1016/j.jprot.2022.104753] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Goat meat, as a superior product including low lipids, low cholesterol contents and high-quality proteins, becomes the superior food for the national market. With the increasing demand for goat meat, the production, sensory quality and physicochemical properties of goat meat are also widely observed. Following significant discoveries on the mechanism determining goat meat quality, further research on complex and interactive factors leading to changes of goat meat quality is increasingly based on data-driven "omics" methods, such as lipidomics, which can rapidly identify and quantify >1000 lipid species at same time facilitating comprehensive analyses of lipids in tissues. Molecular mechanism and biomarkers indicating the changes of goat meat quality, authentication, meat analogue, nutrition and health by lipidomics are feasible. According to the analysis results of the classes and of different biomarkers lipids of goat meat quality, the main processes involved the biosynthesis of unsaturated fatty acids, associations with lipids and proteins, lipid oxidation, lipid hydrolysis, lipid degradation, lipid deposition and lipid denaturation, which have been translated into advanced technologies for identifying the goat meat adulteration and faux meat rapidly and accurately. SIGNIFICANCE: In this review, the research of lipidomics technology, past applications, recent findings and common on the recent advances of lipidomics in the quality assessment of mutton products by lipidomics with MS approaches have been summarized. The information reported in review can serve as a reference to characterize the lipids found in mutton, clarify the application of lipidomics to the field of mutton products and provide new perspectives in producing superior quality mutton products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
24
|
Jia W, Wu X, Shi L. Hydrocortisone-Containing Animal-Derived Food Intake Affects Lipid Nutrients Utilization. Mol Nutr Food Res 2022; 66:e2200487. [PMID: 36261391 DOI: 10.1002/mnfr.202200487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Indexed: 01/18/2023]
Abstract
SCOPE As the tremendous increases in consumption of animal-derived food, endogenous hydrocortisone migrating along the food chain to organism arouses extensive attention. This study aims to investigate the cumulative impacts of dietary hydrocortisone intake and mechanistic understanding on metabolism of lipid nutrients. METHODS AND RESULTS A total of 120 porcine muscles samples with different concentrations of hydrocortisone are collected at three time points. An operational food chain simulation framework is constructed and 175 lipid molecules are identified by UHPLC-Q-Orbitrap HRMS. Compared to the control group, 66 lipid molecules are significantly different, including 17 triglycerides and 31 glycerophospholipids. Integrated analyses of lipidomics and proteomics indicate that hydrocortisone promotes adipose triglyceride lipase and hormone sensitive lipase activity to precondition for triglycerides hydrolysis. Quantitative lipidomics analysis shows the presence of hydrocortisone decreases the concentration of docosahexaenoic acid (3.66 ± 0.15-3.09 ± 0.12 mg kg-1 ) and eicosapentanoic acid (0.54 ± 0.09-0.48 ± 0.06 mg kg-1 ). A noteworthy increase of most saturated triglycerides concentration with the prolonging of time is observed. CONCLUSIONS Hydrocortisone originating from animal-derived food induces glycerophospholipids degradation and triglycerides hydrolysis through promoting adipose triglyceride lipase, hormone sensitive lipase, and phosphoglycerate kinase activity and further intervenes lipid nutrients utilization.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
25
|
Jia W, Wang X, Shi L. Endogenous benzoic acid interferes with the signatures of amino acids and thiol compounds through perturbing N-methyltransferase, glutamate-cysteine ligase, and glutathione S-transferase activity in dairy products. Food Res Int 2022; 161:111857. [DOI: 10.1016/j.foodres.2022.111857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 12/29/2022]
|
26
|
Jia W, Zhu J, Wang X, Peng J, Shi L. Covalent or non-covalent binding of polyphenols, polysaccharides, metal ions and nanoparticles to beta-lactoglobulin and advanced processing techniques: Reduce allergenicity and regulate digestion of beta-lactoglobulin. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Chen Z, Lu Q, Zhang X, Zhang Z, Cao X, Wang K, Lu X, Yang Z, Loor JJ, Jiao P. Circ007071 Inhibits Unsaturated Fatty Acid Synthesis by Interacting with miR-103-5p to Enhance PPARγ Expression in the Dairy Goat Mammary Gland. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13719-13729. [PMID: 36222227 DOI: 10.1021/acs.jafc.2c06174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding more precisely the mechanisms controlling the metabolism of fatty acid in the mammary gland of dairy goats is essential for future improvements in milk quality. Particularly since recent data have underscored a key role for circular RNAs (circRNAs) in the mammary gland function, high-throughput sequencing technology was used to identify expression levels of circRNAs in the mammary tissue of dairy goats during early and peak lactation in the present study. Compared with early lactation, results demonstrated that the expression level of circ007071 during peak lactation was 12.02-fold up-regulated. Subsequent studies in goat mammary epithelial cells (GMECs) revealed that circ007071 stimulated the synthesis of triglycerides (TAG) and cholesterol, as well as increased the content of saturated fatty acids (C16:0 and C18:0). More importantly, using a double luciferase reporting system allowed us to detect the circ007071 sequence at a binding site of miR-103-5p, indicating that it targeted this miRNA. Overexpression of circ007071 significantly decreased the abundance of miR-103-5p and led to inhibition of TAG synthesis. In contrast, the abundance of peroxisome proliferator-activated receptor γ (PPARγ), a target gene of miR-103-5p, was reinforced with the overexpression of circ007071. Thus, we conclude that one key function of circ007071 in the regulation of milk fat synthesis is to attenuate the inhibitory effect of miR-103-5p on PPARγ via direct interactions with miRNA. As a result, the process of TAG and saturated fatty acid is able to proceed.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
28
|
High-spatial-resolution multi-spectroscopic provides insights into the interaction and release of δ-decanolactone and decanoic acid with β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Jia W, Du A, Fan Z, Shi L. Novel top-down high-resolution mass spectrometry-based metabolomics and lipidomics reveal molecular change mechanism in A2 milk after CSN2 gene mutation. Food Chem 2022; 391:133270. [DOI: 10.1016/j.foodchem.2022.133270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/18/2022]
|
30
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Jia W, Du A, Fan Z, Shi L. Novel insight into the transformation of peptides and potential benefits in brown fermented goat milk by mesoporous magnetic dispersive solid phase extraction-based peptidomics. Food Chem 2022; 389:133110. [PMID: 35504074 DOI: 10.1016/j.foodchem.2022.133110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Brown fermented goat milk as an excellent source of bioactive peptides has only been partially elucidated. Meticulously synthesized MOF@MG as magnetic sorbent for enriching endogenous peptides owned higher reproducibility and uniform distribution of peptides PI compared with ultrafiltration. Combined with UHPLC-Q-Orbitrap, fermentation for 12 h in brown goat milk with the highest overall acceptable degree through sensory evaluation was utilized to explore the transformation of peptides and health benefits, with trypsin or plasmin hydrolyzing proteins and aminopeptidase or carboxypeptidase hydrolyzing peptides to small peptides or amino acids. A total of 1317 peptides were identified by database matching (1259) and de novo sequencing (58), among 18 peptides could originate from gene-independent enzymatic formation and top 25 characteristic peptides were quantified with concentration ranging from 0.12 to 6.40 mg L-1. Bioinformatic analysis results indicated that brown fermented goat milk possesses higher health benefits because of more than 50 peptides with potential bioactivity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
32
|
Jia W, Zhang M, Zhu J, Shi L. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of sulfanilamide metabolites in food (2012-2022). Food Chem 2022; 388:133039. [PMID: 35489175 DOI: 10.1016/j.foodchem.2022.133039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Sulfonamide metabolites are a major source of food pollution worldwide. However, the formation of internal sulfanilamide metabolites has only been investigated for selected compounds. In this paper, the fragmentation mechanism and characteristic ions of sulfonamide metabolites are reviewed using density functional theory and Q-Orbitrap high-resolution mass spectrometry. The result of the protonation site, rearrangement and bond breaking induced fragmentations at C6H6NO2S+m/z 156.01138, C6H6NO+m/z 108.04439, and C6H6N+m/z 92.04948. Mass shifts are calculated for derivative metabolites, including hydrogenation, acetylation, oxidation, glucosylation, glucosidation, sulfation, deamination, formylation, desulfonation and O-aminomethylation. Given their homologous series, it is demonstrated that similar metabolic reactions occur for all sulfonamides. The suspicious sulfonamide metabolites are confirmed by d-labelling experiments and reference standards. This is the first review of the latest advances in the field of sulfonamide metabolite prediction (2012-2022), and scheme design for metabolite multirresidue screening, as well as the challenges in the mass spectrometry evolution.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiying Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
33
|
Fan Z, Jia W, Du A, Shi L. Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Res Int 2022; 159:111666. [DOI: 10.1016/j.foodres.2022.111666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
|
34
|
Bioaccessibility of phospholipids in homogenized goat milk: Lipid digestion ecology through INFOGEST model. Food Chem 2022; 386:132770. [PMID: 35339088 DOI: 10.1016/j.foodchem.2022.132770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Phospholipids-rich goat milk provides health benefits to consumers. The effects of homogenization on the disruption and recombination of milk fat globule membrane and change the fatty acid positional distribution in glycerophospholipids profile by phosphatidylcholine metabolism pathways were investigated. Goat milk was homogenized at different intensity pressure. Homogenized samples were introduced into harmonized INFOGEST digestion model. Results showed that phosphatidylcholine increased significantly during storage in 30 MPa and were approximately twice that in raw milk (LOD 0.27-1.49 μg/L and LOQ 0.89-4.92 μg/L, respectively). Meanwhile, both linoleic acid (C18:2) and α-linolenic acid (C18:3ω-3), the foremost polyunsaturated acyl chains in homogenized milk extracts, showed upward trends. Notably, homogenization increased the number and altered the composition of Sn-1, 2 diacylglycerols via increasing trypsin and pancreatic lipase (PLRP2, MAUC15, CD36 and BSSL) expression and accelerated the phosphatidylcholine conversion. Ultimately, the relationship between homogenization and milk fat globule recombination and phospholipids bioaccessibility was preliminary established.
Collapse
|
35
|
Jia W, Du A, Fan Z, Wang Y, Shi L. Effects of Short-Chain Peptides on the Flavor Profile of Baijiu by the Density Functional Theory: Peptidomics, Sensomics, Flavor Reconstitution, and Sensory Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9547-9556. [PMID: 35866578 DOI: 10.1021/acs.jafc.2c02549] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effect of peptides on the flavor profile of Baijiu is unclear as a result of their trace concentrations in the complex matrix, and therefore, the study involving the interaction mechanism between peptides and flavor compounds is limited. In this study, short-chain peptides (amino acid number between 2 and 4, SCPs) associated with the Feng-flavor Baijiu (FFB) were comprehensively analyzed by a dedicated workflow using ultra-high-performance liquid chromatography Q Orbitrap high-resolution mass spectrometry, flavor reconstitution experiments, sensory analysis, and density functional theory (DFT) analysis. The concentrations of 96 SCPs intimately related with six different grades of honey aroma intensity in FFB were quantified (0.12-155.01 μg L-1) after multivariable analysis, Spearman's correlation analysis (ρ ≥ 0.7), and confirmation with synthetic standards, and 32 dominant odorants with an odor activity value of ≥1 in FFB with the highest intensity of honey aroma were quantified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses. The results of flavor reconstitution experiments and sensory analysis indicated that the SCPs can obviously influence the honey aroma with amplifying the fruity, sweet, and flora flavor odor characters (p < 0.05) while significantly reducing the acidic character (p < 0.001), which could be attributed to the most stable complex structure between SCPs and odor-active compounds calculated by DFT being butanoic acid, followed by β-damascenone, 3-methylbutanal, and ethyl hexanoate, and the multiple sites as a hydrogen bond donor or acceptor in SCPs can form a stable ternary structure with water and ethanol inside the peptide chain or carboxyl terminal of SCPs, consequently improving the stability of the Baijiu system. The results highlighted the important role of SCPs on the volatiles in Baijiu and laid the foundation for further facilitating the sensory quality of Baijiu products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
36
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Jia W, Fan Z, Du A, Shi L. Molecular mechanism of Mare Nectaris and magnetic field on the formation of ethyl carbamate during 19 years aging of Feng-flavor Baijiu. Food Chem 2022; 382:132357. [PMID: 35144185 DOI: 10.1016/j.foodchem.2022.132357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Ethyl carbamate (EC) is carcinogen occurring naturally in fermented foods, while the EC formation pattern in Feng-flavor Baijiu during Mare Nectaris storage and magnetic field treatment remains controversial. In this work, variation of EC in Mare Nectaris and magnetic field were investigated for the first time through ultra high performance liquid chromatography quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap). Quantification results revealed that EC decreased significantly in the stage of 3-9 years and kept at 12.4 μg L-1 after 10 years of aging. Arginine succinate synthase (ASS) and urease were deemed as vital factors for EC decomposition. Degradation effetc of EC in 250 mT is simillar to that of EC in Baijiu stored in Mare Nectaris for 8 years. This is due to that aging process was accelerated by magnetic field and the content of total acid in Baijiu was increased, creating a favorable environment for decomposition of EC and urea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
38
|
Jia W, Di C, Zhang R, Shi L. Hydrogen bonds and hydrophobicity with mucin and α-amylase induced honey aroma in Feng-flavor Baijiu during 16 years aging. Food Chem 2022; 396:133679. [PMID: 35849986 DOI: 10.1016/j.foodchem.2022.133679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Honey aroma is one of the most significant factors of Feng-flavor Baijiu, which is also an essential element to attract consumers. However, the evaluation and chemical basis of honey aroma is unclear. Palmitoleic acid, lagochilin, phomotenone and ethyl behenate were confirmed to be the strongest contributors to honey aroma by time-intensity analysis and UHPLC-Q-Orbitrap-MS. Predictive modeling was developed for processing honey aroma intensity responses in order to obtain significant Feng-flavor Baijiu rankings. In this study, the effects of ex-vivo saliva on Feng-flavor Baijiu were investigated for the first time. Mucin and α-amylase, as major proteins in ex-vivo saliva, were applied to simulate molecular docking of ethyl benzoate. Mucin and α-amylase modified the aroma release, which depended on hydrogen bonds and hydrophobic interactions, respectively. It is blazing a trail in the field in sensory experience of Feng-flavor Baijiu as well as contributes to our understanding of Feng-flavor Baijiu drinking process.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
39
|
Wang H, Wu Y, Xiang H, Sun-Waterhouse D, Zhao Y, Chen S, Li L, Wang Y. UHPLC-Q-Exactive Orbitrap MS/MS-based untargeted lipidomics reveals molecular mechanisms and metabolic pathways of lipid changes during golden pomfret (Trachinotus ovatus) fermentation. Food Chem 2022; 396:133676. [PMID: 35868287 DOI: 10.1016/j.foodchem.2022.133676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 12/16/2022]
Abstract
Fermented golden pomfret (a popular marine fish product) is prepared via spontaneous fermentation. However, no comprehensive analysis has been reported on its lipid composition and metabolism. Herein, UHPLC-MS/MS-based untargeted lipidomic analysis identified 998 lipids (six classes; 29 subclasses) in fermented golden pomfret, including glycerolipids (47.70%) and glycerophospholipids (32.06%). As fermentation proceeded, triglyceride and diglyceride contents increased and subsequently decreased, while that of poly-unsaturated fatty acid-containing lipids increased (including those with docosahexaenoic acid, eicosapentaenoic acid, and docosapentaenoic acid). Pathway enrichment analysis identified seven lipid-related metabolic pathways, with the glycerophospholipid pathway found to be the most pertinent. Moreover, the decreased abundance of phosphatidylethanolamines and phosphatidylcholines during fermentation results from their high unsaturated fatty acid (FA) content. Indeed, essential FA contents increase following fermentation, due to their occurrence as glycerolipid side chains. Collectively, the results of this study provide a theoretical reference for optimizing the quality of fermented fish products.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
40
|
Fan Z, Jia W, Du A, Xia Z, Kang J, Xue L, Sun Y, Shi L. Discovery of Se-containing flavone in Se-enriched green tea and the potential application value in the immune regulation. Food Chem 2022; 394:133468. [PMID: 35716501 DOI: 10.1016/j.foodchem.2022.133468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Selenium (Se)-enriched green tea has been recognized as a possible source of supplemental Se, while the structural and physiological activities of Se-containing flavone are still unclear. In this study, a Se-containing flavone was isolated from Se-enriched green tea by high-speed counter-current chromatography (HSCCC) and characterized through UHPLC-Q-Orbitrap, FT-IR and NMR. Results proved that HSeO3- can be combined with the alcohol hydroxyl of 2-phenylchromone in flavone and the content of Se-containing flavone in tea was 15690.4 μg L-1. Additionally, Se-containing flavone can effectively inhibit the production of nitric oxide (NO), and downregulate expression of TNF-α and IL-6. Compared with regular flavone extracted from green tea (43.24 pg mL-1), release of IL-10 was higher in Se-containing flavone group (53.37 pg mL-1), indicating that Se-containing flavone played an important role in the process of severe inflammatory injury. The results indicated that Se-containing flavone was an attractive natural ingredient for developing novel functional foods.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Jie Kang
- Shaanxi Testing Inst Product Qual Supervis, Xian 710048, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yujiao Sun
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
41
|
Ethyl carbamate regulate esters degradation by activating hydrolysis during Baijiu ripening. Food Res Int 2022; 156:111157. [DOI: 10.1016/j.foodres.2022.111157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
42
|
Zhang R, Jia W, Shi L. A Comprehensive Review on the Development of Foodomics-Based Approaches to Evaluate the Quality Degradation of Different Food Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2077362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
43
|
Jia W, Wang X, Zhang R, Shi Q, Shi L. Irradiation role on meat quality induced dynamic molecular transformation: From nutrition to texture. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2026377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Qingyun Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
44
|
Jia W, Fan Z, Du A, Shi L. Molecular mechanism of high pressure shear grinding on Feng-flavour Chinese Baijiu ageing. Food Res Int 2022; 153:110957. [DOI: 10.1016/j.foodres.2022.110957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/27/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023]
|
45
|
Jia W, Du A, Dong X, Fan Z, Zhang D, Wang R, Shi L. Physicochemical and molecular transformation of novel functional peptides from Baijiu. Food Chem 2021; 375:131894. [PMID: 34954580 DOI: 10.1016/j.foodchem.2021.131894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
A novel strategy for screening and identifying peptides present in Baijiu was developed based on magnetic solid-phase extraction with magnetic S-doped graphene (M-G-S) as adsorbent combined with ultrahigh-performance liquid chromatography with high resolution tandem mass spectrometry. In total, 28 peptides consisting of amino acids from 3 to 9 were preliminarily identified, and significantly higher in the number than that of direct concentration and SPE with C18 as the adsorbent. Six peptides were confirmed with their corresponding synthetic reference standards by comparing their retention time, high resolution MS/MS spectra, and NMR spectroscopic studies. Parallel reaction monitoring integrated with the internal standard method was utilized to quantify identified peptides with concentrations ranging from 1.14 to 10.25 ng mL-1, and prediction results of bioactivity comprising antioxidation or ACE inhibitors were obtained. These discoveries were conducive to understanding the versatility benefit of Baijiu and paved the way to study the interaction between peptides and volatile substances.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaojun Dong
- Huashanlunjian Brand Management Co., Ltd, Xi'an 710076, China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Duimin Zhang
- Huashanlunjian Brand Management Co., Ltd, Xi'an 710076, China
| | - Ruihong Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
46
|
Jia W, Zhang M, Xu M, Shi L. Novel strategy to remove the odor in goat milk: Dynamic discovey magnetic field treatment to reduce the loss of phosphatidylcholine in flash vacuum from the proteomics perspective. Food Chem 2021; 375:131889. [PMID: 34953238 DOI: 10.1016/j.foodchem.2021.131889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
In present study, a precisely profile of PC species in goat milk was presented by quantitative lipidomics, and the matrix effect (bovine, goat and breast milk) on the lipase catalysis of PC metabolism patterns was explored via proteomics. The effects of flash vacuum and magnetic field processes to PC profile were investigated. Results showed PC(16:0_18:1) (1365.24 μg/mL) and PC(16:0_20:2) (1354.73 μg/mL) had the most abundant intensity in goat milk. Twelve novel bioactive lipases: LDHB, NSDHL, ALDH3B1, DPYD, ALDH1A1, ALDOC, ENO1, ALDOA, PRDX6, XDH, ENO3 and GAPDH were nuclear-localized in PC biosynthesis. PC in C15:0, C16:0 increased while C6:0, C8:0 decreased and the characterized protein XDH was about 91 times up regulated under 0.085 MPa, 65 °C flash vacuum and 5 mT magnetic field. The findings suggest different bioactive lipases show desirable effects on PC species metabolism, and magnetic field realize a beneficial programming impact on reducing the loss of PC.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
47
|
Characterisation of key odorants causing honey aroma in Feng-flavour Baijiu during the 17-year ageing process by multivariate analysis combined with foodomics. Food Chem 2021; 374:131764. [PMID: 34891091 DOI: 10.1016/j.foodchem.2021.131764] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 01/20/2023]
Abstract
Honey aroma is a typical sensory characteristic of Feng-flavour Baijiu, which originates from a unique manufacturing process, the formation mechanism of which is unclear. Multivariate analysis combined with foodomics assisted by sensory evaluation was performed to investigate the molecular mechanism of honey aroma formation in Feng-flavour Baijiu during the 17-year ageing process. A total of 1995 compounds was identified, and 47 variables were screened as significant substances according to variable importance in projection and Spearman's rank correlation coefficient (|ρ| > 0.7), which corroborated that the long-term interaction between Baijiu and storage containers was the dominant origin of honey aroma. Recombination and omission experiments further validated the important contributions of significant substances, including acids, alcohols, aldehydes and ketones. A typical honey aroma dominated by fruity, floral, sweet and nutty notes was successfully simulated, and nutty notes could be enhanced by amides, whereas amines presented masking effects on fruity and floral aromas.
Collapse
|
48
|
Jia W, Wang X, Wu X, Shi L. Monitoring contamination of perchlorate migrating along the food chain to dairy products poses risks to human health. Food Chem 2021; 374:131633. [PMID: 34848089 DOI: 10.1016/j.foodchem.2021.131633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Assessments of human exposure to sodium perchlorate via dairy sources are limited. The current study applied untargeted metabolomics (LOD, 1.08-35.60 μg L-1; LOQ, 2.54-90.58 μg L-1; RSD < 6.2%) and proteomics methods by UHPLC-Q-Orbitrap HRMS to investigate the metabolic pathways and nutritional quality of goat milk contaminated with sodium perchlorate. Specifically, 11 metabolites including lactose (from 2.01 to 0.58 mg L-1), adenosine 5'-monophosphate (from 1.23 to 0.45 mg L-1), hypoxanthine (from 0.63 to 0.08 mg L-1), etc. and 3 crucial enzymes include α-lactalbumin, xanthine dehydrogenase and creatine kinase related to the quality traits of goat milk after sodium perchlorate treatment. Overall, except for spermidine, other related metabolites significantly decreased with the increase of sodium perchlorate concentration 0-160 μg L-1 and storage time (4-12 h). Collectively, we provide previously uncharacterized goat milk nutritional quality degradation mechanism induced by sodium perchlorate and a reference to ensure its safe use in human health.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
49
|
Zhang R, Zhu Z, Jia W. Time-Series Lipidomics Insights into the Progressive Characteristics of Lipid Constituents of Fresh Walnut during Postharvest Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13796-13809. [PMID: 34763422 DOI: 10.1021/acs.jafc.1c05120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high-throughput lipid profiling platform adopting an accurate quantification strategy was built based on Q-Orbitrap mass spectrometry. Lipid components of fresh walnut during postharvest storage were determined, and the fatty acid distributions in triacylglycerol and polar lipids were also characterized. A total of 554 individual lipids in fresh walnut were mainly glycerolipids (56.7%), glycerophospholipids (32.4%), and sphingolipids (11%). With the progress of postharvest storage, 16 lipid subclasses in the stored walnut sample were significantly degraded, in which 34 lipids changed significantly between the fresh and stored groups. The sphingolipid metabolism, glycerolipid metabolism, and linoleic acid metabolism pathways were significantly enriched. The oxidation and degradation mechanism of linoleic acid in walnut kernel during postharvest storage was proposed. The established lipidomics platform can supply reliable and traceable lipid profiling data, help to improve the understanding of lipid degradation in fresh walnut, and offer a framework for analyzing lipid metabolisms in other tree nuts.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
50
|
Jia W, Fan Z, Du A, Shi L. Untargeted foodomics reveals molecular mechanism of magnetic field effect on Feng-flavor Baijiu ageing. Food Res Int 2021; 149:110681. [PMID: 34600683 DOI: 10.1016/j.foodres.2021.110681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
Ageing is a time-consuming step in Baijiu manufacture, stimulating an urgent requirement of optimization. Variation of artificial aged Feng-flavor Baijiu by inhomogeneous alternating magnetic field was investigated through quantitative foodomics combined with confirmed ultra high performance liquid chromatography quadrupole-orbitaltrap high resolution mass spectrometry (UHPLC-Q-Orbitrap). A total of 153 substances were identified with significant variables (p < 0.05, VIP > 1) and 16 metabolic pathways related to Feng-flavor Baijiu functions were obtained. The method showed good accuracy with recovery values between 80.4% and 117.4% and precision lower than 9.8% for all characteristic substances. Limit of detection (LOD) was ranging between 1.6 and 10.0 μg/L with R2 ≥ 0.99. Factor analysis demonstrated that ageing degree of magnetized samples increased with rise of magnetic field intensity and the maximum effect was equivalent to 12.81 years of natural ageing. The results of stoichiometric analysis revealed that regulation of magnetic field on proportion in Baijiu was mainly performed through entropy and the hydrogen bond strength of Baijiu molecules. Sensory evaluation illustrated that score of Baijiu samples reached the highest at 150 mT, demonstrating that magnetic field treatment can be considered as an optimized ageing means for Feng-flavor Baijiu.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|