1
|
He H, Ge Y, Ma X, Wang J, Qi W, Liu Y. Effect of LacBS/LacBP on biogenic amines degradation, physicochemical property, and flavor of Huangjiu. Food Chem 2025; 475:143244. [PMID: 39938271 DOI: 10.1016/j.foodchem.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/14/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Enzymatic reduction of biogenic amines (BAs) in fermented foods is effective and safe, with minimal impact on food flavor and the fermentation process. This study aimed to efficiently reduce BAs in Huangjiu using laccase. LacBS, LacBP, and LacBV demonstrated extensive substrate specificity for BAs. Additionally, these three laccases were resistant to acidic conditions and stable across a wide ethanol range (3-24 % vol). The effect of temperature on the ability of the three laccases to degrade BAs in Huangjiu was investigated, revealing that LacBS and LacBP had higher total BAs degradation than LacBV at 30 °C + 80 °C. Furthermore, synergistic LacBS/LacBP (at a 1:1 ratio) treatment efficiently increased the degradation of BAs in Huangjiu Sp.4, Sp.8, and Sp.10 by 68.93 %, 72.1 %, and 75.37 %, respectively, without affecting the flavor profile or physicochemical properties. Synergistic laccase system for BAs degradation might be a potential "green technology" for industries of traditional fermented foods.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yanyan Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangyang Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Zhang Y, Zhang D, Cai W, Tang F, Zhang Q, Zhao X, Huang R, Shan C. Effect of mixed fermentation of compound grapes on organic acids and volatiles in mulberry wine. Food Sci Biotechnol 2025; 34:1957-1968. [PMID: 40196343 PMCID: PMC11972271 DOI: 10.1007/s10068-025-01821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/01/2024] [Accepted: 01/02/2025] [Indexed: 04/09/2025] Open
Abstract
The main objective of this study was to investigate the effect of mixed fermentation of blended grapes on the organic acid and volatile content of mulberry fruit wines before and after fermentation. Rose-scented grapes and blackberry grapes were chosen to produce fruit wines through mixed fermentation with mulberries, respectively. HPLC was employed for the content of organic acids, whereas the concentrations of volatile compounds in the mulberry wines were determined using HS-SPME-GC-MS. The results showed that yeast fermentation could effectively reduce the content of malic acid and citric acid while generating rich aroma substances. During compound grape blend fermentation, the organic acid content decreases, and more volatile compounds are produced. Among them, mulberry rosé grapefruit wine exhibits a more complex array of volatile compounds, including phenylethanol, ethyl caprylate, and ethyl caprate, alongside recently discovered compounds like isobutanol, (+)-3-methyl-2-butanol, and α-pinitol. These compounds contribute to the enhanced flavor of mulberry wine.
Collapse
Affiliation(s)
- Yao Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Dongsheng Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Office of the Party Committee of Xinjiang Production and Construction Corps, Urumqi, 830000 Xinjiang China
| | - Wenchao Cai
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Fengxian Tang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Qin Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Xinxin Zhao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Ruijie Huang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China
| |
Collapse
|
3
|
Wang C, Fu X, Wang J, Yu J, Shi Y, Feng X, Liu C, Yang Z, Li B, Cao W, Du F, Shen Z, Hou H. Comprehensive characterization of Chinese beers based on chemical composition, antioxidant activity and volatile metabolomics. Sci Rep 2025; 15:10204. [PMID: 40133541 PMCID: PMC11937525 DOI: 10.1038/s41598-025-94771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Four different commercial beers in the Chinese market were compared and analyzed systematically, in order to provide more guidance for consumers. In this experimental study, various physicochemical parameters such as alcohol content, color, bitterness, total acidity, and carbohydrates were evaluated. The total phenolics content was determined using the Folin-ciocalteu method, while the total flavone and melanoidins were measured using colorimetric and spectrophotometric methods, respectively. The antioxidant capacity was determined by ORAC, DPPH and ABTS assays. Non-targeted metabolomics was used to analyze the composition and differences of volatile compounds in different beers. The results indicated significant physicochemical variations among the four different commercial beers. The higher the chroma of beer, the greater the content of active substances, and the corresponding antioxidant capacity in vitro was also stronger. The alcohol content of the four beers ranged from 4.23 to 7.54% (ABV), the color values of the four beers ranged from 4.8 to 141.5 EBC, and the bitterness ranged from 11.2 to 36.6 IBU. The total phenolics content varied between 159.10 mg/ L and 269.13 mg/ L, the total flavone content was in the range of 39.94 -144.59 mg/L, and the melanoidins content was in the range of 271.07-296.68 mg/L. The antioxidant activity ranged from 0.570 mmol TE/L to 0.873 mmol TE/L (ABTS), from 3.700 mmol TE/L to 26.73 mmol TE/L (ORAC), and from 26.12 to 86.72% (DPPH clearance rate). A total of 453 volatile compounds were detected in the four beers, primarily comprising terpenoids (21.24%), esters (19.47%), heterocyclic compound (14.16%), alcohol (9.96%) and hydrocarbons (9.96%), etc. Compared to Premium lager beer, the other three kinds of beers had unique and common metabolites, with only 9 common metabolites. The flavors of the differential metabolites were mainly green, floral, sweet, fruity, etc.
Collapse
Affiliation(s)
- Changwei Wang
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Xueyuan Fu
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Jianfeng Wang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Yaqi Shi
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Xiaomei Feng
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Chuyi Liu
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Zhaoxia Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China.
| | - Bafang Li
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Wanxiu Cao
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Fen Du
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Zhaopeng Shen
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Hu Hou
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| |
Collapse
|
4
|
Wang X, Lu K, Li W, Chen J, Yin Y, Sun X, Lu M, He J. Guiding chili variety selection for Zao chili in Guizhou: Based on a systematic study of sensory, physicochemical, and volatile characteristics. Food Chem X 2025; 26:102210. [PMID: 40207293 PMCID: PMC11979401 DOI: 10.1016/j.fochx.2025.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 04/11/2025] Open
Abstract
This work investigated the influence of seven chili varieties in Guizhou on the quality of Zao Chili (ZC), a local traditional fermented chili product. The physical and chemical indicators, volatile components, and product quality of the seven chili varieties and the ZCs were analyzed. Significant differences in physical and chemical properties among the chili varieties substantially affected the quality of ZCs. Chaotian chilies are harder and spicier, have a higher seed/skin ratio and crude fibre content, and lower fruit weight, water content, and reducing sugar content than Erjingtiao chilies. The Erjingtiao chili FQB3 had the highest reducing sugar content (55.296 g/100 g). The ZC produced by FQB3 had the highest comprehensive sensory score (89.7), characterized by high total acid and amino acid nitrogen content and low crude fibre content. There were 181 volatile compounds in the ZCs, including 32 common compounds and 79 differential compounds. More volatile compounds were found in the ZC derived from Erjingtiao chili. The results combined with the OAV analysis indicated that the aroma profile of ZC could be classified into six attributes, comprising 14 key substances, such as β-damascenone and benzaldehyde. In conclusion, the Erjingtiao chili fulfils ZC's processing requirements. These results will serve as a guide in the assessment of ZC quality, the selection of chili processing varieties, and the stabilization of product quality.
Collapse
Affiliation(s)
- Xueya Wang
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Kuan Lu
- Guizhou Biotechnology Research and Development Base Co., Ltd., Guizhou, Guiyang 550014, China
| | - Wenxin Li
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ju Chen
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yong Yin
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaojing Sun
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Min Lu
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jianwen He
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
5
|
Zhou Y, Wang D, Zhao J, Guo Y, Yan W. Differentiation and characterization of volatile compounds in five common milk powders using HS-GC-IMS, HS-SPME-GC-MS, and multivariate statistical approaches. Food Chem X 2025; 25:102179. [PMID: 39906067 PMCID: PMC11791332 DOI: 10.1016/j.fochx.2025.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 02/06/2025] Open
Abstract
Aroma is a key factor in milk powder quality evaluation and consumer choice. However, research has mostly focused on processing effects, with little on flavor differences among milk powders. This study analysed and identified the flavor characteristics of five common types of milk powders in China, including yak milk powder, donkey milk powder, camel milk powder, goat milk powder, and cow milk powder, using Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS), Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and multivariate statistical analysis. Results identified 55 and 86 volatile compounds via HS-GC-IMS and HS-SPME-GC-MS, respectively, revealing significant differences between milk powders. PCA, OPLS-DA, PLS-DA, and heatmaps further distinguished the sources. Based on VIP values, 27 and 24 key compounds were identified. These results underscored the potential of utilizing these combined techniques for quick flavor analysis and detecting adulteration in milk powder.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
6
|
Zheng S, Huang M, Yang W, Wang Z, Ren Q, Li H, Wu J, Meng N, Li J, Wang B. Preparation of Fangxian traditional Xiaoqu and its evolution of microbial communities and aroma compounds during fermentation. Food Res Int 2025; 199:115344. [PMID: 39658149 DOI: 10.1016/j.foodres.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Fangxian traditional Xiaoqu (FTXQ) is an important factor in the formation of unique aroma of Fangxian Huangjiu. FTXQ with only Polygonum hydropiper L. and FTXQ with Polygonum hydropiper L. and multiple herbs were prepared. Together with their seed Qu, three fermentation broths (FBs) were obtained and used during brewing to investigate differences in microorganisms, aroma compounds, and sensory evaluation. The results indicated that the core communities, including Enterococcus, and Saccharomyces, and 150 volatile aroma compounds, such as phenethyl alcohol were identified, and they showed close relationships. Twenty-three bacterial genera, including Enterococcus, 10 fungal genera like Saccharomyces, and 58 compounds, such as isoamyl octanoate, were the microorganisms and compounds responsible for the differences in the three FBs at different fermentation stages. The herbs added to Xiaoqu could enhance the overall aroma intensities of FBs and probably benefit in inhibiting the production of foodborne pathogens like Cronobacter during brewing.
Collapse
Affiliation(s)
- Siman Zheng
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wu Yang
- Industry Development Center of Fangxian Huangjiu, Shiyan 442100, China
| | | | - Qing Ren
- Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hailan Li
- Beijing Zhonghe Liquor Co., Ltd, Beijing 102400, China
| | - Jihong Wu
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Nan Meng
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinchen Li
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bowen Wang
- Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
7
|
Yu H, Wu S, Li Q, Chen C, Chen Q, Tian H. Novel insights into delayed bitterness control in traditional Huangjiu: Regulating bacterial community by inoculated with Saccharomyces cerevisiae SC-6. Food Chem X 2025; 25:102065. [PMID: 39758067 PMCID: PMC11699389 DOI: 10.1016/j.fochx.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
Under semi-open brewing conditions, traditional Huangjiu often suffers from unstable flavor quality, including occasional delayed bitterness. To address this issue, a yeast strain, Saccharomyces cerevisiae SC-6, was screened for its ability to reduce delayed bitterness. The effects of SC-6 on the flavor and microbial composition of Huangjiu exhibiting high levels of delayed bitterness were also investigated. GC-MS analysis indicated that S. cerevisiae SC-6 significantly lowered the levels of key delayed bitter compounds, including octanoic acid, ethyl caprylate, benzaldehyde, and phenol, by 54.80 %, 12.21 %, 31.38 %, and 43.23 %, respectively. PCoA analysis demonstrated that SC-6 altered the microbial community of traditional Huangjiu. Correlation analysis indicated that reduced bitter compounds correlated with changed abundances of Rhodopseudomonas, unclassified_f_Micromonosporaceae, Lachnoclostridium, Lactobacillus, Streptomyces, Clostridium_sensu_stricto_1, Staphylococcus, Pseudomonas, unclassified_o__Enterobacterales, and Candida. These results provide effective guidance for controlling off-flavors in traditional Huangjiu and clarify the role of microorganisms in the production of bitter substances.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shiqi Wu
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Qian Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
8
|
Zhang B, Zheng S, Huang M, Wu Q, Dong W, Wu J, Liu H, Zhao D, Yu Y, Li J. Analysis of volatile compounds in Xiangjiao baijiu from different storage containers and years based on HS-GC-IMS and DI-GC-MS. Food Chem X 2024; 24:101976. [PMID: 39641112 PMCID: PMC11617706 DOI: 10.1016/j.fochx.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
The volatile compounds in 16 different storage containers and years of Xiangjiao Baijiu (XJBJ) were compared and analyzed via direct injection (DI) combined with gas chromatography-mass spectrometry (GC-MS) and headspace extraction (HS) coupled with gas chromatography-ion mobility spectrometry (HS-GC-IMS) for the first time. Through HS-GC-IMS analysis, it was found that the succession rules of 14 compounds such as furfural during aging process. A total of 60 compounds were identified using DI-GC-MS. Twenty-five of these compounds were further quantified, and 19 compounds had odor activity values (OAVs) > 1, which were important contributor to aroma of XJBJ. Among them, those with OAVs >1000 included ethyl hexanoate, ethyl octanoate, ethyl butanoate, and ethyl pentanoate. Combining the results of quantitative, OAVs and partial least squares-discriminant analysis (PLS-DA) revealed that 10 compounds such as ethyl octanoate were the important compounds that lead to the differences between different storage types of XJBJ.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Siman Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qiang Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Wei Dong
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jinchen Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
9
|
Han J, Liang J, Li Y, Wahia H, Phyllis O, Zhou C, Zhang L, Chen L, Qiao X, Ma H. Vacuum freeze drying combined with catalytic infrared drying to improve the aroma quality of chives: Potential mechanisms of their formation. Food Chem 2024; 461:140880. [PMID: 39182333 DOI: 10.1016/j.foodchem.2024.140880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
This study aimed to investigate the effect of vacuum freeze drying combined with catalytic infrared drying (FD-CIRD) process on aromas, free amino acids, reducing sugars and free fatty acids in chive leaves and stems. Gas chromatography-mass spectrometry combined with multivariate data analysis revealed that dipropyl disulfide was the key aroma that distinguished the differences between chive leaves and stems. The key aromas benzeneacetaldehyde, decanal and 1-octen-3-ol enhanced FD-CIRD chive leaves and stems aromas. The free amino acid content was highest at FD-CIRD stage in all samples except for the control (FD), while the reducing sugar content was lowest. The content of unsaturated fatty acids gradually decreased at FD stage and increased at FD-CIRD stage. Additionally, correlation analysis revealed that phenylalanine was a potential precursor of benzacetenealdehyde, oleic and linolenic acids were potential precursors of decanal and 1-octen-3-ol. Therefore, FD-CIRD technique helps to improve the sensory profile of dried chives.
Collapse
Affiliation(s)
- Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Otu Phyllis
- Department of Science Laboratory Technology, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Ou Z, Chang S, Li S, Tan Y, Zhou Y, Pang X. Characterization of the key aroma compounds in different varieties of hops by application of the Sensomics approach. Food Chem 2024; 460:140448. [PMID: 39094342 DOI: 10.1016/j.foodchem.2024.140448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Aroma is a crucial indicator of hop quality. This study analyzed the differences in aroma compound composition among six hop varieties from three regions: North America, Europe, and Asia. Descriptive analysis and sensomic approaches including gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value calculation and aroma recombination were used for the detailed characterization and comparative analysis of hop aroma. A total of 55 aroma-active compounds were identified. Among them, linalool, geraniol, β-myrcene, 2-undecanone, and methyl decanoate contributed significantly to hop aroma. Orthogonal partial least squares discriminant analysis revealed that, except for the SAAZ and XinYuan hops with some similarities in their aroma composition, the remaining hops exhibited unique aroma characteristics. A total of 16 compounds, including methyl 5-methylhexanoate and (E)-β-farnesene, were identified as differentiating aroma compounds in the six hop samples. This study enriches the knowledge on hop flavour with different origins and provides valuable insights into its application.
Collapse
Affiliation(s)
- Zejie Ou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, People's Republic of China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Shiyu Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, People's Republic of China
| | - Shuchang Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, People's Republic of China
| | - Yanli Tan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, People's Republic of China
| | - Yuenan Zhou
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewing Ltd, Qingdao, 266061, People's Republic of China
| | - Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, People's Republic of China.
| |
Collapse
|
11
|
Zhou J, Chen L, Foo HL, Cao Z, Lin Q. Changes in microbial diversity and volatile metabolites during the fermentation of Bulang pickled tea. Food Chem 2024; 458:140293. [PMID: 38970959 DOI: 10.1016/j.foodchem.2024.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.
Collapse
Affiliation(s)
- Jinping Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Laifeng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China.
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China.
| |
Collapse
|
12
|
Cheng L, Li X, Li X, Wu Y, An F, Luo Z, Geng F, Huang Q, Liu Z, Tian Y. The improvement mechanism of volatile for cooked Tibetan pork assisted with ultrasound at low-temperature: Based on the differences in oxidation of lipid and protein. ULTRASONICS SONOCHEMISTRY 2024; 110:107060. [PMID: 39255593 DOI: 10.1016/j.ultsonch.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC-MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.
Collapse
Affiliation(s)
- Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China
| | - Fang Geng
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
Sun H, Du J, Yan X, Chen X, Zhao L. Dynamic changes in aromas and precursors of edible fungi juice: mixed lactic acid bacteria fermentation enhances flavor characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8541-8552. [PMID: 39392670 DOI: 10.1002/jsfa.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Lactic acid bacteria (LAB) fermentation technology has been increasingly used in the deep processing of edible fungi. However, the flavor profiles of edible fungi products after mixed LAB fermentation have received less attention and how aromas changes during the mixed LAB fermentation are still open questions. In the present study, fermented Hericium erinaceus and Tremella fuciformis compound juice (FHTJ) was prepared by mixed LAB strains. We aimed to systematically monitor the dynamic changes of aromas and precursors throughout the fermentation process and a data-driven association network analysis was used to tentatively illustrate the mechanisms of formation between aromas and their precursors. RESULTS Mixed LAB fermentation could enrich the aroma profile of FHTJ, reducing the unpleasant flavors such as nonanal and 1-octen-3-ol, as well as increasing the floral flavors such as ethyl acetate and α-pinene. Partial least squares-discriminant analysis and relative odor activity values revealed that 11 volatile chemicals were recognized as aroma-active markers. Volcano plot analysis showed that 3-octen-2-one (green flavor) was the key aroma-active marker in each stage, which was down-regulated in fermentation stages I, II and IV, whereas it was up-regulated in stage III. 3-Octen-2-one was significantly negatively correlated with organic acids, particularly pyruvate (r2 = -0.89). Ethyl caprylate (floral flavor) was up-regulated in the late fermentation stage, and showed a negative correlation with sugar alcohols and a positive correlation with organic acids, especially tartaric acid (r2 = 0.96). CONCLUSION The present study demonstrates the beneficial effect of mixed LAB fermentation on flavor characteristics, providing guidance for fermented edible fungi juice flavor quality monitoring and control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailan Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxin Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xingyue Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Cheng Y, Han L, Shao L, Wang H, Guo Z, Li G. Comparative investigation on the aroma profiles of edible citrus flowers in the main organs and different developmental stages. Food Chem X 2024; 23:101568. [PMID: 39022788 PMCID: PMC467083 DOI: 10.1016/j.fochx.2024.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Pomelo flowers emit a strong fragrance and give aromatic odors. Volatile compounds from pomelo flowers were analyzed at three developmental stages and in the main organs by molecular sensory science. A total of 134 volatiles including 25 odorants, were analyzed by gas chromatography-mass spectrometry/pulsed flame photometric detector (GC-MS/PFPD) and multidimensional GC-MS/olfactory (MDGC-MS/O). The total volatile content varied among pomelo flowers at different developmental stages (stage-III > stage-II > stage-I) and among different organs of pomelo flowers (petal > pistil > stamen). Linalool was an important odorant with a high OAV, and floral/fruity comprised the predominant aroma profile. Four odorants, ethyl 2-methylbutanoate, linalool, β-myrcene, and 2-butenal, were selected based on variable importance in projection (VIP) values and contributed mainly to the discrimination of pomelo flowers at three different developmental stages. Linalool, β-myrcene, d-limonene, and ethyl hexanoate were potential markers for evaluating flavor differences in pomelo floral organs.
Collapse
Affiliation(s)
- Yujiao Cheng
- Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Leng Han
- Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Linzi Shao
- Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Hua Wang
- Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Zheng Guo
- Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| |
Collapse
|
15
|
Liu J, Li R, Li Y, Sun Y. Selection of indigenous Saccharomyces cerevisiae strains with good oenological and aroma characteristics for winemaking in Ningxia China. Food Chem X 2024; 23:101693. [PMID: 39184318 PMCID: PMC11342883 DOI: 10.1016/j.fochx.2024.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Ningxia is one of the well-known wine producing regions in China. However, the oenological and aroma characteristics of indigenous yeasts remains hidden. The fermentative and oenological properties including stress resistance, hydrogen sulfide, foam production levels; killer phenotype, and flocculation of 89 Ningxia indigenous Saccharomyces cerevisiae isolates and ten commercial yeasts were evaluated. The fermentative and oenological properties of the tested strains varied significantly. They could resist 500 g/L glucose, 300 mg/L SO2, 14% (v/v) ethanol and pH 2.8, and produce more esters. They also produce low levels of ethanol and could conduct fermentations vigorously and at a high rate. Cabernet Sauvignon wines made with NXU 21-24 showed the high intensity of tropical fruit, dry fruit, temperate fruit, and spicy flavor. The floral flavor in NXU 21-102 fermented wine is very intense. The indigenous S. cerevisiae strains of NXU 21-102 and NXU 21-24 exhibited potential use as starter cultures in wine production.
Collapse
Affiliation(s)
- Junyu Liu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Ruirui Li
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Ying Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, PR China
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, Ningxia, China
| | - Yue Sun
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, PR China
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, Ningxia, China
| |
Collapse
|
16
|
Tian H, Xiong J, Sun J, Du F, Xu G, Yu H, Chen C, Lou X. Dynamic transformation in flavor during hawthorn wine fermentation: Sensory properties and profiles of nonvolatile and volatile aroma compounds coupled with multivariate analysis. Food Chem 2024; 456:139982. [PMID: 38876062 DOI: 10.1016/j.foodchem.2024.139982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Fermentation stage is a crucial factor for flavor profiles formation of hawthon wine. Thus, comprehensive knowledge of dynamic relationship between nonvolatile (NVOCs) and volatile aroma compounds (VOCs) from hawthorn wine at different fermentation stages was investigated by GC-MS and HPLC coupled with multivariate analysis. The increase of alcohols/esters/acids but decrease of terpenes/aldehydes/ketones was observed as fermentation extension. Specifically, OAV of ethyl acetate, ethyl caprylate, and ethyl caprate was > 50 from the 3rd day to 10th day, giving more fruity properties. Multivariate analysis showed that 1-hexanol, ethyl myristate, isobutyric acid, et al., were linked to the sensory evaluation of "sweet", "floral" and "fruity", and fructose, glucose and bitter amino acids were responsible for reduction of "bitterness" and "astringency". Additionally, VOCs were positively correlated with organic acids while negative to amino acids/soluble sugars, probably due to metabolization as precursors, providing references for aroma enhancement by regulating NVOCs precursors.
Collapse
Affiliation(s)
- Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Juanjuan Xiong
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiashu Sun
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fenglin Du
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Guofang Xu
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
17
|
Zhao Y, Gu M, Jiang P, Fang S, Yan N, Kong F, Ma D, Ren D, Pang X, Qiu J. Characterisation of aroma compounds, sensory characteristics, and bioactive components of a new type of huangjiu fermented with Chinese wild rice (Zizania latifolia). Food Chem 2024; 452:139524. [PMID: 38703742 DOI: 10.1016/j.foodchem.2024.139524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.
Collapse
Affiliation(s)
- Yuzong Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Mingyue Gu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Peng Jiang
- Qingdao Agricultural Product Quality and Safety Center, Qingdao 266199, China
| | - Song Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Fanyu Kong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Donglin Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| | - Jun Qiu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| |
Collapse
|
18
|
Gao Y, Wang Y, Hu L, Wang N, Cui F, Ying S, Hu F. Research on the brewing technology of Dangshen Huangjiu with low biogenic amines and high functional factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6330-6341. [PMID: 38563388 DOI: 10.1002/jsfa.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Biogenic amines (BA) are hazardous components in Huangjiu (HJ). To ensure the quality of Dangshen Huangjiu (DSHJ), an orthogonal experiment L9 (33) was proposed to optimize the process by the main brewing factors (pre-fermentation temperature, pre- and post-fermentation time) that may affect BA and functional factors in DSHJ. DSHJ was produced with low BA content and high functional factors. Gas chromatography-ion mobility spectrometry combined with a multivariate statistical method (GC-IMS-MSM) was used to analyze the volatile components in the brewing process of DSHJ. RESULTS The optimum brewing process parameters of DSHJ were as follows: pre-fermentation temperature, 28 °C; pre-fermentation time, 9 days; post-fermentation time, 18 days. The average content of BA in DSHJ was 33.12 mg L-1, and the sensory score, total phenol content and DPPH free radical scavenging rate of DSHJ were significantly higher than those of HJ. A total of 14 esters, 7 acids, 7 alcohols, 1 ketone, 5 aldehydes and 1 pyrazine in DSHJ and HJ were identified by GC-IMS. There were no significant differences (P > 0.05) in DSHJ and HJ in the soaking rice and saccharification stage. 11 components, such as ethyl acetate, and 12 components, such as acetic acid, were the different components of HJ and DSHJ in pre-fermentation and post-fermentation stages, respectively. In the post-fermentation stage, the contents of 8 components in DSHJ such as ethyl acetate were higher than in HJ. CONCLUSION The preparation process parameters of DSHJ optimized by orthogonal experiments can ensure that DSHJ has the advantages of low BA content, high total phenol content and good antioxidant activity. Sensory score and GC-IMS-MSM analysis found that DSHJ prepared using the optimal process had the characteristics of good taste and rich aroma. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingrui Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | - Linhai Hu
- Jiayuguan First People's Hospital, Jiayuguan, China
| | - Nan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | - Fang Cui
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| | | | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Provincial Codonopsis pilosula Industry Engineering Research Center, Lanzhou, China
| |
Collapse
|
19
|
Wang H, Shang R, Gao S, Huang A, Huang H, Li W, Guo H. Characterization of key aroma compounds in a novel Chinese rice wine Xijiao Huojiu during its biological-ageing-like process by untargeted metabolomics. Heliyon 2024; 10:e34396. [PMID: 39130457 PMCID: PMC11315155 DOI: 10.1016/j.heliyon.2024.e34396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Xijiao Huojiu (Xijiao), an ancient Chinese rice wine (ACRW), is produced using traditional methods, which involve biological-ageing-like process and result in distinctive sensory profiles. However, its aroma composition is still unclear. In this study, the aroma characteristics of three samples with varying ageing times were examined. Xijiao_SCT, with a short cellar time, exhibited a strong fruity and floral aroma and a less grain-like aroma. Conversely, Xijiao_LCT, which had a long cellar time, had a deep cocoa- and caramel-like aroma. A total of 27 key odorants that greatly influenced the aroma characteristics of Xijiao were identified. Comparative studies were used to identify 12 key odorants that distinguish Xijiao from modern Chinese rice wine (MCRW) and grape wines (GW). Additionally, 13 dominant latent ageing markers differentiated Xijiao_SCT from Xijiao_LCT. Our results suggested that ACRW and MCRW have overlapping but distinct volatile metabolomic profiles, highlighting the characteristics of ACRW during ageing process.
Collapse
Affiliation(s)
- Han Wang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Rui Shang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suying Gao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ancheng Huang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Honghui Huang
- Shenzhen Haohao Biotechnology Company Ltd., Shenzhen, 518028, China
| | - Wenyang Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
20
|
Geng J, Wu Y, Tian H, Dong J. Alleviation of High-Fat Diet-Induced Hyperlipidemia in Mice by Stachys sieboldii Miq. Huangjiu via the Modulation of Gut Microbiota Composition and Metabolic Function. Foods 2024; 13:2360. [PMID: 39123552 PMCID: PMC11312184 DOI: 10.3390/foods13152360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperlipidemia is a chronic disease that is difficult to cure, and long-term pharmacotherapy may have negative consequences. Dietary therapy is a very promising strategy, and Chinese rice wine (Huangjiu) will play an important role because of its many biologically active components. In this work, the alleviating effect of Stachys sieboldii Miq. Huangjiu (CSCHJ) on high-fat diet-induced hyperlipidemia in mice was investigated, which is brewed from the wheat Qu with the addition of Stachys sieboldii Miq. and contains 15.54 g/L of polysaccharides. The experimental results showed that CSCHJ inhibited appetite, reduced body weight and blood sugar levels, and downregulated the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) while concurrently upregulating high-density lipoprotein cholesterol (HDL-C) in the high-fat diet-induced hyperlipidemia mice. At the same time, it was discovered that alcohol worsens hyperlipidemia symptoms and related physiological markers, implying that CSCHJ polysaccharides may play a role in hyperlipidemia treatment. Through the assessment of organ indices, liver and kidney function, and tissue staining, CSCHJ demonstrated efficacy in repairing liver, kidney, and colon mucosal damage in hyperlipidemic mice. Furthermore, 16S rDNA sequencing and gas chromatography studies revealed that CSCHJ effectively restored the intestinal microbial structure and enhanced the quantity of fecal short-chain fatty acids (SCFAs) in hyperlipidemic mice. Therefore, the alleviating effect of CSCHJ on hyperlipidemia in mice may be attributed to its regulation of energy metabolism by repairing liver, kidney, and colon mucosal damage and restoring the gut microbiota structure, among other mechanisms. Overall, our findings provide evidence that CSCHJ contains active ingredients capable of alleviating hyperlipidemia, thereby laying a theoretical foundation for the extraction of bioactive substances from Huangjiu for future medical or dietary use.
Collapse
Affiliation(s)
- Jingzhang Geng
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
- School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an 710049, China
| | - Yunxia Wu
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Honglei Tian
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Jianwei Dong
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| |
Collapse
|
21
|
Cao K, Wu J, Wan X, Hou Y, Zhang C, Wang Y, Zhang L, Yang W, He Y, Wu R. Impact of non-Saccharomyces yeasts derived from traditional fermented foods on beer aroma: Analysis based on HS-SPME-GC/MS combined with chemometrics. Food Res Int 2024; 187:114366. [PMID: 38763646 DOI: 10.1016/j.foodres.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.
Collapse
Affiliation(s)
- Kaixin Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yuchen Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yusheng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Liang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenxin Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China.
| |
Collapse
|
22
|
Chang D, Yang Y, Tao F, Ding Y, Jian M, Huang Q. Correlation between climatic environment and characteristic components of 14 kinds of huajiao by thermal analysis techniques, GC-MS and HS-IMS. Food Sci Nutr 2024; 12:4783-4799. [PMID: 39055205 PMCID: PMC11266924 DOI: 10.1002/fsn3.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 07/27/2024] Open
Abstract
Huajiao (Zanthoxylum bungeanum Maxim.) is extensively cultivated in various countries, including China, Korea, and India, owing to its adaptability to diverse environments. This study comprehensively analyzed the volatile substance composition of 14 varieties of red huajiao with distinct geographical origins. Thermal analysis methods, gas chromatography-mass spectrometry (GC-MS), and headspace-ion mobility chromatography (HS-IMS) were employed to evaluate the total volatile substance composition and content. The study revealed minor variations in water content, volatile matter content, and fractions among the geographically sourced huajiao samples. Utilizing correlation analysis based on GC-MS and orthogonal partial least squares discriminant analysis (OPLS-DA) with HS-IMS, a robust classification method for the 14 types of huajiao was developed. Applying the variable importance in the projection (VIP) method, seven distinctive components were identified as potential markers for distinguishing the geographical origins of red huajiao. By integrating climatic and topographical factors of the 14 huajiao varieties, the correlation analysis of GC-MS, and OPLS-DA classification outcomes from HS-IMS elucidated the influence of geo-environmental factors on huajiao components and contents. This research provides insights into the impact of diverse geographic environments on the constituents and characteristics of huajiao. It offers valuable guidance for selecting optimal cultivation locations to enhance huajiao quality, aiding consumers in making informed choices.
Collapse
Affiliation(s)
- Dandan Chang
- Research and Development CentreChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- Sichuan Sanlian New Material Co., Ltd.ChengduChina
| | - Yu Yang
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Feiyan Tao
- Research and Development CentreChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- Sichuan Sanlian New Material Co., Ltd.ChengduChina
| | - Yu Ding
- Research and Development CentreChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- Sichuan Sanlian New Material Co., Ltd.ChengduChina
| | - Meiling Jian
- Research and Development CentreChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- Sichuan Sanlian New Material Co., Ltd.ChengduChina
| | - Qinwan Huang
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
23
|
Luo H, Wu Y, Jin J, Zhang L, Tong S, Li C, Tan Q, Han Q. Characterization of key aroma compounds of fried pepper sauce under different pretreatment processes. RSC Adv 2024; 14:16368-16378. [PMID: 38769966 PMCID: PMC11103562 DOI: 10.1039/d4ra02343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Fried pepper sauce (FPS) is renowned among consumers for its distinct aroma profile and rich nutritional composition. However, the primary aroma components of FPSs, crucial for quality assurance, remain unclear. Therefore, this study aimed to delve deeper into the unique aroma profile of FPSs by analyzing samples subjected to various pretreatment methods (including three heat-moisture treatment processes: soaking at 60 °C, soaking at 100 °C, and steaming, and three crushing processes: mashing, mincing, and horizontal knife cutting). FPS samples were analyzed by quantitative descriptive sensory analysis (QDA), gas chromatography-olfactometry-mass spectrometry (GC-O-MS), relative odor activity value analysis (rOAV), principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and partial least squares regression analysis (PLSR). The QDA results revealed that the overall aroma profile of FPS products was characterized by chili-like, fatty, and herbal notes. GC-MS identified 115 volatile components in FPSs, primarily alkenes, ketones, and acids, with varying concentrations across samples. According to the rOAV (>1) and GC-O, 11 compounds were identified as key aroma contributors to FPS aroma, including 2-methylpropanal, acetic acid, 3-methylbutanal, methional, eucalyptol, benzeneacetaldehyde, linalool, (E)-2-nonenal, (2E)-2-decenal, (2E,4E)-deca-2,4-dienal, and (E,Z)-2,4-decadienal. PCA and PLS-DA were employed to assess aroma differences among nine FPS samples. Screening for VIP > 1 and p < 0.05 identified 8 and 12 key marker compounds influenced by different crushing methods or heat-moisture treatments, respectively. PLSR indicated that the sensory attributes were greatly related to most aroma-active compounds. These findings provide novel insights into FPS aroma attributes, facilitating precise processing and quality control of fried pepper sauce products.
Collapse
Affiliation(s)
- Hao Luo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Qibo Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Qiqin Han
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| |
Collapse
|
24
|
Yu X, Zhang W, Xin L, Xu S, Cheng J. Evaluation of flavor substances of rice bran kvass based on electronic nose and gas chromatography-mass spectrometry. Food Chem X 2024; 21:101161. [PMID: 38434692 PMCID: PMC10904896 DOI: 10.1016/j.fochx.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
In this paper, the electronic nose (E-nose) and headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) were used to analyze the volatiles of rice bran kvass (RBK) with the reference of Qiulin kvass (QLK). Meanwhile, the flavor amino acids of RBK before and after fermentation were determined. The results showed that the kinds of kvass remained consistent in terms of the overall category of volatiles while there were differences in content between them (p < 0.05). A total of 35 volatile compounds, mainly including esters, alcohols, phenols, aldehydes, and acids, were identified by GC-MS in the two kinds of kvass. In addition, the total essential amino acid content and the total sweet amino acid content of RBK increased significantly (p < 0.05) after fermentation. RBK contains both the main flavor of kvass and its own unique characteristics, making it a new member of the Kvass family.
Collapse
Affiliation(s)
- Xiaochen Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenjuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liying Xin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Su Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
25
|
Yang Y, Li S, Xia Y, Wang G, Ni L, Zhang H, Ai L. Effects of different lactic acid bacteria on the characteristic flavor profiles of Chinese rice wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:421-430. [PMID: 37607217 DOI: 10.1002/jsfa.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND It has been well accepted that lactic acid bacteria (LAB) are the main bacterial genera present during the brewing of Chinese rice wine (CRW). LAB plays a decisive role in the flavor quality of CRW; however, its application in CRW has previously been overlooked. Therefore, effects of different LAB as co-fermenter on the flavor characteristics of CRW were investigated. RESULTS Co-fermentation of LAB increased the utilization rate of reducing sugar, concentration of lactic acid, amino acid nitrogen and total acidity, as well as the content of volatile flavor compounds. Different LAB doses had little effect on the flavor profiles of CRW, but the species of LAB greatly affected the flavor characteristic. The flavor of CRW co-fermented with Lactococcus lactis was characterized by long-chain fatty acid ethyl esters, while co-fermentation with Weissella confusa highlighted the ethyl esters of low molecular weight and short carbon chains in the resultant CRW. Alcohol compounds were dominant in the CRW co-fermented using Pediococcus pentosaceus. CONCLUSION The co-fermentation of LAB increased the number of volatile flavor compounds, especially esters. LAB exhibited great potential in the application of CRW industry to enrich the flavor characteristics and enhance the flavor diversity of the final product. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Shen Li
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co. Ltd, Shanghai, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Yang Y, Ren Q, Zhou Z, Li X, Ren D, Ji Z, Mao J. Structural elucidation of a highly branched α-D-glucan from Huangjiu and its hepatoprotective activity via gut microbiome regulation and intestinal barrier repairment. Carbohydr Polym 2024; 324:121423. [PMID: 37985032 DOI: 10.1016/j.carbpol.2023.121423] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023]
Abstract
Polysaccharides in Huangjiu, a traditional fermented food, are expected to be potentially effective ingredients in protecting against alcoholic liver disease (ALD). Elucidating their precise structural and functional characteristics is essential for in-depth understanding of structure-activity relationships of hepatoprotective polysaccharides. Herein, a major polysaccharide component HJPS1-2 was purified from Huangjiu with an average molecular weight of 3.49 kDa. Structural analyses inferred that HJPS1-2 backbone was composed of (1 → 4)-linked α-D-Glcp and a single α(1 → 6)-D-Glcp-α(1 → 6)-D-Glcp branched unit for every three α(1 → 4)-D-Glcp. An ALD mouse model was further established to clarify the underlying effect of HJPS1-2 on ALD alleviation. Biochemical detection and histopathological assessment revealed that HJPS1-2 intervention remarkably improved ethanol-induced hepatic dysfunction and steatosis. HJPS1-2 treatment ameliorated gut microbiota dysbiosis of ALD mice in a dose-dependent manner, mainly manifested as restoration of microbial diversities, community structure and bacterial interaction patterns. Compared with ethanol group, the strikingly elevated intestinal short-chain fatty acids' levels and enhanced intestinal barrier function after HJPS1-2 intake might contribute to reduced serum and liver lipopolysaccharide levels and subsequently suppressed release of hepatic inflammatory cytokines, thus mitigating ALD. Collectively, this research supports the potential of food-derived polysaccharides to hinder the early formation and progression of ALD through maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yi Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qingxi Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou 511458, Guangdong, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhongwei Ji
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Research Center for Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Zhejiang Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
27
|
Ma Y, Peng S, Mi L, Li M, Jiang Z, Wang J. Correlation between fungi and volatile compounds during different fermentation modes at the industrial scale of Merlot wines. Food Res Int 2023; 174:113638. [PMID: 37981360 DOI: 10.1016/j.foodres.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Elucidation of the relationship between fungal community development and dynamic changes in volatile components during fermentation is of great significance in controlling wine production. However, such studies on an industrial scale are rarely reported. In this study, fungal community succession during spontaneous fermentation (SPF) and inoculation fermentation (INF) of Merlot wine was monitored by a research strategy combining culture-dependent and culture-independent methods. The volatile compounds were monitored during SPF and INF by headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry technology. The Spearman correlation coefficient was also used to investigate the interplay between fungal communities and volatile compounds. We found that fungal community diversity in SPF decreased as fermentation progressed but was significantly higher than that of INF. Starmerella and Kazachstania were the dominant non-Saccharomyces genera in Merlot wine during SPF. However, the presence of commercial yeasts and sulphur dioxide led to a sharp decrease or the disappearance of non-Saccharomyces genera during INF. Spearman correlation analysis revealed that all major volatiles were positively correlated with most functional microbiotas except P. fermentans, S. bacillaris, E. necator, and D. exigua in INF. In SPF, most non-Saccharomyces were negatively correlated with core volatiles, whereas K. humilis, M. laxa, P. kluyveri, and A. japonicus were positively correlated with the major volatiles, especially some higher alcohols (isopentol, heptanol) and terpenes (linalool, citronellol). S. cerevisiae was positively correlated with most of the main volatile substances except ethyl isovalerate and isoamyl acetate. These findings provide a reference for comprehending the diverse fermentation methods employed in the wine industry and improving the quality of Merlot wines.
Collapse
Affiliation(s)
- Yuwen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Lan Mi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China.
| |
Collapse
|
28
|
Wang X, Yang S, Lu J, Xie G, Wu D. Screening and application of purine degrading Limosilactobacillus fermentum LF-1 from Huangjiu fermentation broth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7921-7931. [PMID: 37490358 DOI: 10.1002/jsfa.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND As the important building blocks of nucleic acids, purines are alkaloids and responsible for hyperuricemia and gout. The purine content in Huangjiu is higher, and mainly exists in the form of free bases, which is easier to be absorbed by human body. However, the currently available reports on purine in Huangjiu mainly focus on detection methods and content survey. No studies on the regulation of the purine content in Huangjiu have been reported. RESULTS Eighty-four strains, with the degradation capacity of purine, were screened from the fermentation broth of Huangjiu. In detail, the isolated lactic acid bacteria (LAB) strain 75 # showed the strongest degradation ability of guanosine, inosine and four purines, which reduce their levels by 83.4% (guanosine), 97.4% (inosine), 95.1% (adenine), 95.0% (guanine), 94.9% (hypoxanthine) and 65.9% (xanthine), respectively. Subsequently, the LAB strain 75# was identified to be Limosilactobacillus fermentum by 16S rRNA gene sequencing, which was named as Limosilactobacillus fermentum LF-1 and applied to the fermentation of Huangjiu in the laboratory. Compared with the fermentation broth of Huangjiu without adding L. fermentum LF-1, the content of purine compounds in the fermentation broth inoculated with L. fermentum LF-1 was reduced by 64.7%. In addition, the fermented Huangjiu had richer flavor compounds, and the physicochemical indices were in accordance with the national standard of Chinese Huangjiu. CONCLUSION The screened strain L. fermentum LF-1 may be a promising probiotic for the development of a novel that can efficiently degrade purine in Huangjiu. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianglin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shaojie Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guangfa Xie
- Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
29
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
30
|
Jin W, Cai W, Zhao S, Gao R, Jiang P. Uncovering the differences in flavor volatiles of different colored foxtail millets based on gas chromatography-ion migration spectrometry and chemometrics. Curr Res Food Sci 2023; 7:100585. [PMID: 37744553 PMCID: PMC10514424 DOI: 10.1016/j.crfs.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
The differences of volatile organic compounds in commercially available foxtail millets with different colors (black, green, white and yellow) were assayed through gas chromatography-ion migration spectrometry (GC-IMS) to explore their volatile flavor characteristics. Fifty-five volatile components were found in various colored foxtail millets, including 25 kinds of aldehydes (accounting for 39.19-48.69%), 10 ketones (25.36-32.37%), 15 alcohols (20.19-24.11%), 2 ethers (2.29-2.45%), 2 furans (1.49-2.95%) and 1 ester (0.27-0.39%). Aldehydes, alcohols and ketones were the chief volatiles in different colored foxtail millet, followed by furans, esters and ethers. These identified volatile flavor components in various colored foxtail millets obtained by GC-IMS could be well distinguished by principal components and cluster analysis. Meanwhile, a stable prediction model was fitted via partial least squares-discriminant analysis (PLS-DA), in which 17 kinds of differentially volatile components were screened out based on variable importance in projection (VIP>1). These findings might provide certain information for understanding the flavor traits of colored foxtail millets in future.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi, 723001, China
| | - Wenqiang Cai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi, 723001, China
| | - Ruichang Gao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
31
|
Wang K, Wu H, Wang J, Ren Q. Microbiota Composition during Fermentation of Broomcorn Millet Huangjiu and Their Effects on Flavor Quality. Foods 2023; 12:2680. [PMID: 37509772 PMCID: PMC10379140 DOI: 10.3390/foods12142680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Broomcorn millet Huangjiu brewing is usually divided into primary fermentation and post-fermentation. Microbial succession is the major factor influencing the development of the typical Huangjiu flavor. Here, we report the changes in flavor substances and microbial community during the primary fermentation of broomcorn millet Huangjiu. Results indicated that a total of 161 volatile flavor compounds were measured during primary fermentation, and estragole was detected for the first time in broomcorn millet Huangjiu. A total of 82 bacteria genera were identified. Pediococcus, Pantoea, and Weissella were the dominant genera. Saccharomyces and Rhizopus were dominant among the 30 fungal genera. Correlation analysis showed that 102 microorganisms were involved in major flavor substance production during primary fermentation, Lactobacillus, Photobacterium, Hyphodontia, Aquicella, Erysipelothrix, Idiomarina, Paraphaeosphaeria, and Sulfuritalea were most associated with flavoring substances. Four bacteria, Lactobacillus (R1), Photobacterium (R2), Idiomarina (R3), and Pediococcus (R4), were isolated and identified from wheat Qu, which were added to wine Qu to prepare four kinds of fortified Qu (QR1, QR2, QR3, QR4). QR1 and QR2 fermentation can enhance the quality of Huangjiu. This work reveals the correlation between microorganisms and volatile flavor compounds and is beneficial for regulating the micro-ecosystem and flavor of the broomcorn millet Huangjiu.
Collapse
Affiliation(s)
- Ke Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Huijun Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxuan Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Ren
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
32
|
Zheng S, Zhang W, Ren Q, Wu J, Zhang J, Wang B, Meng N, Li J, Huang M. The Production of Intensified Qu and Its Microbial Communities and Aroma Variation during the Fermentation of Huangjiu (Chinese Rice Wine). Foods 2023; 12:2674. [PMID: 37509766 PMCID: PMC10378853 DOI: 10.3390/foods12142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, intensified Qu (IQ) has been gradually applied to brewing in order to improve the aroma of Huangjiu (Chinese rice wine). In this study, Saccharomyces cerevisiae and Wickerhamomyces anomalus solutions were added to Fengmi Qu (FMQ) from Fangxian, China to produce IQ, and brewing trial was conducted. High-throughput sequencing (HTS) was used to analyze the microbial community in fermentation broth of IQ (IQFB). Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were performed to analyze volatile aroma compounds (VACs) in sample without Qu and both fermentation broths. The results showed that Pediococcus, Cronobacter, Enterococcus, Weissella, and Acinetobacter and Saccharomycopsis, Wickerhamomyces, and Saccharomyces were dominant bacterial and fungal groups, respectively. A total of 115 VACs were detected, and the content of esters including ethyl acetate, isoamyl acetate, and so on was noticeably higher in IQFB. The finding of sensory evaluation reflected that adding pure yeast to Qu could enhance fruit and floral aromas. Correlation analysis yielded 858 correlations between significant microorganisms and different VACs. In addition, prediction of microbial community functions in IQFB revealed global and overview maps and carbohydrate metabolism to be the main one. This study is advantageous for further regulation of the fermentation process of Huangjiu by microbial means.
Collapse
Affiliation(s)
- Siman Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wendi Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Ren
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
33
|
Yuan X, Zhou J, Zhang B, Shen C, Yu L, Gong C, Xu Y, Tang K. Identification, quantitation and organoleptic contributions of furan compounds in brandy. Food Chem 2023; 412:135543. [PMID: 36724717 DOI: 10.1016/j.foodchem.2023.135543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Furan compounds actively contribute to the characteristics of brandy. Herein, we have attempted to identify and quantify the furan compounds present in brandy using three different extraction methods combined with comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. Threshold determination and omission experiments were carried out to verify their organoleptic contribution. Liquid-liquid extraction using dichloromethane was found to be the optimal extraction method. A total of 21 furan compounds were identified, in which 5 were detected in brandy for the first time. Our quantitative results showed a positive correlation between the furan compound content and the aging time. Among them, ethyl 5-oxotetrahydro-2-furancarboxylate exhibited a very high odor activity value (1.64 < OAV < 179.53) and smoky aroma. Omission tests showed that the three furan compounds with an OAV > 1 made a significant difference to brandy. These findings bring a new perspective to the sensory and chemical characteristics of brandy.
Collapse
Affiliation(s)
- Xiaomeng Yuan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Junmeng Zhou
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Baochun Zhang
- ChangYu Group Company Ltd., Yantai, Shandong 264000, PR China
| | - Chunhua Shen
- ChangYu Group Company Ltd., Yantai, Shandong 264000, PR China
| | - Lina Yu
- ChangYu Group Company Ltd., Yantai, Shandong 264000, PR China
| | - Chuanbin Gong
- ChangYu Group Company Ltd., Yantai, Shandong 264000, PR China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
34
|
Sheng X, Huang M, Li T, Li X, Cen S, Li Q, Huang Q, Tang W. Characterization of aroma compounds in Rosa roxburghii Tratt using solvent-assisted flavor evaporation headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem X 2023; 18:100632. [PMID: 36926312 PMCID: PMC10010976 DOI: 10.1016/j.fochx.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Rosa roxburghii Tratt (RRT) has become popular owing to its high vitamin C content. Volatiles are important factors that affect the quality of RRTs and their processed products. In this study, volatile compounds were extracted using headspace-solid phase microextraction (HS-SPME) and solvent-assisted flavor evaporation (SAFE); 143 volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), and RRT from different origins were well distinguished based on principal component analysis. 45 odor-active components were identified using gas chromatography-olfactometry (GC-O). Through quantitative descriptive analysis (QDA), there were prominent "grassy" and "tea-like" attributes in RRT. Partial least-squares regression (PLSR) revealed that Longli RRT was greatly related to "tea-like" and "woody" attributes. Among the volatiles identified, alcohols and esters were considered the dominant volatile compounds of RRT, 4-methoxy-2,5-dimethyl-3(2H)-furanone was the most prominent compound. This study enriches the flavor chemistry theory of RRT and provides a scientific basis for optimizing the aroma of RRT and its processed products.
Collapse
Affiliation(s)
- Xiaofang Sheng
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Tingting Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Xin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shunyou Cen
- Guizhou Hongcai Junong Investment Co., Ltd., Liupanshui, Guizhou, China
| | - Qinyang Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiyuan Tang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China.,College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| |
Collapse
|
35
|
Novel insight into the evolution of volatile compounds during dynamic freeze-drying of Ziziphus jujuba cv. Huizao based on GC-MS combined with multivariate data analysis. Food Chem 2023; 410:135368. [PMID: 36608556 DOI: 10.1016/j.foodchem.2022.135368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
To understand the evolution of aroma in jujubes during dynamic freeze drying (FD), the relationship between aroma compounds, precursors, and related enzyme activities were analyzed. Fifty-three volatiles were identified during FD processing. After FD, the total aroma contents were increased from 11,004 to 14,603 μg/kg, ketones content was significantly decreased by 54.11 %, resulted in the loss of creamy note in freeze-dried jujube (FDJ). Through the network analysis, serine, glycine, proline, valine, cysteine, arginine, glutamic acid, lysine and leucine had the significant correlation with pyrazines, dominated the roasty note of FDJ. Linoleic acid, α-linolenic acid and oleic acid with lipoxygenase had important effects on the increase of esters (from 412 to 9,486 μg/kg), contributed fruity and sweet notes of FDJ. Besides, through the Mantel test, the influence degree of factors on the formation of FDJ aroma was ranked as temperature > enzyme activity > fatty acids > amino acids.
Collapse
|
36
|
Kate A, Tiwari S, Gujar JP, Modhera B, Tripathi MK, Ray H, Ghosh A, Mohapatra D. Spotting of Volatile Signatures through GC-MS Analysis of Bacterial and Fungal Infections in Stored Potatoes ( Solanum tuberosum L.). Foods 2023; 12:foods12102083. [PMID: 37238902 DOI: 10.3390/foods12102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Potatoes inoculated with Pectobacterium carotovorum spp., Aspergillus flavus and Aspergillus niger, along with healthy (control) samples, were stored at different storage temperatures (4 ± 1 °C, 8 ± 1 °C, 25 ± 1 °C) for three weeks. Volatile organic compounds (VOCs) were mapped using the headspace gas analysis through solid phase micro extraction-gas chromatography-mass spectroscopy every week. The VOC data were arranged into different groups and classified using principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) models. Based on a variable importance in projection (VIP) score > 2 and the heat map, prominent VOCs were identified as 1-butanol and 1-hexanol, which can act as biomarkers for Pectobacter related bacterial spoilage during storage of potatoes in different conditions. Meanwhile, hexadecanoic acid and acetic acid were signature VOCs for A. flavus, and hexadecane, undecane, tetracosane, octadecanoic acid, tridecene and undecene were associated with A. niger. The PLS-DA model performed better at classifying the VOCs of the three different species of infection and the control sample compared to PCA, with high values of R2 (96-99%) and Q2 (0.18-0.65). The model was also found to be reliable for predictability during random permutation test-based validation. This approach can be adopted for fast and accurate diagnosis of pathogenic invasion of potatoes during storage.
Collapse
Affiliation(s)
- Adinath Kate
- ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal 462038, India
| | - Shikha Tiwari
- ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal 462038, India
| | | | - Bharat Modhera
- Maulana Azad National Institute of Technology, Bhopal 462003, India
| | - Manoj Kumar Tripathi
- ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal 462038, India
| | - Hena Ray
- Center for Development of Advanced Computing, Kolkata 700091, India
| | - Alokesh Ghosh
- Center for Development of Advanced Computing, Kolkata 700091, India
| | - Debabandya Mohapatra
- ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal 462038, India
| |
Collapse
|
37
|
Zhang L, Zhao G, Yao Y, Zhu W, Xu S, Li H. Research on the aroma properties and microbial succession patterns in the processing of Chinese yellow sticky rice jiuqu steamed bread. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
38
|
Hong L, Wang Y, Zhang Q, Wang Y, Chen M, Li M, Huang Y, Wu Z, Ye J, Wang H. Effects of processing procedures on the formation of aroma intensity and odor characteristic of Benshan tea (Oolong tea, Camellia sentences). Heliyon 2023; 9:e14855. [PMID: 37025800 PMCID: PMC10070919 DOI: 10.1016/j.heliyon.2023.e14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Benshan tea is a kind of oolong tea, and Benshan (Camellia sinensis) tea tree originates from Anxi County of Fujian Province in China, which is a national tea tree breed. Tea processing is the key to the formation of its odor characteristics. It is extremely important to step by step analyze effects of tea processing on aroma intensity and the formation of odor characteristics for optimizing tea processing process and improving tea quality. The results of this study showed that processing resulted in a significant increase in the content of volatile compounds in tea leaves, i.e., from 25.213 μg/kg to 111.223 μg/kg, in which the volatile compounds were mainly terpenoids. Secondly, the analysis found that 20 kinds of key compounds constituted to odor characteristics of Benshan tea leaves, among which geraniol, trans-β-ionone, gerol, citronellol, benzeneacetaldehyde, and trans-nerolidol were the most key six. Floral and fruity aromas, especially floral aroma, mainly formed odor characteristics of Benshan tea after processing, while floral aroma mainly came from the contribution of geraniol, which was the foremost compound in the formation of floral aroma of Benshan tea.
Collapse
|
39
|
Zhou C, Zhou Y, Liu T, Li B, Hu Y, Zhai X, Zuo M, Liu S, Yang Z. Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine). Foods 2023; 12:foods12071458. [PMID: 37048279 PMCID: PMC10093938 DOI: 10.3390/foods12071458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Millet Huangjiu is a national alcoholic beverage in China. The quality of Chinese millet Huangjiu is significantly influenced by the protein components in the raw materials of millet. Therefore, in this study, the impact of different protein components on the quality of millet Huangjiu was investigated by adding exogenous proteins glutelin and albumin either individually or in combination. The study commenced with the determination of the oenological parameters of different millet Huangjiu samples, followed by the assessment of free amino acids and organic acids. In addition, the volatile profiles of millet Huangjiu were characterized by employing HS-SPME-GC/MS. Finally, a sensory evaluation was conducted to evaluate the overall aroma profiles of millet Huangjiu. The results showed that adding glutelin significantly increased the contents of total soluble solids, amino acid nitrogen, and ethanol in millet Huangjiu by 32.2%, 41.5%, and 17.7%, respectively. Furthermore, the fortification of the fermentation substrate with glutelin protein was found to significantly enhance the umami (aspartic and glutamic acids) and sweet-tasting (alanine and proline) amino acids in the final product. Gas chromatography-quadrupole mass spectrometry coupled with multivariate statistical analysis revealed distinct impacts of protein composition on the volatile organic compound (VOC) profiles of millet Huangjiu. Excessive glutelin led to an over-accumulation of alcohol aroma, while the addition of albumin protein proved to be a viable approach for enhancing the ester and fruity fragrances. Sensory analysis suggested that the proper amount of protein fortification using a Glu + Alb combination could enhance the sensory attributes of millet Huangjiu while maintaining its unique flavor characteristics. These findings suggest that reasonable adjustment of the glutelin and albumin contents in millet could effectively regulate the chemical composition and improve the sensory quality of millet Huangjiu.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaojie Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqian Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Gou M, Chen Q, Qiao Y, Jin X, Zhang J, Yang H, Fauconnier ML, Bi J. Key aroma-active compounds identification of Ziziphus jujuba cv. Huizao: Effect of pilot scale freeze-drying. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
41
|
Chen T, Wang H, Su W, Mu Y, Tian Y. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Food Res Int 2023; 165:112350. [PMID: 36869445 DOI: 10.1016/j.foodres.2022.112350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to reveal the relationship between core microorganisms and flavor substances in the fermentation process of corn wine. Microbial diversity, volatile and non-volatile flavor substances were detected by high-throughput sequencing (HTS), headspace solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) and gas chromatography time of flight mass spectrometry (GC-TOF-MS). High performance liquid chromatography (HPLC) was used to detect organic acids in corn wine fermentation, and its physiochemical properties were tracked. The results showed that physiochemical factors changed obviously with fermentation time. Bacillus, Prevotella_9, Acinetobacter and Gluconobacter were the predominant bacterial. Rhizopus and Saccharomyces were the dominant fungi. Acetic acid and succinic acid were important organic acids in corn wine. According to variable importance of projection (VIP) > 1 and P < 0.05, 24 volatile flavor substances with significant difference were screened out from 52 volatile flavor substances. Similarly, 25 non-volatile flavor substances with significant differences were screened out from the 97 reliable metabolites identified by 223 chromatographic peaks. Eight key metabolic pathways were enriched from 25 non-volatile flavor substances according to path influence values > 0.1 and P < 0.05. Based on Two-way Orthogonal Partial Least Squares (O2PLS) model and Pearson correlation coefficient, Saccharomyces, Rhizopus, uncultured_bacterium, Aneurinibacillus, Wickerhamomyces and Gluconobacter may be the potential volatile flavor-contributing microorganism genus in corn wine. The Pearson correlation coefficient showed that Saccharomyces was significantly positively correlated with malic acid, oxalic acid, valine and isoleucine, and Rhizopus was positively correlated with glucose-1-phosphate and alanine. These findings enhanced our understanding of the formation mechanism of flavor substances in corn wine and provided the theoretical basis for stabilizing flavor quality of corn wine.
Collapse
Affiliation(s)
- Tianyan Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Hanyu Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China.
| | - Yingchun Mu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yexin Tian
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
42
|
Yu H, Li Q, Guo W, Chen C, Ai L, Tian H. Dynamic analysis of volatile metabolites and microbial community and their correlations during the fermentation process of traditional Huangjiu (Chinese rice wine) produced around Winter Solstice. Food Chem X 2023; 18:100620. [PMID: 36993869 PMCID: PMC10041457 DOI: 10.1016/j.fochx.2023.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Traditional Huangjiu produced around Winter Solstice has higher quality and a more harmonious aroma. To investigate the variations of volatile metabolites and microbial communities during fermentation, gas chromatography-ion migration chromatography (GC-IMS), gas chromatography-mass spectroscopy (GC-MS) and high-throughput sequencing were employed. Aroma compounds results showed that alcohols and phenols increased before 45 days of fermentation and then decreased after 45 days, while esters gradually increased. Fungal genera Saccharomyces, Aspergillu, and Rhizomucor were dominant, whereas Staphylococcus, Pediococcus and Weissella were the dominant bacterial genera in the late stage. In addition, 11 genera such as Lactobacillus, Saccharopolyspora and Aspergillus (|r| > 0.6, p < 0.05) may contributed to traditional Huangjiu ecosystem stability. Moreover, correlation analysis indicated the dominant microorganisms (Saccharopolyspora, Staphylococcus, Lactobacillus, Saccharomyces and Aspergillus) were positively correlated with key compounds. These results provided theoretical guidance for further study on the flavor regulation of traditional Huangjiu via microbial community level and microbial augmentation.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wei Guo
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
- Corresponding author at: Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
43
|
Liang L, Ma Y, Jiang Z, Sam FE, Peng S, Li M, Wang J. Dynamic analysis of microbial communities and flavor properties in Merlot wines produced from inoculation and spontaneous fermentation. Food Res Int 2023; 164:112379. [PMID: 36737964 DOI: 10.1016/j.foodres.2022.112379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The microbiota is of great importance in forming flavor compounds and improving sensory characteristics during wine fermentation. Understanding microbial succession is critical for controlling its contribution to wine flavor with predictable sensory quality. In this study, microbial community composition and characteristic flavor compounds were identified during the inoculation fermentation (IF) and spontaneous fermentation (SF) to provide a basis for exploring the relationship between these microorganisms and volatile components. The results demonstrated that SF had higher fungal community diversity and lower bacterial community diversity than IF. Eleven (11) fungal and 10 bacterial genera (relative abundance > 0.1 %) were considered beneficial microbiota. Saccharomyces, Hanseniaspora, and Alternaria were the leading fungal genera in SF. Massilia, Nesterenkonia, and Halomonas were the predominant bacteria in IF, while Tatumella and Ochrobactrum were mainly from SF. In addition, the microbial community composition was reshaped via correlational analysis between microbiota succession and physicochemical properties, mainly attributed to the changes in environmental factors during fermentation. The SF wines had more aromatic higher alcohols, acetate esters, and terpenes. Also, the sensory evaluation showed that the SF wines were characterized by more fruity, floral, intense, and typical aromas. The associations between the microbial community and the volatile components indicated that the dominant species largely determined the characteristic flavor compounds during fermentation.
Collapse
Affiliation(s)
- Lihong Liang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Yuwen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Faisal Eudes Sam
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China; College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China.
| |
Collapse
|
44
|
Ye J, Wang Y, Lin S, Hong L, Kang J, Chen Y, Li M, Jia Y, Jia X, Wu Z, Wang H. Effect of processing on aroma intensity and odor characteristics of Shuixian (Camellia sinensis) tea. Food Chem X 2023; 17:100616. [PMID: 36974179 PMCID: PMC10039254 DOI: 10.1016/j.fochx.2023.100616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Processing is extremely important for the formation of aroma characteristic of tea leaves. In this study, the effects of processing on the content of volatile compounds, aroma intensity and odor characteristic of Shuixian tea were analyzed. The results showed that the content of volatile compounds in Shuixian tea increased significantly after processing, among which terpenoids and esters were the highest. There were 18 key compounds constituting the aroma characteristics of Shuixian tea, among which geraniol and nerol were the most important compounds, which contributed 96.28% to the aroma of Shuixian tea. The odor characteristics of Shuixian tea were mainly floral and fruity and the contribution of floral mainly came from geraniol, while fruity mainly came from nerol. Geraniol and nerol compounds increased rapidly after the withering process of tea leaves. This study provided an important reference for the improvement of processing technology and quality enhancement of Shuixian tea.
Collapse
|
45
|
Analysis of the Microbial Community Structure and Volatile Metabolites of JIUYAO in Fangxian, China. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
JIUYAO is an important saccharification starter in the production of huangjiu and is also an important source of flavor. In this study, the microbial community structure of JIUYAO from Fangxian was studied by high-throughput sequencing (HTS) technology for the first time. The volatile flavor compounds of the JIUYAO metabolites were also analyzed by headspace solid-phase microextraction combined with full two-dimensional gas chromatography-mass spectrometry (HS-SPME-GC×GC/MS) for the first time. The results showed that there were 15 dominant bacterial genera, including Weissella, Pediococcus, unclasssified_k_norank_d_Bacteria, Lactobacillus, Leuconostoc, etc. Thirteen species of dominant fungi included Wickerhamomyces, Saccharomycopsis, Rhizopus, etc. The different samples of JIUYAO were similar in their microbial species, but the number of species was significantly different. A total of 191 volatile flavor compounds (VFCs) were detected, among which esters, alcohols, acids, and alkenes were the main flavor compounds, and 21 terpenoids were also detected. In addition, the functional prediction of micro-organisms in JIUYAO revealed that global and overview maps, amino acid metabolism, and carbohydrate metabolism were the dominant categories. Through correlation analysis, 538 potential correlations between the dominant micro-organisms and the different flavor compounds were obtained. This study revealed the interactions between the micro-organisms and the volatile metabolites in JIUYAO, which provided reliable data for the analysis of the microbial community structure of Fangxian JIUYAO and provided theoretical support for the quality evaluation of JIUYAO.
Collapse
|
46
|
Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
47
|
Chen Y, Fu Y, Li P, Xi H, Zhao W, Wang D, Mao J, Zhang S, Sun S, Xie J. Characterization of Traditional Chinese Sesame Oil by Using Headspace Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry, Electronic Nose, Sensory Evaluation, and RapidOxy. Foods 2022; 11:foods11223555. [PMID: 36429147 PMCID: PMC9689288 DOI: 10.3390/foods11223555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Xiao Mo Xiang You (XMXY) is a traditional Chinese sesame oil variety that is obtained through a hot water flotation process. This unique process gives the oil a unique aroma, health benefits, and excellent product stability. Although XMXY is always the most expensive among all the sesame oil varieties, it is usually used as a flavoring in many traditional Chinese daily food products and is increasingly popular. In order to reveal the characteristics of the oil, the volatile components, sensory evaluation, and oxidation stability of five XMXY samples were, respectively, analyzed by using headspace solid-phase microextraction/gas chromatography−mass spectrometry, an electronic nose, sensory evaluation, and RapidOxy. Comparisons and multidimensional statistical analysis were also carried out to distinguish XMXY from roasted sesame oil (RSO) and cold-pressed sesame oil (CSO) samples. In total, 69 volatiles were identified from XMXY, RSO, and CSO samples. Some compounds possessed high odor activity value (OAV > 1) in XMXY, including heterocyclic compounds, phenols, and sulfur-containing compounds. Additionally, they were also the main volatile components that distinguish XMXY from RSO and CSO. Roasted and nutty aromas were the dominant aroma attributes of XMXY. XMXY had better flavor intensity and oxidation stability than the other two sesame oil samples. These results are very valuable for the quality control and product identification of traditional Chinese sesame oil.
Collapse
Affiliation(s)
- Yan Chen
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yingjie Fu
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Peng Li
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Hui Xi
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Wuduo Zhao
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Dingzhong Wang
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Jian Mao
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Shusheng Zhang
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Shihao Sun
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67672531
| | - Jianping Xie
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| |
Collapse
|
48
|
Li M, Zhan P, Wang P, Tian H, Geng J, Wang L. Characterization of Aroma-active Compounds Changes of Xiecun Huangjius with Different Aging Years Based on Odor Activity Values and Multivariate Analysis. Food Chem 2022; 405:134809. [DOI: 10.1016/j.foodchem.2022.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
49
|
Li J, Zhang M, Feng X, Ding T, Zhao Y, Sun C, Zhou S, He J, Wang C. Characterization of fragrant compounds in different types of high-salt liquid-state fermentation soy sauce from China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Characterization and correlation of dominant bacteria and volatile compounds in post-fermentation process of Ba-bao Douchi. Food Res Int 2022; 160:111688. [DOI: 10.1016/j.foodres.2022.111688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|