1
|
Song J, Sun X, Wang C. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. BMC Genomics 2025; 26:223. [PMID: 40050716 PMCID: PMC11884202 DOI: 10.1186/s12864-025-11388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND QN Orange scallops are interspecific hybrids with orange adductor muscles that are rich in carotenoids. In this study, analysis of miRNA expression profiles was performed to explore possible regulatory patterns involved in carotenoid accumulation in adductor muscles of QN Orange scallops. RESULTS A total of 91 differentially expressed miRNA between the white and orange adductor muscles were identified. GO and KEGG analysis of target genes of differentially expressed miRNAs revealed enrichments in the transmembrane transporter activity-related pathways, kinase activity-related pathways, signal transduction-related pathways, ATP binding cassette transporters (ABC transporters), retinol metabolism, lipid-related metabolism, and calcium signaling pathway. In particular, miRNA Contig1462_36180, which was shown to negatively regulate the activity of methyltransferase 3 (METTL3) by dual-luciferase reporter assay, may play a pivotal role in the accumulation of carotenoids. Furthermore, METTL3 interference seemed to reduce the pectenoxanthin content and m6A level. CONCLUSION It is thus speculated that Contig1462_36180 may regulate m6A methylation by regulating METTL3, which in turn affects pectenoxanthin accumulation in QN Orange scallops.
Collapse
Affiliation(s)
- Junlin Song
- Analysis and Testing Center, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao Sun
- Analysis and Testing Center, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
2
|
Liu S, Wang S, Zhao L, Li T, Zhang Y, Wang H, Bao Z, Hu X. Functional Analysis of β-Carotene Oxygenase 2 ( BCO2) Gene in Yesso Scallop ( Patinopecten yessoensis). Int J Mol Sci 2024; 25:3947. [PMID: 38612756 PMCID: PMC11012205 DOI: 10.3390/ijms25073947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (β-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.
Collapse
Affiliation(s)
- Shiqi Liu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Shuyue Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Liang Zhao
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Tingting Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Yihan Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Huizhen Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Zhu X, Zhang J, Li M, Hou X, Liu A, Dong X, Wang W, Xing Q, Huang X, Wang S, Hu J, Bao Z. Cardiac performance and heart gene network provide dynamic responses of bay scallop Argopecten irradians irradians exposure to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163594. [PMID: 37094688 DOI: 10.1016/j.scitotenv.2023.163594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The increased frequency of marine heat waves (MHWs) caused by global climate change is predicted to threaten the survival of economic bivalves, therefore having severely adverse effects on local ecological communities and aquaculture production. However, the study of scallops facing MHWs is still scarce, particularly in the scallop Argopecten irradians irradians, which has a significant share of "blue foods" in northern China. In the present study, bay scallop heart was selected to detect its cardiac performance, oxidative impairment and dynamic molecular responses, accompanied by assessing survival variations of individuals in the simulated scenario of MWHs (32 °C) with different time points (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Notably, cardiac indices heart rate (HR), heart amplitude (HA), rate-amplitude product (RAP) and antioxidant enzyme activities superoxide dismutase (SOD) and catalase (CAT) all peaked at 24 h but sharply dropped on 3 d, coinciding with mortality. Transcriptome analysis revealed that the heart actively defended against heat stress at the acute stage (<24 h) via energy supply, misfolded proteins correction and enhanced signal transduction, whereas regulation of the defense response and apoptotic process combined with twice transcription initiation were the dominant responses at the chronic stage (3-10 d). In particular, HSP70 (heat shock protein 70), HSP90 and CALR (calreticulin) in the endoplasmic reticulum were identified as the hub genes (top 5 %) in the HR-associated module via WGCNA (weighted gene co-expression network analysis) trait-module analysis, followed by characterization of their family members and diverse expression patterns under heat exposure. Furthermore, RNAi-mediated knockdown of CALR expression (after 24 h) significantly weakened the thermotolerance of scallops, as evidenced by a drop of 1.31 °C in ABT (Arrhenius break temperature) between the siRNA-injected group and the control group. Our findings elucidated the dynamic molecular responses at the transcriptome level and verified the cardiac functions of CALR in bay scallops confronted with stimulated MHWs.
Collapse
Affiliation(s)
- Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Fang Zongxi Center for Marine Evo Devo, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Wu S, Zhao L, Huang J, Li Y, Liu Z, Zhang D. miR-330 targeting BCO2 is involved in carotenoid metabolism to regulate skin pigmentation in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2023; 24:124. [PMID: 36927381 PMCID: PMC10021964 DOI: 10.1186/s12864-023-09173-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a critical role in regulating skin pigmentation. As a key economic trait, skin color directly affects the market value of rainbow trout (Oncorhynchus mykiss), however, the regulatory mechanism of most miRNAs in fish skin color is still unclear. RESULTS In this study, the full-length cDNA sequence of β-carotene oxygenase 2 (BCO2, a key regulator of carotenoid metabolism) from the rainbow trout was obtained using rapid-amplification of cDNA ends (RACE) technology, and qRT-PCR was used to investigate the differential expression of miR-330 and BCO2 in 14 developmental stages and 13 tissues between wild-type rainbow trout (WTrt) and yellow mutant rainbow trout (YMrt). Additionally, the function of miR-330 was verified by overexpression and silencing in vitro and in vivo. The results showed that the complete cDNA sequence of BCO2 was 2057 bp with a 1707 bp ORF, encoding a 568 amino acid protein having a molecular weight of 64.07 kD. Sequence alignment revealed that higher conservation of BCO2 protein amongst fishes than amongst other vertebrates, which was further confirmed by phylogenetic analysis. The analysis of spatial and temporal expression patterns suggested that BCO2 and miR-330 were abundantly expressed from fertilized-stage to multi-cell as well as in the dorsal and ventral skin of WTrt and YMrt, and their expression patterns were opposite in most of the same periods and tissues. In vitro, luciferase reporter assay confirmed that BCO2 was a direct target of miR-330, and transfection of miR-330 mimics into rainbow trout liver cells resulted in a decrease in the expression of BCO2; conversely, miR-330 inhibitor had the opposite effect to the miR-330 mimics. In vivo, miR-330 agomir significantly decreased BCO2 expression in dorsal skin, tail fin, and liver. Furthermore, overexpression of miR-330 could suppress cell proliferation and induce apoptosis. CONCLUSION Our results showed that miR-330 is involved in the regulation of skin pigmentation in rainbow trout by targeting BCO2 and shows its promise as a potential molecular target to assist the selection of rainbow trout with better skin color patterns.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dongqiang Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
5
|
Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel) 2022; 11:795. [PMID: 35453480 PMCID: PMC9025559 DOI: 10.3390/antiox11040795] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Natural carotenoids (CARs), viz. β-carotene, lutein, astaxanthin, bixin, norbixin, capsanthin, lycopene, canthaxanthin, β-Apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester, are being studied as potential candidates in fields such as food, feed, nutraceuticals, and cosmeceuticals. CAR research is advancing in the following three major fields: (1) CAR production from natural sources and optimization of its downstream processing; (2) encapsulation for enhanced physical and chemical properties; and (3) preclinical, clinical, and epidemiological studies of CARs' health benefits. This review critically discusses the recent developments in studies of the chemistry and antioxidant activity, marketing trends, dietary sources, extraction, bioaccessibility and bioavailability, encapsulation methods, dietary intake, and health benefits of CARs. Preclinical, clinical, and epidemiological studies on cancer, obesity, type 2 diabetes (T2D), cardiovascular diseases (CVD), osteoporosis, neurodegenerative disease, mental health, eye, and skin health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Veeresh Lokesh
- Biocontrol Laboratory, University of Horticultural Sciences, Bagalkote 587104, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| |
Collapse
|
6
|
Manochkumar J, Doss CGP, Efferth T, Ramamoorthy S. Tumor preventive properties of selected marine pigments against colon and breast cancer. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|