1
|
Bai W, Chen B, Chen H, Nie L, Liang M, Xu Y, Lu Y, Wang L. Antimicrobial Activity of Compounds Isolated from the Nest Material of Crematogaster rogenhoferi (Mayr) (Hymenoptera: Formicidae). INSECTS 2024; 15:1019. [PMID: 39769621 PMCID: PMC11678100 DOI: 10.3390/insects15121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Ants as social insects live in groups, which increases the risk of contagious diseases. In response to the threat of pathogens, ants have evolved a variety of defense mechanisms, including incorporating antimicrobial chemicals into nest material for nest hygiene. Crematogaster rogenhoferi is an arboreal ant, building its nest using plant tissues. It is still unclear how C. rogenhoferi is protected against pathogens in its nest. Two main chemicals, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol] (MP) and lup-20(29)-en-3-one (LP), isolated from nest materials of C. rogenhoferi were used to investigate ants' anti-pathogenic activity against the entomopathogenic fungus Beauveria bassiana and the entomopathogenic bacteria Serratia marcescens. The results showed that MP and LP can inhibit the growth of B. bassiana through direct contact and fumigation. However, neither MP nor LP had any negative effect on S. marcescens growth. Subsequent analysis showed that MP was found in both the abdomen part and the head part of C. rogenhoferi workers, and LP was not detected in C. rogenhoferi workers. Since LP is a common plant secondary metabolite, it is implied that LP may originate from the plant tissue of C. rogenhoferi nest materials. Our results showed that C. rogenhoferi capitalizes on its own antimicrobial chemicals and probably the chemical defenses which have evolved in plants to protect itself against pathogens.
Collapse
Affiliation(s)
- Weihui Bai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| | - Baihe Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| | - Huimei Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| | - Lei Nie
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| | - Mingrong Liang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China;
| | - Yijuan Xu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| | - Lei Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.B.); (B.C.); (H.C.); (L.N.); (Y.X.); (Y.L.)
| |
Collapse
|
2
|
Chen Y, Guo R, Ma F, Zhou H, Zhang M, Ma Q. Effect of Coffee Grounds/Coffee Ground Biochar on Cement Hydration and Adsorption Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:907. [PMID: 38399158 PMCID: PMC10890603 DOI: 10.3390/ma17040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Taking advantage of the strong adsorption characteristics of coffee grounds (CGs) and coffee ground biochar (CGB), this research employed equal amounts of 2%, 4%, 6%, and 8% CGs and CGB to replace cement. This study thereby examined the impacts of CGs and CGB on cement compressive strength, as well as their abilities to adsorb chloride ions and formaldehyde. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG-DTG), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to investigate the hydration mechanism and characterize the microscopic structure. The results show the following: (1) The presence of a substantial quantity of organic compounds in CGs is found to have an adverse effect on both the compressive strength and hydration degree of the sample. The use of CGB after high-temperature pyrolysis of phosphoric acid can effectively improve the negative impact of organic compounds on the sample. (2) The addition of CGs reduces the adsorption of chloride ions by cement, primarily due to the presence of fewer hydration products. However, when CGB was incorporated into cement, it enhanced the ability to adsorb chloride ions. (3) Cement containing 8% CGB content can slightly enhance the adsorption of formaldehyde. However, the cement sample with 8% CGB content exhibited the most significant ability to adsorb formaldehyde.
Collapse
Affiliation(s)
- Yang Chen
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; (Y.C.); (R.G.); (F.M.); (H.Z.); (M.Z.)
- Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China
- International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China
| | - Rongxin Guo
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; (Y.C.); (R.G.); (F.M.); (H.Z.); (M.Z.)
- Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China
- International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China
| | - Feiyue Ma
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; (Y.C.); (R.G.); (F.M.); (H.Z.); (M.Z.)
- Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China
- International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China
| | - Haoxue Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; (Y.C.); (R.G.); (F.M.); (H.Z.); (M.Z.)
- Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China
- International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China
| | - Miao Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; (Y.C.); (R.G.); (F.M.); (H.Z.); (M.Z.)
- Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China
- International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China
| | - Qianmin Ma
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; (Y.C.); (R.G.); (F.M.); (H.Z.); (M.Z.)
- Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China
- International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China
| |
Collapse
|
3
|
Biesek J, Banaszak M, Wlaźlak S, Adamski M. Use of coffee husks - comparison of pellet bedding quality, performance features, and some welfare indicators of broiler chickens. BMC Vet Res 2023; 19:182. [PMID: 37784147 PMCID: PMC10544301 DOI: 10.1186/s12917-023-03749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The study aimed to evaluate the influence of wheat straw and different coffee husk (CHs) levels in pellet bedding on its quality, broiler chickens' performance, meat quality, and welfare indicators. In total, 200 Ross 308 chickens were divided into 4 groups: C - control with wheat straw pellet; CH10 - pellet with 10% CHs, CH25 - pellet with 25% CHs, and CH50 - pellet with 50% CHs. During 42 days of rearing, each bedding's physicochemical features were analyzed. The production results were controlled, and the footpad dermatitis, hock burns, and feather quality were assessed. From chosen birds, carcass composition was analyzed, as well as the qualitative features (color, water-holding capacity, drip loss) and breaking bone strength. RESULTS The bedding material and rearing days influenced the content of dry matter, crude fiber, nitrogen, phosphorus, potassium, NDF, ADF, and pH. The results were inconclusive. The increasing trends in nitrogen, phosphorus, and potassium content were noticed at the end of rearing. Strong coefficient determination in bedding features was found (0.580 - 0.986). The pellet with CHs had no adverse effect on the growth performance of broilers. In the CH50 group, a lower fat percentage was found. A beneficial effect on water-holding capacity was noticed in leg muscles from CH10 and pectoral muscles from CH25. A significant decrease was found in footpad dermatitis incidence in groups CH25 and CH50. CONCLUSIONS It can be concluded that CHs reuse in broilers as the pellet bedding material is possible due to the beneficial effect on some meat quality features and no adverse effect on the performance of broiler chickens. The positive impact on lower foot pad dermatitis incidence indicated the possibility of using CHs in pellet bedding.
Collapse
Affiliation(s)
- Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Mirosław Banaszak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
4
|
Poláková K, Bobková A, Demianová A, Bobko M, Lidiková J, Jurčaga L, Belej Ľ, Mesárošová A, Korčok M, Tóth T. Quality Attributes and Sensory Acceptance of Different Botanical Coffee Co-Products. Foods 2023; 12:2675. [PMID: 37509767 PMCID: PMC10378423 DOI: 10.3390/foods12142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Coffee processing is a major contributor to the creation of food and product waste. Using coffee co-products can play an essential role in addressing environmental problems and issues with nutritionally unbalanced foods, population growth, and food-related diseases. This research aimed to determine the quality and sensory parameters (aw, pH, dry matter, TAC, TPC, fat, fatty acids profile, fiber, caffeine, chlorogenic acids, color, and sensory analysis) of different botanical origins of cascara (coffee husks) and silverskin (thin layer). The results of this study show that silverskin and cascara are a good source of TAC (1S 58.17 ± 1.28%, 2S 46.65 ± 1.20%, 1C 36.54 ± 1.84%, 2C 41.12 ± 2.11%). Cascara showed the presence of polyphenols (2C 49.135 g GAE·kg-1). Coffee co-products are good sources of fiber. Silverskin had higher values of caffeine than cascara. Palmitic, stearic, oleic, linoleic, and arachidic acids were the most represented acids in the samples. Given the obtained results, cascara can be considered "low-fat" (1C 4.240 g·kg-1 and 2C 5.4 g·kg-1). Based on the sensory evaluation, no sample reached the acceptable index value of 70%. Understanding the link between the character, identification properties, and composition of coffee co-products of different botanical origins can enable their application in the food industry.
Collapse
Affiliation(s)
- Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Judita Lidiková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Andrea Mesárošová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Melina Korčok
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Tóth
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
5
|
Effects of Tibetan kefir grain fermentation on the physicochemical properties, phenolics, enzyme activity, and antioxidant activity of Lycium barbarum (Goji berry) juice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Funari CS, Rinaldo D, Bolzani VS, Verpoorte R. Reaction of the Phytochemistry Community to Green Chemistry: Insights Obtained Since 1990. JOURNAL OF NATURAL PRODUCTS 2023; 86:440-459. [PMID: 36638830 DOI: 10.1021/acs.jnatprod.2c00501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review article aims to study how phytochemists have reacted to green chemistry insights since 1990, the year when the U.S. Environmental Protection Agency launched the "Pollution Prevention Act". For each year in the period 1990 to 2019, three highly cited phytochemistry papers that provided enough information about the experimental procedures utilized were sampled. The "greenness" of these procedures was assessed, particularly for the use of solvents. The highly hazardous diethyl ether, benzene, and carbon tetrachloride did not appear in the papers sampled after 2010. Advances in terms of sustainability were observed mainly in the extraction stage. Similar progress was not observed in purification procedures, where chloroform, dichloromethane, and hexane regularly have been employed. Since replacing such solvents in purification procedures should be a major goal, potential alternative approaches are discussed. Moreover, some current initiatives toward a more sustainable phytochemical research considering aspects other than only solvents are highlighted. Although some advances have been achieved, it is believed that natural products chemists can play a major role in developing a novel ecological paradigm in chemistry. To contribute to this objective, six principles for performing natural products chemistry consistent with the guidelines of green chemistry are proposed.
Collapse
Affiliation(s)
- Cristiano S Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), 18610-034Botucatu, Brazil
| | - Daniel Rinaldo
- Green Biotech Network, School of Sciences, São Paulo State University (UNESP), 17033-360Bauru, Brazil
| | - Vanderlan S Bolzani
- NuBBE, Institute of Chemistry, São Paulo State University (UNESP), 14800-900Araraquara, Brazil
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, PO Box 9505, 2300RALeiden, The Netherlands
| |
Collapse
|
8
|
Optimization and Determination of Kinetic Parameters of the Synthesis of 5-Lauryl-hydroxymethylfurfural Catalyzed by Lipases. Catalysts 2022. [DOI: 10.3390/catal13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydroxymethylfurfural esters (HMF-esters) have great potential for additive development; for this reason, the goal of this work was to study the optimization of the esterification conversion of HFM and lauric acid using two lipases: the Novozym 435® biocatalyst and immobilized lipase from Thermomyces lanuginosus (TL). For the optimization of conversion, a three-level three-factorial Box–Behnken experimental design was used. The models achieved a good fit (R2 over 90%) for reactions catalyzed with Novozym 435® and immobilized TL lipase. The best conversion, 78.4%, was achieved with immobilized TL lipase using 30 mM HMF, 16 U of biocatalytic activity, and 50 °C. The kinetic parameters without inhibition by the substrate were determined using the Michaelis–Menten mechanism, whereby VMax for both biocatalysts reached the highest values at 50 °C, and the highest enzyme–substrate affinities (low Km) were reached at temperatures of 30 °C and 40 °C. It can be concluded that immobilized TL lipase has the potential to catalyze this reaction since, under optimal reaction conditions, an 80.6% conversion (value predicted) could be achieved.
Collapse
|
9
|
Phytochemical Characterization of Chamomile ( Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential. Molecules 2022; 27:molecules27238508. [PMID: 36500602 PMCID: PMC9736673 DOI: 10.3390/molecules27238508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Matricaria recutita L., German chamomile, is one of the most widely used medicinal plants, whose efficacy has been proven in numerous studies. However, its roots have attracted only little interest so far, since mainly above-ground plant parts are used for medicinal purposes. To broaden the knowledge of chamomile roots, a profound phytochemical characterization was performed along with a bioactivity screening of corresponding root extracts. While volatile constituents such as chamomillol and polyynes were detected using GC-MS, HPLC-MSn analyses revealed the occurrence of four coumarin glycosides, more than ten phenolic acid esters and five glyceroglycolipids. Furthermore, the antioxidant activity of the extracts was evaluated. Polar extracts revealed IC50 values ranging from 13 to 57 µg/mL in the DPPH radical scavenging assay, which is in the same range as reported for chamomile flower extracts. In addition, superoxide radical scavenging potential and mild antibacterial effects against S. aureus und B. subtilis were demonstrated. Moreover, to assess interspecies variation in chamomile roots, extracts of M. recutita were compared to those of M. discoidea DC. Interestingly, the latter revealed stronger antioxidant activity. The presented results aim at the valorization of chamomile roots, previously discarded as by-product of chamomile flower production, as a sustainable source of bioactive phytochemicals.
Collapse
|
10
|
Bragagnolo FS, Socas-Rodríguez B, Mendiola JA, Cifuentes A, Funari CS, Ibáñez E. Pressurized natural deep eutectic solvents: An alternative approach to agro-soy by-products. Front Nutr 2022; 9:953169. [PMID: 36159477 PMCID: PMC9493435 DOI: 10.3389/fnut.2022.953169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 – molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | | | - Jose A. Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Cristiano Soleo Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
- *Correspondence: Elena Ibáñez,
| |
Collapse
|
11
|
Wu CS, Chiang HM, Chen Y, Chen CY, Chen HF, Su WC, Wang WJ, Chou YC, Chang WC, Wang SC, Hung MC. Prospects of Coffee Leaf against SARS-CoV-2 Infection. Int J Biol Sci 2022; 18:4677-4689. [PMID: 35874948 PMCID: PMC9305275 DOI: 10.7150/ijbs.76058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan
| | - Yeh Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115024, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
12
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Effects of drying processes on the quality of coffee pulp. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rossaporn Jiamjariyatam
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| |
Collapse
|
13
|
Bragagnolo FS, Álvarez-Rivera G, Breitkreitz MC, Ibáñez E, Cifuentes A, Funari CS. Metabolite Profiling of Soy By-Products: A Comprehensive Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7321-7341. [PMID: 35652359 DOI: 10.1021/acs.jafc.2c01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soy is the major oilseed crop as soybeans are widely used to produce biofuel, food, and feed. Other parts of the plant are left on the ground after harvest. The accumulation of such by-products on the soil can cause environmental problems. This work presents for the first time a comprehensive metabolite profiling of soy by-products collected directly from the ground just after mechanical harvesting. A two-liquid-phase extraction using n-heptane and EtOH-H2O 7:3 (v/v) provided extracts with complete characterization by gas chromatography and ultra-high-performance liquid chromatography both coupled to time-of-flight mass spectrometry. A total of 146 metabolites, including flavones, flavonols, isoflavonoids, fatty acids, steroids, mono-, sesqui-, di-, and triterpenoids, were tentatively identified in soy by-products and soybeans. These proved to be sources of a wide range of bioactive metabolites, thus suggesting that they could be valorized while reducing potential environmental damage in line with a circular economy model.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, São Paulo - 18610-034, Brazil
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Madrid 28049, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Madrid 28049, Spain
| | | | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Madrid 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Madrid 28049, Spain
| | - Cristiano Soleo Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, São Paulo - 18610-034, Brazil
| |
Collapse
|
14
|
Lonati E, Carrozzini T, Bruni I, Mena P, Botto L, Cazzaniga E, Del Rio D, Labra M, Palestini P, Bulbarelli A. Coffee-Derived Phenolic Compounds Activate Nrf2 Antioxidant Pathway in I/R Injury In Vitro Model: A Nutritional Approach Preventing Age Related-Damages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031049. [PMID: 35164314 PMCID: PMC8839093 DOI: 10.3390/molecules27031049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
Age-related injuries are often connected to alterations in redox homeostasis. The imbalance between free radical oxygen species and endogenous antioxidants defenses could be associated with a growing risk of transient ischemic attack and stroke. In this context, a daily supply of dietary antioxidants could counteract oxidative stress occurring during ischemia/reperfusion injury (I/R), preventing brain damage. Here we investigated the potential antioxidant properties of coffee-derived circulating metabolites and a coffee pulp phytoextract, testing their efficacy as ROS scavengers in an in vitro model of ischemia. Indeed, the coffee fruit is an important source of phenolic compounds, such as chlorogenic acids, present both in the brewed seed and in the discarded pulp. Therefore, rat brain endothelial cells, subjected to oxygen and glucose deprivation (OGD) and recovery (ogR) to mimic reperfusion, were pretreated or not with coffee by-products. The results indicate that, under OGD/ogR, the ROS accumulation was reduced by coffee by-product. Additionally, the coffee extract activated the Nrf2 antioxidant pathway via Erk and Akt kinases phosphorylation, as shown by increased Nrf2 and HO-1 protein levels. The data indicate that the daily intake of coffee by-products as a dietary food supplement represents a potential nutritional strategy to counteract aging.
Collapse
Affiliation(s)
- Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
| | - Tatiana Carrozzini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
| | - Ilaria Bruni
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (P.M.); (D.D.R.)
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Massimo Labra
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.L.); (T.C.); (L.B.); (E.C.); (P.P.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, 20126 Milano, Italy; (I.B.); (M.L.)
- Correspondence: ; Tel.: +39-026-448-8221
| |
Collapse
|
15
|
Elderberry Stalks as a Source of High-Value Phytochemical: Essential Minerals and Lipophilic Compounds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Elderberry (Sambucus nigra L.) consumption has been growing in the last years, generating a large number of stalks (~10% of the berries bunch) that are still under-valorized. This study focused on the evaluation of elderberry stalks as a source of high-value phytochemicals. In this vein, the essential mineral content and lipophilic composition were analyzed for the first time. In addition, the polar fraction was evaluated regarding its total phenolic content (TPC) and antioxidant activity by both 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2-diphenyl-1-picrylhydrazyl hydrate (DPPH) assays. The lipophilic fraction was mainly composed of triterpenic acids (2902.20 mg kg−1 of dry weight (dw)), fatty acids (711.73 mg kg−1 dw) and sterols (288.56 mg kg−1 dw). Minor amounts of long-chain aliphatic alcohols and other components were also detected. Ursolic acid (2265.83 mg kg−1 dw), hexadecanoic acid (219.85 mg kg−1 dw) and β-sitosterol (202.74 mg kg−1 dw) were the major lipophilic components verified. The results of this study also indicated that elderberry stalks might be used as a natural source of essential minerals, particularly calcium, iron and potassium, which are known to play important roles in various body functions. The analysis of the polar fraction also showed that elderberry stalks present TPC as high as elderberry themselves as well as considerable antioxidant activity (1.04 and 0.37 mmol TE g−1 of extract, against respectively ABTS and DPPH radicals). These results highlight the potential of elderberry stalks as a natural source of high-value phytochemicals that may be explored in several fields.
Collapse
|
16
|
Scientometric Overview of Coffee By-Products and Their Applications. Molecules 2021; 26:molecules26247605. [PMID: 34946683 PMCID: PMC8707742 DOI: 10.3390/molecules26247605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/03/2022] Open
Abstract
As coffee consumption is on the rise, and the global coffee production creates an excess of 23 million tons of waste per year, a revolutionary transition towards a circular economy via the transformation and valorization of the main by-products from its cultivation and preparation (Coffee Husk (CH), Coffee Pulp (CP), Coffee Silverskin (CS), and Spent Coffee Grounds (SCG)) is inspiring researchers around the world. The recent growth of scholarly publications in the field and the emerging applications of coffee by-products published in these scientific papers encourages a systematic review to identify the knowledge structure, research hotspots, and to discuss the challenges and future directions. This paper displays a comprehensive scientometric analysis based on 108 articles with a high level of influence in the field of coffee by-products and their applications. According to our analysis, the research in this field shows an explosive growth since 2017, clustered in five core applications: bioactive compounds, microbial transformation, environmental applications, biofuels from thermochemical processes, and construction materials.
Collapse
|