1
|
Cong D, Ni C, Han L, Cheng J, An W, An S, Liu H, Liu H, Yao D, Fu Y, Liu S, Chen G. The Molecular Cloning and Functional Analysis of the FAD2 Gene in Hippophe rhamnoids L. PLANTS (BASEL, SWITZERLAND) 2024; 13:3252. [PMID: 39599461 PMCID: PMC11598821 DOI: 10.3390/plants13223252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Seabuckthorn (Hippophae rhamnoides Linn.) is a commonly utilized medicinal crop with various applications in the treatment of different diseases. Two particularly noteworthy nutrients in seabuckthorn fruit are seabuckthorn oil and flavonoids. In recent years, seabuckthorn oil has attracted considerable attention due to its perceived benefits for beauty and healthcare. Consequently, there is a clear need for further research into seabuckthorn oil. While numerous studies have been conducted on the regulation of oil by the FAD2 gene family, there is a paucity of literature examining the molecular mechanism of FAD2 gene involvement in seabuckthorn oil regulation. Accordingly, two FAD2 genes have been identified in seabuckthorn, which are classified differently and perform distinct functions. Both genes are located in the endoplasmic reticulum. Following transient expression in seabuckthorn fruits, it was observed that HrFAD2-1 and HrFAD2-3 were capable of influencing the synthesis of α-linolenic acid, with HrFAD2-1 additionally demonstrated to facilitate the synthesis of lysophosphatidic acid. All of the aforementioned genes have been observed to promote jasmonic acid (JA) synthesis. The heterologous transformation of Linum usitatissimum demonstrates that both HrFAD2-1 and HrFAD2-3 are capable of promoting plant growth. The HrFAD2-1 gene was observed to significantly increase the content of major fatty acids in Linum usitatissimum Linn seeds, whereas the HrFAD2-3 gene appeared to be primarily involved in the regulation of plant growth and development. In conclusion, a preliminary investigation into the functions of the HrFAD2-1 and HrFAD2-3 genes in fatty acid synthesis was conducted. This revealed that HrFAD2-1 is closely associated with oleic acid synthesis and acts as a negative regulator. Furthermore, our findings will provide a foundation for subsequent investigations into the fatty acid synthesis pathway in Hippophae rhamnoides oil, offering a theoretical basis for subsequent studies at the molecular level.
Collapse
Affiliation(s)
- Di Cong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Chang Ni
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Luwen Han
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Jianlin Cheng
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Wei An
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China; (W.A.); (S.A.)
| | - Siyu An
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China; (W.A.); (S.A.)
| | - Hongzhang Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Yuqin Fu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (D.C.); (C.N.); (L.H.); (J.C.); (H.L.); (H.L.); (D.Y.); (Y.F.)
| | - Guoshuang Chen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
2
|
Nicolescu A, Babotă M, Aranda Cañada E, Inês Dias M, Añibarro-Ortega M, Cornea-Cipcigan M, Tanase C, Radu Sisea C, Mocan A, Barros L, Crișan G. Association of enzymatic and optimized ultrasound-assisted aqueous extraction of flavonoid glycosides from dried Hippophae rhamnoides L. (Sea Buckthorn) berries. ULTRASONICS SONOCHEMISTRY 2024; 108:106955. [PMID: 38909597 PMCID: PMC11253688 DOI: 10.1016/j.ultsonch.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The main purpose of the present study was to determine the effect of associating an optimized ultrasound-assisted extraction (UAE) protocol with enzyme-assisted extraction (EAE) in aqueous media, using the dried berries of Hippophae rhamnoides L. (sea buckthorn) as plant material. A specialized software was used for the determination of potential optimal extraction parameters, leading to the development of four optimized extracts with different characteristics (UAE ± EAE). For these extracts, buffered or non-buffered solutions have been used, with the aim to determine the influence of adjustable pH on extractability. As enzymatic solution, a pectinase, cellulase, and hemicellulase mix (2:1:1) has been applied, acting as pre-treatment for the optimized protocol. The highest extractive yields have been identified for non-buffered extracts, and the E-UAE combination obtained extracts with the highest overall in vitro antioxidant activity. The HPLC-MSn analysis demonstrated a rich composition in different types of isorhamnetin-O-glycosides, as well as some quercetin-O-glycosides, showing a high recovery of specific flavonol-type polyphenolic species. Moreover, we have tentatively identified two flavanols (i.e., catechin and epigallocatechin) and one flavone derivative (i.e., luteolin).
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihai Babotă
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | | | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Cristian Radu Sisea
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Mocan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Danielski R, Shahidi F. Phenolic composition and bioactivities of sea buckthorn (Hippophae rhamnoides L.) fruit and seeds: an unconventional source of natural antioxidants in North America. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5553-5564. [PMID: 38358042 DOI: 10.1002/jsfa.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Sea buckthorn (Hippophae rhamnoides L.) was introduced into Canada in the early 2000s. This plant bears fruits with high commercial value in other countries due to its premium oil. Nevertheless, sea buckthorn berries are also a rich source of bioactives with nutraceutical potential, especially the variety grown in Newfoundland (Canada), which has not previously been characterized. As such, this study evaluated the composition of polyphenols in sea buckthorn pomace and seeds, as well as their prospective health-promoting effects. RESULTS Polyphenolic identification by high-performance liquid chromatography-ultraviolet-mass spectrometry-time of flight revealed the presence of 24 compounds in the seeds and 16 compounds in the pomace, including phenolic acids, flavonoids, and tannins, with ellagic acid derivative IV (pomace, 52.13 μg g-1) and (+)-catechin (seeds, 690.8 μg g-1) being the most dominant. Sea buckthorn extracts displayed in vitro antidiabetic and anti-obesity potential by inhibiting α-glucosidase (71.52-99.31%) and pancreatic lipase (15.80-35.61%) enzymes, respectively. The extracts also protected low-density-lipoprotein cholesterol (50.97-89.67%) and supercoiled DNA (35.11-79.84%) from oxidative damage. CONCLUSION Sea buckthorn berries grown in Canada showed promising health benefits induced by their rich and diverse polyphenolic profile and need to be considered for further commercial expansion as a bioactive-loaded superfruit. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
4
|
Dąbrowski G, Czaplicki S, Szustak M, Korkus E, Gendaszewska-Darmach E, Konopka I. The impact of selected xanthophylls on oil hydrolysis by pancreatic lipase: in silico and in vitro studies. Sci Rep 2024; 14:2731. [PMID: 38302772 PMCID: PMC10834431 DOI: 10.1038/s41598-024-53312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Lipase inhibition is one of the directions to control obesity. In vitro assays have confirmed the inhibitory effect of selected xanthophylls, including astaxanthin, fucoxanthinol, fucoxanthin, and neoxanthin. Similarly, an in-silico study also demonstrated the successful inhibition of pancreatic lipase by astaxanthin. Unfortunately, the efficacy of these protocols in the emulsion state typical of lipid digestion remains untested. To address this issue, the current study employed the pH-stat test, which mimics lipid digestion in the gastrointestinal tract, to evaluate native and prepared sea buckthorn and rapeseed oils with varying xanthophyll contents from 0 to 1400 mg/kg oil. Furthermore, a molecular docking of zeaxanthin and violaxanthin (commonly found in plant-based foods), astaxanthin (widely distributed in foods of marine origin) and orlistat (approved as a drug) was performed. The in-silico studies revealed comparable inhibitory potential of all tested xanthophylls (variation from - 8.0 to - 9.3 kcal/mol), surpassing that of orlistat (- 6.5 kcal/mol). Nonetheless, when tested in an emulsified state, the results of pH-stat digestion failed to establish the inhibitory effect of xanthophylls in the digested oils. In fact, lipolysis of native xanthophyll-rich sea buckthorn oil was approximately 22% higher than that of the xanthophyll-low preparation. The key insight derived from this study is that the amphiphilic properties of xanthophylls during the digestion of xanthophyll-rich lipids/meals facilitate emulsion formation, which leads to enhanced fat lipolysis.
Collapse
Affiliation(s)
- Grzegorz Dąbrowski
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Sylwester Czaplicki
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland
| | - Marcin Szustak
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Eliza Korkus
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Iwona Konopka
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland
| |
Collapse
|
5
|
Ma Y, Yao J, Zhou L, Zhao M, Wang W, Liu J, Marchioni E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem 2024; 430:136964. [PMID: 37531917 DOI: 10.1016/j.foodchem.2023.136964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Sea buckthorn is an important ecological and economic plant which has multiple bioactivities. The fruits and seeds of sea buckthorn are rich in oil. However, there are few studies on the differences of lipid profiles of sea buckthorn varieties. Herein, the lipidomic fingerprints of sea buckthorn was established. First, a mixture solvent of methanol and chloroform (2:1, v/v) was selected to extract the lipid of the flesh and seed of sea buckthorn. Then, global lipidomic analysis of different varieties of sea buckthorn was conducted. A total of 16 lipid classes and 112 lipid molecular species were determined. Several molecular species, such as PE (phosphatidylethanolamine) 18:1/18:3, PE18:0/18:1, PE18:0/18:2, etc. were selected as the potential biomarkers to classify the samples. Our study provides a scientific basis for quality control of sea buckthorn and promotes the development of sea buckthorn oil.
Collapse
Affiliation(s)
- Yue Ma
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
6
|
Raclariu-Manolică AC, Socaciu C. In Search of Authenticity Biomarkers in Food Supplements Containing Sea Buckthorn: A Metabolomics Approach. Foods 2023; 12:4493. [PMID: 38137297 PMCID: PMC10742966 DOI: 10.3390/foods12244493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) (SB) is increasingly consumed worldwide as a food and food supplement. The remarkable richness in biologically active phytochemicals (polyphenols, carotenoids, sterols, vitamins) is responsible for its purported nutritional and health-promoting effects. Despite the considerable interest and high market demand for SB-based supplements, a limited number of studies report on the authentication of such commercially available products. Herein, untargeted metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UHPLC-QTOF-ESI+MS) were able to compare the phytochemical fingerprint of leaves, berries, and various categories of SB-berry herbal supplements (teas, capsules, tablets, liquids). By untargeted metabolomics, a multivariate discrimination analysis and a univariate approach (t-test and ANOVA) showed some putative authentication biomarkers for berries, e.g., xylitol, violaxanthin, tryptophan, quinic acid, quercetin-3-rutinoside. Significant dominant molecules were found for leaves: luteolin-5-glucoside, arginine, isorhamnetin 3-rutinoside, serotonin, and tocopherol. The univariate analysis showed discriminations between the different classes of food supplements using similar algorithms. Finally, eight molecules were selected and considered significant putative authentication biomarkers. Further studies will be focused on quantitative evaluation.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, 610004 Piatra Neamț, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
- BIODIATECH—Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Korkus E, Szustak M, Madaj R, Chworos A, Drzazga A, Koziołkiewicz M, Dąbrowski G, Czaplicki S, Konopka I, Gendaszewska-Darmach E. Trans-palmitoleic acid, a dairy fat biomarker, stimulates insulin secretion and activates G protein-coupled receptors with a different mechanism from the cis isomer. Food Funct 2023. [PMID: 37368452 DOI: 10.1039/d2fo03412c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Dietary trans-palmitoleic acid (trans 16:1n-7, tPOA), a biomarker for high-fat dairy product intake, has been associated with a lower risk of type 2 diabetes mellitus (T2DM) in some cross-sectional and prospective epidemiological studies. Here, we investigated the insulin secretion-promoting activity of tPOA and compared them with the effects evoked by the cis-POA isomer (cPOA), an endogenous lipokine biosynthesized in the liver and adipose tissue, and found in some natural food sources. The debate about the positive and negative relationships of those two POA isomers with metabolic risk factors and the underlying mechanisms is still going on. Therefore, we examined the potency of both POA isomers to potentiate insulin secretion in murine and human pancreatic β cell lines. We also investigated whether POA isomers activate G protein-coupled receptors proposed as potential targets for T2DM treatment. We show that tPOA and cPOA augment glucose-stimulated insulin secretion (GSIS) to a similar extent; however, their insulin secretagogue activity is associated with different signaling pathways. We also performed ligand docking and molecular dynamics simulations to predict the preferred orientation of POA isomers and the strength of association between those two fatty acids and GPR40, GPR55, GPR119, and GPR120 receptors. Overall, this study provides insight into the bioactivity of tPOA and cPOA toward selected GPCR functions, indicating them as targets responsible for the insulin secretagogue action of POA isomers. It reveals that both tPOA and cPOA may promote insulin secretion and subsequently regulate glucose homeostasis.
Collapse
Affiliation(s)
- Eliza Korkus
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Marcin Szustak
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Rafal Madaj
- Division of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Arkadiusz Chworos
- Division of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Anna Drzazga
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Grzegorz Dąbrowski
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Sylwester Czaplicki
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Iwona Konopka
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| |
Collapse
|
8
|
Visan S, Soritau O, Tatomir C, Baldasici O, Balacescu L, Balacescu O, Muntean P, Gherasim C, Pintea A. The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract ( Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules 2023; 28:molecules28114486. [PMID: 37298962 DOI: 10.3390/molecules28114486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2-) and BT-549 (ER-, PR-, HER2-). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38-56.8%, respectively 5.68-68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.
Collapse
Affiliation(s)
- Simona Visan
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Corina Tatomir
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Patricia Muntean
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cristina Gherasim
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Chen Y, Cai Y, Wang K, Wang Y. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods 2023; 12:foods12101985. [PMID: 37238803 DOI: 10.3390/foods12101985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L. or Elaeagnus rhamnoides L.) is a plant that has long been used as a Chinese herbal medicine. This species is known to contain numerous bioactive components, including polyphenols, fatty acids, vitamins, and phytosterols, which may be responsible for its medicinal value. In experiments both in vitro and in vivo (ranging from cell lines to animal models and human patients), sea buckthorn has shown positive effects on symptoms of metabolic syndrome; evidence suggests that sea buckthorn treatment can decrease blood lipid content, blood pressure, and blood sugar levels, and regulate key metabolites. This article reviews the main bioactive compounds present in sea buckthorn and discusses their efficacy in treating metabolic syndrome. Specifically, we highlight bioactive compounds isolated from distinct sea buckthorn tissues; their effects on abdominal obesity, hypertension, hyperglycemia, and dyslipidemia; and their potential mechanisms of action in clinical applications. This review provides key insight into the benefits of sea buckthorn, promoting future research of this species and expansion of sea buckthorn-based therapies for metabolic syndrome.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yunfei Cai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| |
Collapse
|
10
|
Comparative Assessment of Functional Components and Antioxidant Activities between Hippophae rhamnoides ssp. sinensis and H. tibetana Berries in Qinghai-Tibet Plateau. Foods 2023; 12:foods12020341. [PMID: 36673433 PMCID: PMC9858552 DOI: 10.3390/foods12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The Qinghai-Tibet Plateau is the main production area of Hippophae rhamnoides ssp. sinensis (Rha) and H. tibetana (Tib), but studies on the types and contents of soluble sugars, organic acids, free phenolics, bound phenolics, vitamin C (VC), tocopherol (VE) and carotenoids of the two sea buckthorn berries from this region have not been reported. In this paper, we found that the soluble sugars in Rha and Tib were mainly glucose and fructose; Rha exhibited a higher content of total sugar and fructose compared to Tib. The organic acids were mainly quinic acid and malic acid; Rha exhibited a higher content of total acids and quinic acid, but lower tartaric acid and citric acid compared to Tib. Rha also possessed a higher total (free and bound) phenolic as well as total (free and bound) flavonoid content than those in Tib; twelve phenolic compounds were analyzed, among which flavonols were dominant. Catechin, isorhamnetin and quercetin were the main phenolic substances. VC and VE (γ-tocopherol (γ-VE) and δ-tocopherol (δ-VE)) were higher in Rha than Tib. The total carotenoid, lutein, β-carotene and lycopene content of Tib was remarkably higher than that in Rha. Moreover, both Rha and Tib showed good in vitro and cellular antioxidant activities, and Rha had a stronger antioxidant activity. Taken together, Rha had a higher antioxidant activity, which may be due to its higher content of phenolics, flavonoids, VC and VE.
Collapse
|
11
|
Li Z, Liu A, Du Q, Zhu W, Liu H, Naeem A, Guan Y, Chen L, Ming L. Bioactive substances and therapeutic potential of camellia oil: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Abstract
Since the beginning of the 21st century, interest in vegan diets has been rapidly increasing in most countries. Misconceptions about vegan diets are widespread among the general population and health professionals. Vegan diets can be health-promoting and may offer certain important advantages compared to typical Western (and other mainstream) eating patterns. However, adequate dietary sources/supplements of nutrients of focus specific to vegan diets should be identified and communicated. Without supplements/fortified foods, severe vitamin B12 deficiency may occur. Other potential nutrients of focus are calcium, vitamin D, iodine, omega-3 fatty acids, iron, zinc, selenium, vitamin A, and protein. Ensuring adequate nutrient status is particularly important during pregnancy, lactation, infancy, and childhood. Health professionals are often expected to be able to provide advice on the topic of vegan nutrition, but a precise and practical vegan nutrition guide for health professionals is lacking. Consequently, it is important and urgent to provide such a set of dietary recommendations. It is the aim of this article to provide vegan nutrition guidelines, based on current evidence, which can easily be communicated to vegan patients/clients, with the goal of ensuring adequate nutrient status in vegans.
Collapse
Affiliation(s)
- Christian Koeder
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, Hanover, Germany
- Department of Nutrition, University of Applied Sciences Münster, Münster, Germany
| | | |
Collapse
|
13
|
Gu Y, Wang X, Liu F, Zhang J, Zhang X, Liu J, Li S, Wang D, Guan H, Hou D. Total flavonoids of sea buckthorn (Hippophae rhamnoides L.) improve MC903-induced atopic dermatitis-like lesions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115195. [PMID: 35306042 DOI: 10.1016/j.jep.2022.115195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) is popularly used as a herbal medicine and food additive in the world. Total flavonoids of Hippophae rhamnoides (TFH) are reported to have anti-inflammatory and immunomodulatory activities. AIM The effects of TFH on atopic dermatitis (AD)-like lesions induced by MC903 in mice was elucidated in the study. METHODS To induce AD-like lesions, MC903 was adopted to apply repeatedly on the left ear in C57BL/6 mice. After induction of AD-like lesions, 0.5% and 1% TFH cream was applied topically on ears of mice once a day for 8 days. The degree of skin lesions was evaluated by macroscopical and histological methods. Expressions of filaggrin (FLG) was evaluated by Western blotting. Real-time polymerase chain reaction (qPCR) was adopted to detect the mRNA expression of thymic stromal lymphopoietin (TSLP), interferon (IFN)-γ, interleukin (IL-4), tumor necrosis factor (TNF)-α in skin lesions. In vitro, Cytokine Antibody Arrays were performed to measure production of cytokines in IFN-γ/TNF-α-treated HaCaT cells, Western blotting was employed to detect the expressions of p-NF-κB, p-ERK and p-P38. RESULTS Topical application of TFH significantly improved the severity of dermatitis by inhibiting the infiltration of mast cell, increasing expression of FLG, decreasing the expressions of TNF-α, IL-4, IFN-γ and TSLP in skin lesions. TFH decreased the levels of IL-1α, IL-1β, IL-6, monocyte chemoattractant protein (MCP)-1, MCP-3, macrophage-derived chemokine (MDC), platelet-derived growth factor (PDGF)-BB, thymus and activation regulated chemokine (TARC) in the supernatants of the HaCaT cells treated by IFN-γ/TNF-α. Furthermore, expressions of p-NF-κB, p-ERK and p-P38 were also decreased by TFH administration with dose dependent manner in HaCaT cells treated by IFN-γ/TNF-α. CONCLUSIONS Topical application of TFH improved AD-like lesions in mice induced by MC903. Which exerted the effects of anti-inflammation and repairing skin barrier by regulating Th1/Th2 balance. This finding indicates that TFH is a novel potential agent for the external treatment of AD.
Collapse
Affiliation(s)
- Yajing Gu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, PR China.
| | - Xinxin Wang
- Basic Medical and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia, 014060, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, PR China.
| | - Fang Liu
- Changzhi Medical College, Changzhi, Shanxi, 046000, PR China.
| | - Jin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, PR China.
| | - Xiufang Zhang
- Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361100, PR China.
| | - Jiping Liu
- Neurosurgery Department, Northern Hospital of Sinopharm, Baotou, Inner Mongolia, 014030, PR China.
| | - Sijia Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, PR China.
| | - Decheng Wang
- The Second Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China.
| | - Hongquan Guan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, PR China.
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, PR China.
| |
Collapse
|
14
|
Korkus E, Dąbrowski G, Szustak M, Czaplicki S, Madaj R, Chworoś A, Koziołkiewicz M, Konopka I, Gendaszewska-Darmach E. Evaluation of the anti-diabetic activity of sea buckthorn pulp oils prepared with different extraction methods in human islet EndoC-betaH1 cells. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Whey Proteins Isolate-Based Biopolymeric Combinations to Microencapsulate Supercritical Fluid Extracted Oleoresins from Sea Buckthorn Pomace. Pharmaceuticals (Basel) 2021; 14:ph14121217. [PMID: 34959618 PMCID: PMC8707564 DOI: 10.3390/ph14121217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, high-value, carotenoid-rich oleoresin obtained by supercritical carbon dioxide (SFE-CO2) extraction was used to develop five variants of microencapsulated delivery system, based on whey proteins isolate (WPI), in combination with inulin (I), pectin (P) or lactose (L). The WPI:I and WPI:L variants were also obtained by conjugation via Maillard reaction. The microencapsulation of the SFE-CO2 sea buckthorn pomace oleoresin was performed by emulsion, complex coacervation and freeze-drying, which allowed for the obtaining of five powders, with different phytochemicals profile. The WPI:I conjugate showed the highest level of total carotenoids, whereas the counterpart WPI:L showed the highest content in linoleic acid (46 ± 1 mg/g) and palmitoleic acid (20.0 ± 0.5 mg/g). The β-tocopherol and β-sitosterol were identified in all variants, with the highest content in the conjugated WPI:L variant. Both WPI:L and WPI:I conjugate samples presented similar IC50 value for inhibitory activity against pancreatic lipase and α-amylase; the highest activity was observed for the conjugated WPI:I. The WPI:P combination allowed the highest release of carotenoids in the gastro-intestinal environment. All the powders exhibited poor flowing properties, whereas water activity (aw) ranged from 0.084 ± 0.03 to 0.241 ± 0.003, suggesting that all variants are stable during storage. In case of solubility, significant differences were noticed between non-heated and glycated samples, with the highest value for the WPI:I and the lowest for glycated WPI:I. The structural analysis revealed the presence of finer spherosomes in WPI:I and WPI:L, with a reduced clustering capacity, whereas the particles in the conjugated samples were more uniform and aggregated into a three-dimensional network.
Collapse
|
16
|
Mihalcea L, Turturică M, Cucolea EI, Dănilă GM, Dumitrașcu L, Coman G, Constantin OE, Grigore-Gurgu L, Stănciuc N. CO 2 Supercritical Fluid Extraction of Oleoresins from Sea Buckthorn Pomace: Evidence of Advanced Bioactive Profile and Selected Functionality. Antioxidants (Basel) 2021; 10:antiox10111681. [PMID: 34829552 PMCID: PMC8615056 DOI: 10.3390/antiox10111681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
The processing of sea buckthorn generates a significant amount of pomace, seeds and skin considered valuable sources of health-promoting macromolecules, such as carotenoids, pectin, flavonoids, phytosterols, polyunsaturated fatty acids and tocopherols. In this study, the bioactives from sea buckthorn pomace (SBP) were extracted using supercritical carbon dioxide (SFE-CO2), at different temperatures and pressures, allowing for obtaining four fractions according to separators (S40 and S45). The highest carotenoid content of 396.12 ± 1.02 mg/g D.W. was found in the S40 fraction, at extraction parameters of 35 °C/45 MPa, yielding an antioxidant activity of 32.10 ± 0.17 mMol TEAC/g D.W. The representative carotenoids in the extract were zeaxanthin, β-carotene and lycopene, whereas all enriched SFE-CO2 extracts contained α-, β- and δ-tocopherol, with α-tocopherol representing around 82% of all fractions. β-sitosterol was the major phytosterol in the fractions derived from S45. All fractions contained significant fatty acids, with a predominance of linoleic acid. Remarkably, the enriched extracts showed a significant palmitoleic acid content, ranging from 53 to 65 µg/g. S40 extracts showed a good antibacterial activity against Staphylococcus aureus and Aeromonas hydrophila ATCC 7966, whereas S45 extracts showed a growth inhibition rate of 100% against Aspergillus niger after three days of growth. Our results are valuable, and they allow identifying the different profiles of extracts with many different applications in food, pharmaceutics, nutraceuticals and cosmeceuticals.
Collapse
Affiliation(s)
- Liliana Mihalcea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Mihaela Turturică
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Elena Iulia Cucolea
- Cromatec Plus SRL, Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street 1, 077176 Tâncăbești, Romania; (E.I.C.); (G.-M.D.)
| | - George-Mădălin Dănilă
- Cromatec Plus SRL, Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street 1, 077176 Tâncăbești, Romania; (E.I.C.); (G.-M.D.)
| | - Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Gigi Coman
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
- Correspondence:
| |
Collapse
|