1
|
Molaveisi M, Li L, Yu J, Zhao Y, Shi Q. Nanocochleates as novel delivery vehicles for enhancement of water solubility, stability and controlled release of dihydromyricetin in gastrointestinal tract. Food Res Int 2024; 197:115174. [PMID: 39593385 DOI: 10.1016/j.foodres.2024.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Dihydromyricetin (DHM) possesses impressive antioxidant and anti-inflammatory properties; however, its effectiveness is limited by poor bioavailability. Liposomes improve the solubility and stability of insoluble bioactives but encounter challenges in gastrointestinal fluids after oral administration. Consequently, DHM-loaded nanocochleates were fabricated to enhance the solubility, stability, and release behavior of DHM. The nanoliposomes exhibited an entrapment efficiency (EE) ranging from 85.64 % to 88.79 %, a particle size between 136.20 and 150.70 nm, a polydispersity index (PDI) of 0.36 to 0.43, and a zeta potential of -6.82 to -11.13 mV. In contrast, the cylindrical-shaped nanocochleates demonstrated an EE ranging from 74.94 % to 84.64 %, a particle size between 239.07 and 571.43 nm, a PDI from 0.16 to 0.61, and a zeta potential ranging from -21.97 to -27.10 mV. The nanocochleates exhibited improved water solubility (64.75 %) and retained antioxidant activity (41.38 %) compared to free DHM. Additionally, they demonstrated enhanced stability of DHM compared to nanoliposomes during 30 days of storage. Fourier transform infrared spectroscopy and differential scanning calorimetry confirmed that DHM was encapsulated within nanocochleate structures via ionic and chemical interactions. X-ray diffraction revealed a distinct organization of the nanocochleates in comparison to the nanoliposomes. The release of DHM from nanocochleates demonstrated a prolonged and controlled release in simulated gastrointestinal medium, unlike the burst release observed with nanoliposomes. This study hightlighted the potential of nanocochleates as novel delivery vehicles for enhancing the stability and bioavailability of DHM. It also offered a unique perspective on developing functional food formulations that utilize nanocochleates as promising nanocarriers for bioactives.
Collapse
Affiliation(s)
- Mohammad Molaveisi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Li Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Jiao Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Ya Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China.
| |
Collapse
|
2
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Bonifacino C, López DN, Palazolo GG, Panizzolo LA, Abirached C. Optimization of emulsification conditions with rice bran concentrates for the preliminary formulation of potential vegan dressings and their characterization. J Food Sci 2024; 89:2174-2187. [PMID: 38465672 DOI: 10.1111/1750-3841.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
A fraction of rice bran (RB), generated during the brown rice polishing, is utilized to extract oil, resulting in defatted RB (DRB). The aim of this study was to optimize the emulsification conditions to enhance the value of this byproduct by formulating potential vegan dressings and characterizing them. Enzymatic hydrolysis of the starch present in DRB yields the DRB concentrate (DRBC). A central composite design was applied and the results were analyzed using response surface methodology to select optimal conditions for an oil-in-water emulsion formula. Two formulations were chosen: one corresponds to the optimal conditions, with 26.5% of oil and 73.5% of DRBC dispersion (eoptimal), and the other one with 21.7% of oil and 78.3% of dispersion (eED8). The eoptimal formulation exhibited significantly lower mean De Brouckere diameter (D4,3) value and higher viscosity when compared with eED8. For both emulsions, the particle size distribution and D4,3 remained unchanged during storage, whereas viscosity decreased, and backscattering (BS) increased. Initially, both emulsions exhibited solid viscoelastic behavior, which was partially lost during quiescent storage. The increase in BS was attributed to particle disaggregation, ultimately leading to the aforementioned change in rheological behavior. In conclusion, although the designed emulsions underwent microstructural changes, they were stable against gravitational separation. To improve stability during quiescent storage, it is suggested to incorporate a thickening agent. Hence, it is propose to procced with the development of a vegan dressing based on the eoptimal emulsion, as it exhibits superior physicochemical properties.
Collapse
Affiliation(s)
- Carla Bonifacino
- Laboratorio de Propiedades Funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Débora N López
- Laboratorio de Investigación, Desarrollo y Evaluación de Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario y CONICET, Rosario, Argentina
| | - Gonzalo G Palazolo
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes y CONICET, Bernal, Argentina
| | - Luis A Panizzolo
- Laboratorio de Propiedades Funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Abirached
- Laboratorio de Propiedades Funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Gohari AS, Nateghi L, Rashidi L, Berenji S. Preparation and characterization of sodium caseinate-apricot tree gum/gum Arabic nanocomplex for encapsulation of conjugated linoleic acid (CLA). Int J Biol Macromol 2024; 261:129773. [PMID: 38296128 DOI: 10.1016/j.ijbiomac.2024.129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Nanocomplexes (NCs) were formed through electrostatic complexation theory using Na-caseinate (NaCa), gum Arabic (GA), and Prunus armeniaca L. gum exudates (PAGE), aimed to encapsulate Conjugated linoleic acid (CLA). Encapsulation was optimized using NaCa (0.1 %-0.5 %), GA/PAGE (0.1 %-0.9 %) and CLA (1 %-5 %), and central composite design (CCD) was employed for numerical optimization. The optimum conditions for NC containing GA (NCGA) were 0.336 %, 0.437 %, and 3.10 % and for NC containing PAGE (NCPAGE) were 0.403 %, 0.730 %, and 4.177 %, of NaCa, GA/PAGE, and CLA, respectively. EE and particle size were 92.46 % and 52.89 nm for NCGA while 88.23 % and 54.76 nm for NCPAGE, respectively. Fourier transform infrared spectroscopy (FTIR) indicated that CLA was physically entrapped. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the electrostatic complex formation. The elastic modulus was predominant for NCGA and NCPAGE dispersions while the complex viscosity of NCPAGE suspension was slightly higher than that of NCGA. The CLA in NCGA-CLA and NCPAGE-CLA exhibited higher oxidative stability than free CLA during 30 days of storage without a significant difference between the results of CLA oxidative stability tests obtained for NCs. Consequently, NCPAGE and NCGA could be applied for the entrapment and protection of nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Alireza Saeed Gohari
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| | - Shila Berenji
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
5
|
Niu F, Zhao M, Tu W, Li Z, Gao Y, Du Y, Pan W. Fabrication and stability of W/O/W emulsions stabilized by gum arabic and polyglycerol polyricinoleate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:797-808. [PMID: 37683081 DOI: 10.1002/jsfa.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND In order to study the effect of adsorption of surfactant at the two interfacial layers on emulsion stability, the kinetically stable water-in-oil-in-water (W/O/W) emulsion carriers were prepared using polyglycerol polyricinoleate (PGPR) and gum arabic (GA) as emulsifiers. The relationship between the adsorption of the surfactant and the stability mechanism of the emulsions was elucidated. RESULTS When the contents of PGPR and GA were low, the interfaces between oil and the inner and outer water phases, respectively, could not be completely covered. However, when the concentration of PGPR was higher than 60 g kg-1 , the excess PGPR was adsorbed on the interface between the oil phase and the outer water phase. When the concentration of GA reached 80 g kg-1 , more GA was adsorbed to the oil-in-water interface. Moreover, the presence of PGPR on the interface could reduce the adsorption capacity of GA. Two types of kinetically stable emulsions were obtained by optimizing the interface composition (60 g kg-1 GA/80 g kg-1 PGPR and 60 g kg-1 PGPR/80 g kg-1 GA). The kinetically stable W/O/W emulsions prepared in this study were successfully used to encapsulate a hydrophilic vitamin (vitamin B12) with an encapsulation efficiency (EE) of 80% and release efficiency (RE) of 95%. The interfacial adsorption GA can accelerate the hydrolysis of fat. CONCLUSION Overall, this study provides a new strategy for the preparation of W/O/W emulsions, which might be beneficial for application in food, cosmetic, chemical, and pharmaceutical industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Mengdi Zhao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiwei Tu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhe Li
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yi Gao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixuan Du
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
6
|
Hamedi S, Mahmoodi-Barmesi M, Kermanian H, Ramezani O, Razmpour Z. Investigation of physicochemical and biological properties of bacterial cellulose & zein-reinforced edible nanocomposites based on flaxseed mucilage containing Origanum vulgare L. essential oil. Int J Biol Macromol 2024; 254:127733. [PMID: 37918591 DOI: 10.1016/j.ijbiomac.2023.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In the present study, the effect of zein and different amounts of bacterial cellulose (BC; 1, 2 and 3 wt%) on the physical, mechanical and barrier properties of flaxseed mucilage/carboxymethyl cellulose (FM/CMC) composite was investigated. The appearance of the absorption band at 1320cm-1 in the ATR-FTIR spectra of nanocomposites indicated the successful introduction of zein into their structure. The characteristic peak at 2θ of 9° belonging to zein disappeared in XRD patterns of the prepared composites suggesting the successful coating of zein via hydrogen bonding interactions. SEM images proved the formation of semi-spherical zein microparticles in the FM/CMC matrix. TGA plots ascertained the addition of zein and nanocellulose caused a significant increase in the thermal stability of FM/CMC film, although zein showed a greater effect. The presence of zein and nanocellulose increased the mechanical strength of nanocomposites. The WVP of FM/CMC decreased after the incorporation of zein and nanocellulose, which created a tortuous path for the diffusion of water molecules. The zein particles exhibited a greater influence on improving the mechanical and barrier properties compared to nanocellulose. FM/CMC-Z film exhibited the highest mechanical strength (49.07 ± 5.89 MPa) and the lowest WVP (1.179 ± 0.076). The composites containing oregano essential oil (EO) showed higher than 60 % antibacterial properties. The bactericidal efficiency of FM/CMC/Z-EO and FM/CMC/Z-EO/BC1 nanocomposites decreased about 10% compared to FM/CMC/EO and FM/CMC-Z/BC1. This evidenced the successful encapsulation of EO molecules in zein particles. According to the in vitro release study, entrapment of EO into zein particles could delay the release and provide the extended antimicrobial effect.
Collapse
Affiliation(s)
- Sepideh Hamedi
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Hossein Kermanian
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Omid Ramezani
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Zahra Razmpour
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Zhang Z, Li T, Zhang Y, Shao J, Ye C, Wang H, Zhu B, Zhang Y. Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. Int J Biol Macromol 2023; 253:126890. [PMID: 37716302 DOI: 10.1016/j.ijbiomac.2023.126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to investigate the effect of different polysaccharides on the binding behavior and functional properties of soybean protein isolate (SPI)-quercetin (Que) complex. The binding behavior was assessed using multi-spectral technique with the Stern-Volmer equation, which confirmed the presence of static fluorescence quenching in Que and SPI. The addition of sodium alginate (SA) resulted in a reduction of the binding affinity between SPI and Que, while dextran (DX) exhibited some promoting effect. A slight blue shift was observed in amide I and amide II bands, indicating the presence of hydrophobic and electrostatic interactions. Circular dichroism spectra revealed the ordered structures transformed into a more disordered state when polysaccharides were added, leading to an increase in random coils (SA: 18.5 %, DX: 15.4 %). Docking and dynamic simulations demonstrated that SA displayed greater stability within the hydrophobic compartments of SPI than DX, increased rigidity and stability of the SPI structure in SPI-Que-SA complexes. Electrostatic forces played a significant role between SPI and SA, while van der Waals forces were the main driving forces in SPI-DX complexes. Overall, the introduction of SA led to a looser and stable structure of SPI-Que complexes, resulting in an improvement of their emulsifying, foaming, and antioxidant properties.
Collapse
Affiliation(s)
- Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Pan W, Cao Y, Gu F, Gao Y, Liao H, Li Z, Yu J, Niu F. Interaction between potassium iodide and bovine serum albumin, ovalbumin and lysozyme under different temperature induction. Int J Biol Macromol 2023; 248:125923. [PMID: 37482161 DOI: 10.1016/j.ijbiomac.2023.125923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
In this study, the interaction between potassium iodide and protein molecules under different temperature induction was studied, taking potassium iodide (KI) and protein molecules as a model system. The effects of KI on protein conformation, size, surface charge, binding constant, and binding site were analyzed by fluorescence spectrum, infrared spectrum, and diffusing wave spectroscopy. The results revealed that bovine serum albumin (BSA)/ovalbumin (OVA) and I-1 formed the 1: 1 complex and significantly affected the hydrodynamic radius and spatial structure. This could be attributed to the exposure of tyrosine residues inside the proteins to the polar conditions under increased temperature. The unfolding of protein structures induced the interaction between KI/KCl and proteins. As for BSA and OVA, the particle size and surface charge of the complex increased significantly in the presence of KI/KCl. KI had a strong static quenching effect on the fluorescence of BSA and OVA. Overall, these results provide insights into the physiological effects of iodine ions.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yanren Cao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yi Gao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhe Li
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiao Yu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
9
|
He X, Wang B, Xue Y, Li Y, Hu M, He X, Chen J, Meng Y. Effects of high acyl gellan gum on the rheological properties, stability, and salt ion stress of sodium caseinate emulsion. Int J Biol Macromol 2023; 234:123675. [PMID: 36801230 DOI: 10.1016/j.ijbiomac.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Sodium caseinate (SC) is widely used as a biological macromolecular emulsifier in oil-in-water (O/W) emulsions. However, the SC-stabilized emulsions were unstable. High-acyl gellan gum (HA) is an anionic macromolecular polysaccharide that improves emulsion stability. This study aimed to investigate the effects of HA addition on the stability and rheological properties of SC-stabilized emulsions. Study results revealed that HA concentrations >0.1 % could increase Turbiscan stability, reduce the volume average particle size, and increase the zeta-potential absolute value of the SC-stabilized emulsions. In addition, HA increased the triple-phase contact angle of SC, transformed SC-stabilized emulsions into non-Newtonian fluids, and effectively inhibited the movement of emulsion droplets. The effect of 0.125 % HA concentration was the most effective, allowing SC-stabilized emulsions to maintain good kinetic stability over a 30-d period. NaCl destabilized SC-stabilized emulsions but had no significant effect on HA-SC emulsions. In summary, HA concentration had a significant effect on the stability of SC-stabilized emulsions. HA altered the rheological properties and reduced creaming and coalescence by forming a three-dimensional network structure, increasing the electrostatic repulsion of the emulsion and the adsorption capacity of SC at the oil-water interface, and thereby improving the stability of SC-stabilized emulsions during storage and in the presence of NaCl.
Collapse
Affiliation(s)
- Xingfen He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yuhang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanhua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mingxiang Hu
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Xingwang He
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Yuecheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
10
|
Niu F, Gu F, Zhao M, Gao Y, Tu W, Kou M, Pan W. Aggregation and Growth Mechanism of Ovalbumin and Sodium Carboxymethylcellulose Colloidal Particles under Thermal Induction. Biomacromolecules 2023; 24:1532-1543. [PMID: 36908256 DOI: 10.1021/acs.biomac.3c00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ovalbumin (OVA)/sodium carboxymethylcellulose (CMC) colloidal particles were prepared with different compactness and morphologies by regulating the interaction between proteins and polysaccharides during heating. Electrostatic interactions between the amine groups of OVA (-NH3+) and carboxyl groups of CMC (-COO-) enhanced complex formation. The protein conformation change benefited the hydrophobic interaction between the particles. Proteins in colloidal particles were unfolded/folded under thermal induction to form aggregates having more β-sheet structures. When the OVA/CMC ratio was 1:2, the initially loosely connected OVA/CMC aggregation changed into a uniform sphere between 25 and 90 °C. The mass ratio of OVA to CMC within the final colloidal particle (90 °C) was about 1:1.4. The OVA/CMC particle stability was maintained with hydrogen bonding, hydrophobicity, and disulfide bond. When OVA levels were predominant, OVA and CMC developed an approximately hollow sphere. Moreover, the final colloidal particle composition showed the OVA-to-CMC ratio as 3:1 (w/w). OVA bound into colloidal particle pores to increase compactness. Moreover, OVA and CMC bound to the colloidal particle while the particle shrank, thereby increasing the compactness of colloidal particles. There was a significant decrease in ABTS•+ scavenging activity of curcumin compared with that of the particles with a ratio of 1:2. Thus, the rational adjustment of the structure of colloidal particles could effectively enhance their functional characteristics, providing a new way for the controlled release of the active ingredients.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengdi Zhao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yi Gao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weiwei Tu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengxuan Kou
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
11
|
Feng X, Dai H, Tan H, Tang M, Ma L, Zhang Y. Improvement of low-oil gelatin emulsions performance by adjusting the electrostatic interaction between gelatin and nanocellulose with different morphologies. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Zhong W, Zhi Z, Zhao J, Li D, Yu S, Duan M, Xu J, Tong C, Pang J, Wu C. Oxidized Chitin Nanocrystals Greatly Strengthen the Stability of Resveratrol-Loaded Gliadin Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13778-13786. [PMID: 36196864 DOI: 10.1021/acs.jafc.2c04174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resveratrol (RES) is a natural polyphenol with a variety of health beneficial properties, but its application is greatly limited due to low aqueous solubility and poor bioavailability. This study aims to address these issues via gliadin nanoparticles stabilized with oxidized chitin nanocrystals (O-ChNCs) as a delivery system for RES. RES-loaded gliadin nanoparticles (GRNPs) were fabricated by an antisolvent method, and their formation mechanism was elucidated using zeta-potential, FTIR, XRD, and TEM. Furthermore, the effect of O-ChNCs on the colloidal stability and bioactiveness of GRNPs was discussed. The results demonstrate that O-ChNCs are adsorbed onto the surface of GRNPs through hydrogen bonding and electrostatic interactions, leading to the enhanced absolute potential and the improved hydrophobicity of the particles, which in turn facilitates the stability of the GRNPs. Furthermore, the changes in the release profile and antioxidant activity of RES in the simulated gastric and intestinal tracts indicate that the adsorption of O-ChNCs not only delays the release of RES but also has a protective effect on the antioxidant capacity of RES. This study provides significant implications for developing stable gliadin nanoparticles as delivery vehicles for bioactive substances.
Collapse
Affiliation(s)
- Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent9000, Belgium
| | - Jianbo Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| |
Collapse
|
13
|
Abstract
Particle coating is one of the oldest pharmaceutical processes that is still in existence. It is the process of applying a thin polymer-based film to a particle or granule containing the active pharmaceutical ingredient. The widely used methods for particle coating are sugar coating, film coating, and enteric coating and the techniques are pan coating, fluidized bed coating, and compression coating. Sugar coating was the earlier coating method, and it was gradually replaced by film coating because it required skilled manipulation. With the technology developing, enteric coating draws more attention. Pan coating is the most classic coating technique, which is applied to sugar coating, film coating and enteric coating. Fluid bed coating is used for a mixture of multiple materials and medicines and keeps the bioavailability high. Compression coating can avoid the harmful effects of moisture and high temperature, while it requires highly accurate machinery.
Collapse
|
14
|
Zhang J, Zhang H, Liu L, Chen Z. Emulsions stabilized by cellulose-based nanoparticles for curcumin encapsulations: In vitro antioxidant properties. Front Nutr 2022; 9:931581. [PMID: 35942167 PMCID: PMC9356219 DOI: 10.3389/fnut.2022.931581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
To improve the dispersity and antioxidant properties of curcumin, curcumin emulsions covered with cellulose particles (CP) with different structures were successfully prepared, and the structural characteristics, stability, and antioxidant properties of emulsions were investigated. The results showed that the CP obtained by increasing the hydrolysis time had smaller particle size, better water dispersion, and interfacial adsorption capacity. The encapsulation efficiency of curcumin in emulsion stabilized by cellulose particle hydrolyzed for 10 h can reach about 80%. After 9 days, all emulsions showed good stability, and no obvious creamed layer was observed. Compared to cellulose particles hydrolyzed for 2 h (CP2), emulsions stabilized by cellulose particles hydrolyzed for 6 h (CP6) and 10 h (CP10) exhibited better stability and free fatty acid (FFA) release. Meanwhile, the DPPH scavenging activity of curcumin emulsion stabilized by CP significantly increased with increasing the hydrolysis time and was much higher than that of pure emulsion and curcumin/water due to the higher solubility (1,455 times compared with curcumin/water solution) of curcumin, and these results could provide useful data for the stability and encapsulation of curcumin.
Collapse
|