1
|
Gu X, Mao Y, Liu K, Zhao Y, Zha F, Xu X, Zhao Y. Construction of gel network based on soybean dietary fiber-sturgeon myofibrillar protein: Mechanism of influence in modification treatment on gel structure and properties. Food Chem 2025; 474:143171. [PMID: 39914353 DOI: 10.1016/j.foodchem.2025.143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
This study discuss the influence of interactions between soybean dietary fiber and sturgeon myofibrillar protein on gel properties, thereby providing theoretical guidance for the surimi processing industry. Firstly, the physicochemical and functional properties of soybean dietary fiber treated with Alkaline Hydrogen Peroxide were evaluated. Subsequently, the interactions between various dietary fibers and sturgeon myofibrillar protein, along with their effects on the enhancement of gel properties, were systematically examined. The results showed that AHP-treated samples had a higher water-holding capacity and more compact and uniform micromorphology, the gel structure was improved, and the gel performance was improved. A-SIDF-1.5 % had the highest hardness (7.37 N), whereas its water-holding capacity reached 64.39 %. The addition of the modified SIDF significantly increased the density of the gel network and the stability of the gel. These results support the modification of SIDF and its application in surimi products to improve its gel properties.
Collapse
Affiliation(s)
- Xiaoyu Gu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuxuan Mao
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Fengchao Zha
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yilin Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Cheng Y, Zheng Y, Zhou C, Huang S, Sun Y, Yan H, Cao J, Pan D, Xia Q. Mechanistic insights into the modulation of myofibrillar protein microstructure and physicochemical properties in conditioned goose using pulsed electric field treatment. Int J Biol Macromol 2025; 310:143540. [PMID: 40294679 DOI: 10.1016/j.ijbiomac.2025.143540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Compact microstructure of goose myofibrillar proteins (MP) negatively affects texture and flavor properties, as thick, large myofibers result in lower tenderness and limited capacity to absorb water and flavor compounds. This study proposes a strategy to regulate the MP microstructure and physicochemical qualities of conditioned meat by altering protonation signaling during pulsed electric field (PEF) processing. The results demonstrated that enhanced protonation during PEF significantly improved the meat quality. MP solubility increased by 4.91-9.03 %, while particle size decreased by 32.56-52.85 % compared to PEF alone or deprotonated conditions, attributed to protonation enhanced dissociation-depolymerization and unfolding of MP. Histological observations via the staining and electron microscopy revealed that enhanced protonation disrupted the muscle fiber arrangement and MP network. The tertiary structure of MP was altered, exposing internal hydrophobic regions and releasing volatile flavor compounds, which increased the headspace concentration of volatile compounds in goose meat during prolonged PEF treatment, thus helping enhance the complexity of meat flavor and the perception of characteristic aromas. These results demonstrated the dual effects of enhanced protonation and deprotonation during PEF treatments, which synergistically drove structural and functional changes in MP. The study validated the feasibility of altering protonation signaling during PEF to modulate meat processing characteristics.
Collapse
Affiliation(s)
- Yan Cheng
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Siqiang Huang
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Hongbing Yan
- Hangzhou Dakang Cured Food Co., Ltd., Hangzhou 311122, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Daodong Pan
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- College of Food Science and Technology, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Chen B, Wang Y, Li K, Wang Y, Li J, Bai Y. Insights into myofibrillar protein denaturation during freezing: The impact of ice-water interface area. Int J Biol Macromol 2025; 304:140672. [PMID: 39909273 DOI: 10.1016/j.ijbiomac.2025.140672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
This study investigated the impact of the ice-water interface area on the denaturation of myofibrillar protein (MP) over 1, 3, and 5 freeze-thaw cycles. Experimental systems designed to generate ice-water interfaces with two distinct surface areas were established by employing rapid freezing at -80 °C and slow freezing at -25 °C, resulting in surface areas of 64.63 m2/100 mL and 54.05 m2/100 mL, respectively. Following three freeze-thaw cycles, the process of rapid freezing, characterized by formation of a larger ice-water interface area, was found to significantly influenced the functional properties of MP. The impact was evidenced by a reduction in solubility, total sulfhydryl content, and thermal denaturation temperature. Structural modifications in MP suggested that the larger ice-water interface led an accelerated rate of protein unfolding during freezing. Interfacial pressure and confocal laser scanning microscopy (CLSM) results demonstrated that the larger ice-water interface area could be more able to reduce protein interfacial adsorption and enhanced protein emulsion aggregation. The addition of 0.1 % surfactant Tween 80 prior to freezing markedly enhanced protein stability throughout both the freezing and subsequent freeze-thaw cycles. The findings suggested that to further inhibit MP frozen denaturation, it is important to consider limiting the expansion of ice-water interface area.
Collapse
Affiliation(s)
- Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China
| | - Yuanqing Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China
| | - Yanhong Bai
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Tan M, Han M, Zhou Y, Chen Z, Cao W. Trash to treasure: Potential antifreeze peptide from Litopenaeus vannamei head via ultrasound-assisted autolysis. Food Chem X 2025; 27:102395. [PMID: 40206046 PMCID: PMC11979979 DOI: 10.1016/j.fochx.2025.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
This study aimed to separate and purify antifreeze peptides (AFP) from the autolysate of Litopenaeus vannamei head, and the peptide sequences with antifreeze activity were identified to elucidate the potential antifreeze mechanisms. The initial fractionation of autolysate revealed that the pk1 fraction with less than 3 kDa molecular weight exhibited the highest thermal hysteresis activity (2.28 °C). Notably, the component pk1-A with the strongest antifreeze activity (2.80 °C) was further separated by using a Sephadex G-15 gel filtration column. The results of bioinformatics and computer-assisted techniques indicated that 26 types of peptides from pk1-A were identified as AFP. Among these, KQVHPDTGISSK was selected as a potential Litopenaeus vannamei head antifreeze peptide (LvAFP). The active site (Lys residue) of LvAFP was discovered to strongly interact with water molecules via hydrogen bonding, thereby inhibiting the formation and recrystallization of ice crystals. Therefore, the preparation of LvAFP could improve the high-value utilization of shrimp byproducts.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Mei Han
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingyu Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
5
|
Hong Z, Kong Y, Chen J, Guo R, Huang Q. Collaborative stabilizing effect of trehalose and myofibrillar protein on high internal phase emulsions: Improved freeze-thaw stability and 3D printability. Food Chem 2025; 469:142564. [PMID: 39709922 DOI: 10.1016/j.foodchem.2024.142564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
This study investigated the improvement of adding trehalose (Tre) on freeze-thaw (F-T) stability and 3D printability of myofibrillar protein (MP)-based high internal phase emulsions (HIPEs), also the underlying mechanism. Appropriate Tre addition formed thicker shell-like structure around MP by hydrogen bonds, and induced protein unfolding to ameliorate amphiphilicity. Additionally, Tre promoted the MP diffusion to interface to reduce interfacial tension. After interface saturation, Tre inducing MP rearrangement contributed more to form compact interface layer. Larger interface coverage increased hydrophobic interactions between droplets, constructing stronger MP-Tre-HIPEs gel network, inhibiting more free water to form ice crystals, confirmed by reduced destabilization index and freezing point. Such gel network enhanced their own viscoelasticity and thixotropic recovery, exhibiting superior printing accuracy. Conversely, excessive Tre aggregates (15 %-20 %) competed with MP for interfacial adsorption and filled between interfacial layer of adjacent droplets, weakening gel network. These findings expanded MP-HIPEs high-value application in frozen-foods and 3D printing.
Collapse
Affiliation(s)
- Zehan Hong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Yaqiu Kong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Jieling Chen
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| |
Collapse
|
6
|
You Q, Yuan Y, Mao R, Xie J, Zhang L, Tian X, Xu X. Simultaneous monitoring of two comprehensive quality evaluation indexes of frozen-thawed beef meatballs using hyperspectral imaging and multi-task convolutional neural network. Meat Sci 2025; 220:109708. [PMID: 39532035 DOI: 10.1016/j.meatsci.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The quality of beef meatballs during repeated freeze-thaw (F-T) cycles was assessed by multiple indicators. This study introduced a novel quality evaluation method using hyperspectral imaging (HSI) and multi-task learning. Seventeen quality indicators were analyzed to assess the impact of F-T cycles. Subsequently, a comprehensive quality index (CQI) and a comprehensive weight index (CWI) were constructed from 11 key indicators via factor analysis. By integrating HSI data from 150 samples with multi-task convolutional neural network (MT-CNN), the feasibility of simultaneous monitoring of CQI and CWI of the beef meatballs was explored. The results demonstrated that MT-CNN achieved superior predictions for CQI (RMSEp = 1.24, R2 = 0.94) and CWI (RMSEp = 20.436, R2 = 0.94) compared to traditional machine learning and single-task CNN approaches. Furthermore, the deterioration trends of beef meatballs during multiple F-T cycles were effectively visualized. Thus, the integration of HSI and MT-CNN enabled efficient prediction of comprehensive evaluation indexes for beef meatballs, contributing to their quality control.
Collapse
Affiliation(s)
- Qian You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Yukun Yuan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Runxiang Mao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Jianghui Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Chu Y, Wang J, Xie J. Exploring the correlation of microbial community diversity and succession with protein degradation and impact on the production of volatile compounds during cold storage of grouper (Epinephelus coioides). Food Chem 2024; 460:140469. [PMID: 39029368 DOI: 10.1016/j.foodchem.2024.140469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Microorganisms, proteins, and lipids play crucial and intricate roles in the aroma generation of aquatic products. To explore the impact of the interaction between microorganisms and proteins on the volatile compounds (VOCs) in grouper, this study employed whey protein isolate (WPI) to inhibit lipid oxidation and reduce mutual interference. Changes in bacterial profiles, metabolites, and VOCs were detected. Eighteen key VOCs associated with the overall flavor of grouper were identified, and the potential relationships among microorganisms, proteins, and VOCs were explored using a correlation network. Five microorganisms (Vibrio, Vagococcus, Pseudomonas, Psychrobacter, and Shewanella) closely related to characteristic flavor compounds were identified. Additionally, 30 differential metabolites related to proteins and six metabolic pathways were screened. Therefore, this study unveils the potential interaction between microorganisms and proteins in flavor formation and provides new insights into the relationships among microorganisms, proteins, and VOCs.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
8
|
Luo J, Liang L, Zhang J, Bi Y, Yang R, Sun B, Zhang Y. Effect of yeast (Saccharomyces cerevisiae) fermentation on conformational changes in pig liver proteins and their ability to bind to characteristic aldehydes. Food Chem 2024; 460:140637. [PMID: 39111139 DOI: 10.1016/j.foodchem.2024.140637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
This study aimed to explore the potential of a fermentation technology to reduce off-flavour perception and its underlying mechanisms. Results revealed that yeast fermentation (YF) significantly ameliorated the off-flavour of pig liver (p < 0.05). Specifically, YF pre-treatment decreased the relative abundance of α-helix and fluorescence intensity while increasing the surface hydrophobicity and SS level and loosening the microstructure of myofibrillar proteins (MPs) in pig liver. Additionally, the appropriate fermentation treatments enhanced the MP-aldehyde binding capacity by 0.25-1.30 times, demonstrating that YF-induced conformational modifications in pig liver proteins made them more prone to interacting with characteristic aldehydes. Moreover, molecular docking results confirmed that hydrophobic interactions are the primary drivers of MP-aldehyde binding. These findings suggest that YF technology holds immense promise for modulating off-flavour perception in liver products by altering protein conformation.
Collapse
Affiliation(s)
- Jin Luo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yongzhao Bi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
9
|
Huo Y, Yang D, Xie J, Yang Z. Effect of different freezing conditions on ice crystal formation behavior and ice-growth inhibition by cryoprotectants. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8928-8938. [PMID: 38958073 DOI: 10.1002/jsfa.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The formation of ice crystals will have adverse effects on aquatic products, and the key to ensure the long-term preservation and better quality preservations of the product is to evaluate the intercellular ice crystal formation to find suitable refrigeration conditions and cryoprotectants. RESULTS The ice crystal formation was successfully captured by using an inverted microscope cryomicroscopic system equipped with a low-temperature stage, the ice crystals formed under different freezing methods between tuna muscle cells were observed directly, the deformation degree of muscle tissue pores during crystallization was evaluated, and the effect of freeze-thaw times on tuna samples was analyzed. The effects of the use of cryoprotectant such as cellobiose and carboxylated cellulose nanofibers on ice-growth inhibition were investigated, and the reliability of the ice crystal observation results was further verified by the determination of physical properties. The results showed that carboxylated cellulose nanofibers had the best ice-growth inhibition effect, they prevented about 50% cell deformation compared with the control group, and also reduced the minimum size of ice crystal formation. In addition, the addition of cellobiose and sodium tripolyphosphate gave the ice crystals a more uniform size and roundness. CONCLUSION The experiment proposed a stable and clear observation method for the process of intercellular ice crystal formation, and the accuracy of the observation method was further verified by some physical indicators. This may help in the selection of suitable measurement methods to directly observe ice crystal formation behavior and screen cryoprotectants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yilin Huo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Dazhang Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhikang Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Cheng H, Mei J, Xie J. Stability of large yellow croaker (Pseudosciaena crocea) as affected by temperature abuse during frozen storage: Quality attributes, myofibril characteristics, and microstructure. Cryobiology 2024; 117:105157. [PMID: 39477053 DOI: 10.1016/j.cryobiol.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Temperature abuse occurs frequently during transportation and frozen storage, which affects the quality of frozen aquatic products. Recrystallization generated by temperature abuse leads to irreversible damage to the muscle tissue and microstructure, and exacerbates undesirable oxidation reactions, thus reducing the quality of frozen aquatic products. In this study, a modeling system of temperature abuse alternating between -24 °C and -7 °C was established to evaluate the effect of temperature abuse on the stability of frozen large yellow croaker. The results revealed that temperature abuse caused water migration with the extension of storage time, as well as poorer texture, color, and freshness. Furthermore, the structure of myofibrillar protein (MP) was severely damaged, with a gradual decrease in total sulfhydryl groups and Ca2+-ATPase activity, a loosening of the secondary structure, and a disruption of the protein conformation. The confocal laser scanning microscopy (CLSM) analysis also found that temperature abuse exacerbated protein aggregation. Therefore, temperature abuse during transportation and frozen storage could affect the stability of large yellow croaker negatively, and it mainly originated from the growth of ice crystals and the effect of recrystallization. The study was supposed to provide new insights into the improvement of frozen aquatic products quality.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
11
|
Zhu X, Liu X, Ouyang Z, Shi Y, Weng M, Li X, Kumar N, Li Y, Yuan Y, Dong Z, Zhan F, Li B, Teng Y. Co-stabilization effects of gluten/carrageenan to the over-heated myofibrillar protein: Inhibit the undesirable gel weakening and protein over-aggregations. Int J Biol Macromol 2024; 282:136722. [PMID: 39454918 DOI: 10.1016/j.ijbiomac.2024.136722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
High-temperature (120 °C) sterilization is an indispensable process for manufacturing ready-to-eat surimi products, yet risking the denaturation of their myofibrillar proteins (MP), thus significantly reducing the gelling properties. To resolve this problem, herein, a synergistic co-strengthening strategy was designed. The negatively charged polysaccharide carrageenan (CG) was introduced into MP simultaneously with wheat gluten, followed by 120 °C thermal treatment for 30 min. A substantial enhancement in mechanical strength, up to four times greater (from 9.86 to 42.38 g·cm), was observed for MP gels, which even surpassed that subjected to conventional gelation processes at 90 °C (36.53 g·cm). Gels that were concurrently added with gluten and CG exhibited porous networks, uniform water distribution, and improved water holding capacity. Accordingly, over-aggregation behaviors of MP were restricted, as evidenced by their reduced particle sizes and polymer dispersity index. Other heat-induced protein deteriorations at 120 °C, i.e., changes of secondary structures and disulfide bonding conformations, were also alleviated. By varying the CG types, it was shown that the κ-CG/gluten-added MP achieved highest gel strength, while the ι-CG/gluten combination may better stabilize the moisture in gel networks. This study introduces a co-reinforcement paradigm and scientific insights to the quality improvement of ready-to-eat meat products.
Collapse
Affiliation(s)
- Xiangwei Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiangyu Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhihan Ouyang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Youqing Shi
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Mingcan Weng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Nandan Kumar
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Zhiyue Dong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan 430074, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxin Teng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Chi Y, Ma Z, Wang R, Chi Y. A comprehensive review on freeze-induced deterioration of frozen egg yolks: Freezing behaviors, gelation mechanisms, and control techniques. Compr Rev Food Sci Food Saf 2024; 23:e70019. [PMID: 39289788 DOI: 10.1111/1541-4337.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Over the years, the production of eggs has increased tremendously, with an estimated global egg production of 9.7 billion by 2050. Further processing of shell eggs to egg products has gained growing popularity. Liquid egg yolks, an innovative form of egg replacement, still suffer from short shelf-life issues, and freezing has been applied to maintain freshness. An undesirable phenomenon called "gelation" was found during the production of frozen egg yolks, which has attracted numerous scholars to study its mechanism and quality control methods. Therefore, we comprehensively reviewed the history of the studies on frozen egg yolks, including the production procedure, the fundamentals of freezing, the gelation mechanism, the factors affecting gelation behaviors, and the techniques to control the gelation behaviors of frozen egg yolks. Reporting the production procedure and freezing fundamentals of frozen egg yolks will give readers a better understanding of the science and technological aspects of frozen egg yolks. Furthermore, a comprehensive summary of the mechanism of egg yolk gel formation induced by freeze-thawing and relevant control techniques will provide insights to researchers and manufacturers in the field of frozen egg processing.
Collapse
Affiliation(s)
- Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Ruihong Wang
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
13
|
Zhu X, He D, Chen Y, Duan X, Li Y, Yuan Y, Zhan F, Li B, Teng Y. Adenosine monophosphate boosts the cryoprotection of ultrasound-assisted freezing to frozen surimi: Insights into protein structures and gelling behaviors. Food Chem 2024; 450:139343. [PMID: 38631212 DOI: 10.1016/j.foodchem.2024.139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Ultrasound-assisted freezing (UAF) is a clean technique for meat cryoprotections; however, its effectiveness is still limited compared to conventional cryoprotectants, e.g., sugars, polyols, especially at high dosages. To resolve this problem, a synergistic cryoprotection strategy was developed in this study. Adenosine monophosphate (AMP), an adenosine-type food additive, was introduced into frozen surimi at a considerably reduced content (0.08%), yet substantially enhanced the efficiency of UAF to comparable levels of commercial cryoprotectant (4% sucrose with 4% sorbitol). Specifically, UAF/AMP treatment retarded denaturation of surimi myofibrillar protein (MP) during 60-day frozen storage, as evidenced by its increased solubility, Ca2+-ATPase activity, sulfhydryl content, declined surface hydrophobicity, particle size, and stabilized protein conformation. Gels of UAF/AMP-treated surimi also demonstrated more stabilized microstructures, uniform water distributions, enhanced mechanical properties and water-holding capacities. This study provided a feasible approach to boost the cryoprotective performance of UAF, thus expanding its potential applications in frozen food industry.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yingying Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Xinyu Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Yue Yuan
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxin Teng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
14
|
Zhao S, Hei M, Liu Y, Zhao Y, Wang H, Ma H, He H, Kang Z. Effect of low-frequency alternating magnetic fields on the physicochemical, conformational and rheological properties of myofibrillar protein after iterative freeze-thaw cycles. Int J Biol Macromol 2024; 267:131418. [PMID: 38582465 DOI: 10.1016/j.ijbiomac.2024.131418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in β-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China.
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hongju He
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
15
|
Zhang M, He L, Wang Y, Li C, Jin Y, Jin G, Tang X. Excessive free radical grafting interferes with the macromolecular association and crystallization of brined porcine myofibrils during heat-set gelatinization. Food Res Int 2024; 175:113709. [PMID: 38129033 DOI: 10.1016/j.foodres.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.
Collapse
Affiliation(s)
- Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lichao He
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chengliang Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaoyan Tang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Feng X, Cen K, Yu X, Huang C, Yang W, Yang Y, Tang X. Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: Maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation. Int J Biol Macromol 2023; 253:126682. [PMID: 37666398 DOI: 10.1016/j.ijbiomac.2023.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
In this work, the effects of quinoa protein Pickering emulsion (QPPE) on protein oxidation, structure and gastrointestinal digestion property of myofibrillar protein gels (MPGs) after freeze-thaw (F-T) cycles are revealed. SDS-PAGE results indicated that 5.0 %-10.0 % QPPE addition slowed down the protein degradation. Meanwhile, 5.0 %-7.5 % QPPE maintained the stability of the protein secondary and tertiary structure of MPGs after F-T cycles. The sulfhydryl group, disulfide bond and dityrosine content increased with QPPE supplementation. The conformations of disulfide bond changed from g-g-t and t-g-t to g-g-g after F-T cycles, and 5.0 %-7.5 % QPPE stabilized the changes of t-g-t conformation. Furthermore, the increase of dityrosine content after F-T cycles was significantly reduced with 7.5 % QPPE addition, indicating its effect to slow down protein oxidation of MPGs. In addition, MPGs with 5.0 % and 7.5 % QPPE showed noticeably higher zeta potential values than other groups, indicating the enhanced electrostatic repulsion and weakened aggregation caused by F-T damage. This work showed that 7.5 % QPPE improved the F-T stability of MPGs and reduced the protein denaturation and oxidation caused by F-T treatments, exerting no side effect on the digestion property of MPGs. QPPE can be used as a green and effective antifreeze in meat industry.
Collapse
Affiliation(s)
- Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kaiyue Cen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
17
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
18
|
Chu Y, Mei J, Xie J. Integrated volatile compounds and non-targeted metabolomics analysis reveal the characteristic flavor formation of proteins in grouper (Epinephelus coioides) during cold storage. Food Res Int 2023; 172:113145. [PMID: 37689909 DOI: 10.1016/j.foodres.2023.113145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
Microorganisms, lipids, and proteins always interact in a complex way in the fish matrix, which becomes a hindrance to evaluate the quality of the individual factors affecting them. In order to investigate the relationship between protein deterioration and volatile compounds (VOCs) in grouper during cold storage, the myofibril protein (MP) was used as a single-factor study to exclude microorganisms and lipids effects. The oxidation and degradation of MP during storage at 4 ℃ were evaluated, including MP content, total sulfhydryl content, carbonyl content, spatial structure and microstructure. Headspace-solid phase microextraction- gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the VOCs of grouper MP, and a total of 7 key VOCs were selected, including three ketones (2-nonanone, 2-undecanone and 2-tridecanone), three esters (methyl butyrate, methyl palmitate and methyl ester 9-octadecenoic acid) and one alcohol (3-methyl-1-butanol). At the same time, a non-targeted metabolomics method based on UPLC-Q-Extractive Orbitrap was used to investigate the changes in metabolites during MP storage. A total of 107 up-regulated differential metabolites and 7 down-regulated metabolites were annotated, and 6 metabolic pathways highly related to proteins were screened. Spearman correlation analysis showed that 7 key VOCs are associated with the biosynthesis and metabolism of ornithine and lysine. And a possible solution to protein deterioration in grouper was proposed, which provided a reference for improving protein quality and regulating flavor formation during cold storage of grouper at source.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
19
|
Li W, Chen Q, Wang X, Chen Z. Effect of Freezing on Soybean Protein Solution. Foods 2023; 12:2650. [PMID: 37509741 PMCID: PMC10379167 DOI: 10.3390/foods12142650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration of 2% and subjected to freezing for 1 and 5 days. Subsequently, the protein content, physicochemical properties, secondary structure, sulfhydryl content, and chemical interaction forces were assessed and analyzed using UV spectrophotometry, Zeta potential measurements, SDS-PAGE, Fourier infrared spectroscopy, and endogenous fluorescence photoemission spectroscopy. The obtained results revealed that the solubility and total sulfhydryl content of SPI, 7S, and 11S exhibited a decreasing trend with prolonged freezing time. Among them, 11S demonstrated the largest decrease in solubility and total sulfhydryl content, followed by SPI, and 7S the least. During freezing, the aromatic amino acids of SPI, 7S, and 11S molecules were exposed, leading to increased hydrophobicity, protein aggregation, and particle size enlargement, and the structure of the protein changed from disordered structure to ordered structure. After freezing, the polarity of the microenvironment of SPI, 7S, and 11S increased, and their maximum fluorescence emission wavelengths were red-shifted. Notably, the largest red shift of SPI was from 332 nm to 335 nm. As freezing time increased, the contribution of hydrogen bonding increased, while the contribution of hydrophobic interactions decreased. This indicates that freezing affects the hydrophobic interactions, hydrogen bonding, and other chemical forces of the protein. The growth of ice crystals leads to the unfolding of protein molecular chains, exposure of internal hydrophobic groups, enhancement of hydrophobicity, and alters the secondary structure of the protein.
Collapse
Affiliation(s)
- Wenhui Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
20
|
Wang C, Rao J, Li X, He D, Zhang T, Xu J, Chen X, Wang L, Yuan Y, Zhu X. Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: Insights into protein structure integrity and gelling behaviors. Food Res Int 2023; 169:112871. [PMID: 37254320 DOI: 10.1016/j.foodres.2023.112871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Chickpea protein (CP) and its enzymatic hydrolysates are one of the most widely consumed pulse ingredients manifesting versatile applications in food industry, such as binders, emulsifiers, and meat protein substitutes. Other than those well-known functionalities, however, the use of CP as a cryoprotectant remained unexplored. In this study, we prepared the chickpea protein hydrolysate (CPH) and investigated its cryoprotective effects to frozen surimi in terms of the protein structure integrity and gelling behaviors. Results indicated that CPH could inhibit myofibrillar protein (MP) denaturation and oxidation during the freeze-thaw cycling, as evidenced by their increased solubility, Ca2+-ATPase activity, sulfhydryl concentration, and declined content of disulfide bonds, carbonyl concentration and surface hydrophobicity. Freezing-induced changes on MP secondary structures were also retarded. Moreover, gels prepared from CPH-protected frozen surimi demonstrated more stabilized microstructure, uniform water distribution, enhanced elasticity, gel strength and water holding capacity. The CPH alone, at a reducing addition content of 4% (w/w), exhibited comparable cryoprotective performance to that of the commercial formulation (4% sucrose and 4% sorbitol). Therefore, this study provides scientific insights for development of pulse proteins as novel and high-performance food cryoprotectants.
Collapse
Affiliation(s)
- Chao Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ting Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jianteng Xu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Chen
- Key Laboratory of Bulk Grain and Oil Deep Processing Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
21
|
Pan L, Liu X, Fan D, Qian Z, Sun X, Wu P, Zhong L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals (Basel) 2023; 16:843. [PMID: 37375789 DOI: 10.3390/ph16060843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, oncolytic viruses (OVs) have emerged as an effective means of treating cancer. OVs have multiple oncotherapeutic functions including specifically infecting and lysing tumor cells, initiating immune cell death, attacking and destroying tumor angiogenesis and triggering a broad bystander effect. Oncolytic viruses have been used in clinical trials and clinical treatment as drugs for cancer therapy, and as a result, oncolytic viruses are required to have long-term storage stability for clinical use. In the clinical application of oncolytic viruses, formulation design plays a decisive role in the stability of the virus. Therefore, this paper reviews the degradation factors and their degradation mechanisms (pH, thermal stress, freeze-thaw damage, surface adsorption, oxidation, etc.) faced by oncolytic viruses during storage, and it discusses how to rationally add excipients for the degradation mechanisms to achieve the purpose of maintaining the long-term stability of oncolytic viral activity. Finally, the formulation strategies for the long-term formulation stability of oncolytic viruses are discussed in terms of buffers, permeation agents, cryoprotectants, surfactants, free radical scavengers, and bulking agent based on virus degradation mechanisms.
Collapse
Affiliation(s)
- Lina Pan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
22
|
Pan N, Bai X, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. The dynamic change in the degradation and in vitro digestive properties of porcine myofibrillar protein during freezing storage. Int J Biol Macromol 2023; 234:123682. [PMID: 36796280 DOI: 10.1016/j.ijbiomac.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The myofibrillar protein (MP) degradation and in vitro digestive properties of porcine longissimus during freezing at -8, -18, -25 and - 40 °C for 1, 3, 6, 9 and 12 months were investigated. As the freezing temperature and duration of frozen storage increased, the amino nitrogen and TCA (trichloroacetic acid)-soluble peptides of the samples were significantly increased, while the total sulfhydryl content and band intensity of myosin heavy chain, actin, troponin T, tropomyosin were significantly decreased (P < 0.05). At higher freezing storage temperatures and durations, the particle size of MP samples and the green fluorescent spots detected using a laser particle size analyzer and confocal laser scanning microscopy became large. After 12 months of freezing, the digestibility and the degree of hydrolysis of the trypsin digestion solution of the samples frozen at -8 °C were significantly decreased by 15.02 % and 14.28 %, respectively, when compared to fresh samples, whereas, the mean surface diameter (d3,2) and mean volume diameter (d4,3) were significantly increased by 14.97 % and 21.53 %, respectively. Therefore, frozen storage induced protein degradation and impaired the ability of digestion in the pork proteins. This phenomenon was more evident as the samples were frozen at high temperatures over a long storage period.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
23
|
Wei Q, Zhang G, Mei J, Zhang C, Xie J. Optimization of freezing methods and composition of frozen rice dough reconstituted by glutinous rice starch and gluten. Int J Biol Macromol 2023; 240:124424. [PMID: 37060979 DOI: 10.1016/j.ijbiomac.2023.124424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/15/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
This study investigated the effects of four different freezing methods on the texture of rice dough reconstituted by glutinous rice starch and gluten, and the changes of properties of rice dough with different gluten ratios after liquid nitrogen (LF) treatment. The profiles of frozen rice dough were studied by texture analyzer, low-field NMR, SEM, FT-IR, DSC, CLSM, X-RD and RVA. Results revealed that with the slowing down of freezing rate, the damage of freezing process to starch granules and protein structure in frozen rice dough increases, resulting in the increase of damaged starch, the decrease of protein ordered structure, the change of bound water in frozen rice dough to free water, the decrease of frozen rice dough hardness and elasticity, the decrease of storage modulus (G') and the deterioration of frozen rice dough texture. The addition of gluten in frozen rice dough will increase the short-range ordered structure and crystal structure of starch, reduce the digestibility of starch, and change the viscosity characteristics of frozen rice dough. Based on the experimental results, adding 10 % gluten is more suitable for making frozen rice dough, while LF has the least effect on frozen rice dough texture.
Collapse
Affiliation(s)
- Qi Wei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Ge Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Area A, No.118 Gaodong Road, Pudong New District, Shanghai 200137, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Chenchen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
24
|
Tan M, Ding Z, Chu Y, Xie J. Potential of Good's buffers to inhibit denaturation of myofibrillar protein upon freezing. Food Res Int 2023; 165:112484. [PMID: 36869497 DOI: 10.1016/j.foodres.2023.112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The current systematic study sought to examine the potential use of three Good's buffers (MES, MOPS and HEPES) in inhibiting myofibrillar protein (MFP) denaturation induced by acidity changes. The highest degree of acidity variation was found in the center and bottom of large bottles due to the freeze-concentration effect. Good's buffer tended to basify during freezing, and it could prevent the crystallization of sodium phosphate (Na-P) buffer. Acidification upon freezing Na-P disrupted the natural conformation of MFP and induced the formation of large proteins aggregates with tight packing. The 15 mM MES, 20 mM MOPS, and 30 mM HEPES were respectively added to neutralize the strong acidity drop induced by freezing 20 mM Na-P, and all of them significantly improved the stability of the MFP conformation (P < 0.05). This work is not only critical to meet the growing demand for protein, but also groundbreaking for broadening the applicability of Good's buffers in the food industry.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
25
|
Chu Y, Ding Z, Yang D, Xie J. Evaluation on the effect of ice glazing with different compound additives on the quality of frozen stored (-23 °C) large yellow croaker (Pseudosciaena crocea). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:349-360. [PMID: 35892290 DOI: 10.1002/jsfa.12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Compounded ice glazing has been used in large yellow croaker to improve its quality during frozen storage. The ice glazing liquid is prepared by compound use of trehalose and tea polyphenols, and the moisture, protein-related properties and freshness of the fish have been evaluated during 300 days of frozen storage. RESULTS The results showed that the addition of trehalose effectively reduced the loss of water. At the same time, it was difficult for ice crystals to grow under the action of trehalose, the average diameter could still be maintained at 111.25-119.85 μm. The combination with tea polyphenols could effectively maintain the protein structure and keep the total volatile base nitrogen (TVB-N) and K value within 11.84 mg/100 g and 13.18%, so that the freshness of the fish was always at the first level. CONCLUSION In a word, the ice glazing with 5% trehalose and 8% tea polyphenols had the best preservation effect, which was recommended for the frozen storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Dazhang Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
26
|
Han J, Sun Y, Zhang T, Wang C, Xiong L, Ma Y, Zhu Y, Gao R, Wang L, Jiang N. The preservable effects of ultrasound-assisted alginate oligosaccharide soaking on cooked crayfish subjected to Freeze-Thaw cycles. ULTRASONICS SONOCHEMISTRY 2023; 92:106259. [PMID: 36502681 PMCID: PMC9758566 DOI: 10.1016/j.ultsonch.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 05/31/2023]
Abstract
To improve the quality of cooked and frozen crayfish after repeated freeze-thaw cycles, the effects of alginate oligosaccharide (1 %, w/v) with ultrasound-assisted (40 W, 3 min) soaking (AUS) on the physicochemical properties were investigated. The AUS samples improved water-holding capacity with 19.47 % higher than the untreated samples. Low-field nuclear magnetic resonance confirmed that mobile water (T22) in the samples after 5 times of freeze-thaw cycles was reduced by 13.02 % and 29.34 % with AUS and without treatment, correspondingly; and with AUS and without treatment, average size of the ice crystals was around 90.26 μm2 and 113.73 μm2, and average diameter of the ice crystals was 5.83 μm and 8.14 μm, respectively; furthermore, it enhanced the solubility and zeta potential, lowered the surface hydrophobicity, reduced the particle size, and maintained the secondary and tertiary structures of myofibrillar protein (MP) after repeated freeze-thawing. Gel electrophoresis revealed that the AUS treatment mitigated the denaturation of MPs. Scanning electron microscopy revealed that the AUS treatment preserved the structure of the tissue. These findings demonstrated that the AUS treatment could enhance the water retention and physicochemical properties of protein within aquatic meat products during temperature fluctuations..
Collapse
Affiliation(s)
- Jiping Han
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Yingjie Sun
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing 210014, China.
| | - Cheng Wang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Lingming Xiong
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Yanhong Ma
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Yongzhi Zhu
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Ruichang Gao
- College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Wang
- College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Jiang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China.
| |
Collapse
|
27
|
Areche FO, Gondal AH, Rodriguez AR, Flores DDC, Sulca JYM, Bustamante MAC, Pérez PL, Yapias RJM, Victorio JPE, Huayhua LLA. Fragile Effects of Climatic Variation on Goat Protein and its Products: A Review. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Goats are useful to smaller communities because of their low production costs, limited feed requirements, rapid generation rates, and ability to consistently provide modest volumes of milk that are suitable for immediate use in home. The flavour of dairy dishes is greatly influenced by the proteins found in goat milk and contributing in texture, viscosity, and structure to dairy dishes, all of which enhance the dining experience. Amino acids like glycine, alanine, and peptides can act as precursors to other volatile aroma-active molecules and so set off basic flavours. Increasing temperatures have major consequences for goat milk by-products, including as altering their flavour through denaturation of proteins, the emission of sulfuric chemicals, and an eggy fragrance in the case of scaled milk. Although there has been increasing evidence that environmental changes have an impact on food availability and quality in recent decades, the impacts of these changes on food composition are still largely understood. The potential impact of climate change on food quality must be disclosed. This study suggests a fundamental, but as of yet unexplored, method by which climate change can impact global food and nutrition security: changes in food nutritional content beyond those caused by agricultural production.
Collapse
Affiliation(s)
- Franklin Ore Areche
- 1Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica-Peru
| | - Aqarab Husnain Gondal
- 2Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Alfonso Ruiz Rodriguez
- 1Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica-Peru
| | - Denis Dante Corilla Flores
- 1Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica-Peru
| | - Jeny Yanet Marquez Sulca
- 1Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica-Peru
| | | | - Peter Llimpe Pérez
- 1Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica-Peru
| | | | | | | |
Collapse
|
28
|
Gum tragacanth-sodium alginate active coatings containing epigallocatechin gallate reduce hydrogen peroxide content and inhibit lipid and protein oxidations of large yellow croaker (Larimichthys crocea) during superchilling storage. Food Chem 2022; 397:133792. [DOI: 10.1016/j.foodchem.2022.133792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
|
29
|
Li M, He S, Sun Y, Pan D, Zhou C, He J. Effectiveness of l-arginine/l-lysine in retarding deterioration of structural and gelling properties of duck meat myofibrillar protein during freeze-thaw cycles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Formation of advanced glycation end-products in silver carp (Hypophthalmichthys molitrix) surimi products during heat treatment as affected by freezing-thawing cycles. Food Chem 2022; 395:133612. [DOI: 10.1016/j.foodchem.2022.133612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023]
|
31
|
Effects of single-, dual-, and multi-frequency ultrasound-assisted freezing on the muscle quality and myofibrillar protein structure in large yellow croaker ( Larimichthys crocea). Food Chem X 2022; 15:100362. [PMID: 35756459 PMCID: PMC9218204 DOI: 10.1016/j.fochx.2022.100362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
MUAF significantly promoted the freezing process of large yellow croakers. MUAF enhanced the quality of large yellow croakers. MUAF better maintained the stability of fish protein. The mechanisms of single-, dual-, and multi-frequency UAF were analyzed.
Ultrasound-assisted freezing (UAF) has been proved to be a new technology to improve the quality of frozen foods. Frequency is an important parameter affecting UAF result. This study was to investigate the effects of single-, dual- and multi-frequency UAF on muscle quality and myofibrillar protein structure in large yellow croaker (Larimichthys crocea), providing reference for the application of multi-frequency UAF in frozen foods. Multi-frequency UAF increased the freezing rate and had lower thawing loss, thiobarbituric acid reactive substances (TBARS) value, total volatile basic nitrogen (TVB-N) value, and higher immobilized water content. Multi-frequency UAF had lower carbonyl, higher sulfhydryl content, and more stable myofibrillar protein secondary and tertiary structures. Confocal laser scanning microscopy (CLSM) indicated that the filamentous polymer in muscle fibrin solution with multi-frequency UAF was transformed into more evenly distributed units. In general, multi-frequency UAF significantly improved the freezing rate, reduced lipid oxidation, and maintained the myofibrillar structure.
Collapse
|
32
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
33
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Tan M, Ding Z, Xie J. Freezing-induced myofibrillar protein denaturation: Contributions of freeze-concentration and role of cellobiose. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Effect of ultrasound-assisted freezing combined with potassium alginate on the quality attributes and myofibril structure of large yellow croaker (Pseudosciaena crocea). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yuduan D, Gao P, Jiang Q, Xia W, Yang F. Effect of immersion freezing with the edible medium on protein structure, chemical bonding and particle size in grass carp (
Ctenopharyngodon idellus
) during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diao Yuduan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
37
|
Analysis of Acute Nitrite Exposure on Physiological Stress Response, Oxidative Stress, Gill Tissue Morphology and Immune Response of Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2022; 12:ani12141791. [PMID: 35883338 PMCID: PMC9312338 DOI: 10.3390/ani12141791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022] Open
Abstract
Nitrite is a common pollutant in aquaculture water, and nitrite toxicity that negatively affects aquatic species is common in aquaculture systems when the water quality is low. Therefore, the present research aimed to evaluate the effect of acute nitrite exposure on the hematological parameters, antioxidant enzymes, immune response, and gill morphology of large yellow croaker (Larimichthys crocea). The fish were randomly separated and exposed to four (i.e., 0, 29.36, 58.73, and 88.09 mg/L) nitrite concentrations for 48 h. The fish blood and gills were collected at 0, 12, 24, 36, and 48 h of nitrite exposure for further analysis. In hematological parameters, the results showed that the levels of hemoglobin, triglyceride, and total cholesterol in blood significantly decreased (p < 0.05) in all nitrite-treated samples after 12 h, while the contents of methemoglobin in blood significantly increased (p < 0.05) in these treatments. After 48 h of nitrite exposure, the levels of cortisol in serum showed a 94.5%, 132.1%, and 165.6% increase in fish exposed to 29.36, 58.73, and 88.09 mg/L nitrite, respectively. The nitrite (i.e., 29.36, 58.73, and 88.09 mg/L) exposure significantly increased (p < 0.05) the levels of antioxidant enzymes (i.e., catalase and glutathione) in the gill and serum after 12 h of exposure compared with the control. The lysozyme levels in serum decreased in the nitrite (i.e., 29.36, 58.73, and 88.09 mg/L) exposure samples. It was found that immunoglobulin levels in the 29.36, 58.73, and 88.09 mg/L nitrite-treated samples (i.e., 1.86, 1.58, and 0.74 μg/mL, respectively) were lower than that of the control (2.56 μg/mL). In addition, the surface of the gill lamellae displayed deformation and contraction after 48 h of nitrite, especially in the fish exposed to 88.09 mg/L nitrite. These results indicate that the nitrite exposure induced the oxidative stress, affected the immune response, and changed the gill morphology, leading to nitrite poisoning in large yellow croaker.
Collapse
|
38
|
Ma X, Mei J, Qiu W, Xie J. Influence of Multi-Frequency Ultrasound-Assisted Freezing on the Freezing Rate, Physicochemical Quality and Microstructure of Cultured Large Yellow Croaker ( Larimichthys crocea). Front Nutr 2022; 9:906911. [PMID: 35782953 PMCID: PMC9244167 DOI: 10.3389/fnut.2022.906911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this work was to investigate the influence of multi-frequency ultrasound-assisted immersion freezing (UIF) on the freezing speed, quality attributes, and microstructure of cultured large yellow croaker (Larimichthys crocea) with different ultrasound powers. The findings revealed that UIF under multi-frequency conditions greatly enhanced the speed of food freezing. The multi-frequency UIF reduced the thawing and cooking losses, total volatile base nitrogen, K-values, and thiobarbituric acid reactive substances values, and increased the water holding capacity. The microstructure observation showed that multi-frequency UIF at 175 W reduced pore diameter and ice crystal size. Free amino acids analysis revealed that the application of multi-frequency UIF reduced the accumulation of bitter amino acids, and UIF-175 treatment increased the accumulation of umami amino acids. Therefore, multi-frequency UIF at a suitable ultrasonic power can remarkably improve the quality of large yellow croaker.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
39
|
Yu H, Zhang C, Xie Y, Mei J, Xie J. Effect of Melissa officinalis L. Essential Oil Nanoemulsions on Structure and Properties of Carboxymethyl Chitosan/Locust Bean Gum Composite Films. MEMBRANES 2022; 12:membranes12060568. [PMID: 35736275 PMCID: PMC9227452 DOI: 10.3390/membranes12060568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022]
Abstract
This study aimed to develop active films based on carboxymethyl chitosan (CMCS)/locust bean gum (LBG) films containing Melissa officinalis L. essential oil (MOEO) nanoemulsions. The results showed that the active films incorporated with MOEO nanoemulsion resulted in an increase in the elongation of break, water resistance and improved the film hydrophilicity. Elongation of break increased from 18.49% to 27.97% with the addition of 4% MOEO nanoemulsion. Water resistance was decreased from 56.32% to 25.43%, and water contact angle was increased from 75.13 to 83.86 with the addition of 4% MOEO nanoemulsion. However, the water vapor barrier properties and tensile strength decreased with the addition of MOEO nanoemulsions. The scanning electron microscopic images and Fourier transform infrared spectroscopy results showed that the MOEO was very compatible with the film materials and dispersed evenly in the films. At the same time, the addition of MOEO nanoemulsion significantly enhanced antioxidant and antibacterial activities of C/L-MOEO films. The antioxidant and antimicrobial activities of C/L-MOEO films were increased from 7.16% to 33.81% and 3.52% to 54.50%, respectively. In general, C/L-MOEO film has great application prospects.
Collapse
Affiliation(s)
- Huijie Yu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Y.); (C.Z.); (Y.X.)
| | - Chi Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Y.); (C.Z.); (Y.X.)
| | - Yao Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Y.); (C.Z.); (Y.X.)
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Y.); (C.Z.); (Y.X.)
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.)
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Y.); (C.Z.); (Y.X.)
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.)
| |
Collapse
|
40
|
Wu B, Xu Z, Cao J, Wang Q, Mei J, Xie J. Effects of β-1,3-glucan and ascorbic acid on the nutritional-immune response and antioxidant signaling pathways of live tiger grouper during simulated transport. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Ye T, Chen X, Zhu Y, Chen Z, Wang Y, Lin L, Zheng Z, Lu J. Freeze-Thawing Treatment as a Simple Way to Tune the Gel Property and Digestibility of Minced Meat from Red Swamp Crayfish (Procambarus clarkiix). Foods 2022; 11:foods11060837. [PMID: 35327260 PMCID: PMC8950141 DOI: 10.3390/foods11060837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
The effects of freezing methods, including rapid freezing (RF) or slow freezing (SF), combined with thawing methods, e.g., water immersing thawing (WT) or cold thawing (CT), on the meat yield, drip loss, gel properties, and digestive properties of meat detached from red swamp crayfish were investigated. RF greatly reduced the freezing time compared to SF, and the thawing time of frozen crayfish was obviously shortened by WT in comparison to CT. RF and CT improved the meat yield but increased the drip loss, probably as a result of the greater protein denaturation or degradation. A soft and flexible gel was obtained by SF-CT, while a hard one was achieved by RF-WT. An SEM analysis showed that SF resulted in rough and irregular microstructures with larger pore sizes. Freeze-thawing led to an increase in the β-sheet content at the expense of α-helix and variations in the microenvironment of tyrosine and tryptophan residues in protein molecules of the gels, which was more pronounced in the SF-CT group. Moreover, freeze-thawing could cause enhanced protein digestibility but reduce the antioxidant activity of gels. These findings underline the promise of the freezing-thawing treatment in tuning the gel-based meat products of crayfish.
Collapse
Affiliation(s)
- Tao Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yajun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
| | - Zhina Chen
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
- Correspondence:
| |
Collapse
|
42
|
Zhu X, Zhu M, He D, Li X, Shi L, Wang L, Xu J, Zheng Y, Yin T. Cryoprotective Roles of Carboxymethyl Chitosan during the Frozen Storage of Surimi: Protein Structures, Gel Behaviors and Edible Qualities. Foods 2022; 11:356. [PMID: 35159506 PMCID: PMC8833919 DOI: 10.3390/foods11030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Carboxymethyl chitosan (CMCh) is an ampholytic chitosan derivative that manifests versatile applications in food industry, such as antibacterial ingredients and nutritional additives. However, its use as a cryoprotectant remains under-researched. In this study, the cryoprotective effect of CMCh oligosaccharide (CMCO) on frozen surimi (silver carp) was systematically investigated in terms of protein structures, gelling behaviors, and sensory qualities. CMCO (0.6%) was incorporated in the surimi before frozen storage (-18 °C for 60 days) while the commercial cryoprotectant (4% sucrose, 4% sorbitol) was used as a positive control. Results indicated that CMCO could inhibit the freezing-induced denaturation of myofibrillar protein, whose values of solubility, Ca2+-ATPase and sulfhydryl content were 24.8%, 64.7%, and 17.1% higher than the nonprotected sample, respectively, while the surface hydrophobicity was 21.6% lower. Accordingly, CMCO stabilized microstructure of the surimi gels associated with improved gel strength, viscoelasticity, water-holding capacities, and whiteness. Moreover, the cryoprotective effect of CMCO with higher degree of carboxymethyl substitution (DS: 1.2) was more pronounced than that of low-DS-CMCO (DS: 0.8). Frozen surimi treated with high-DS-CMCO achieved competitive gelling properties and sensory acceptability to those with the commercial counterpart. This study provided scientific insights into the development of ampholytic oligosaccharides as food cryoprotectants.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Minglang Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Liu Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Jianteng Xu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|