1
|
Guo L, Zhang W, Zhang F, Hu S, Zhao Q, Chang C, Li J, Huang Z, Gu L, Yang Y, Su Y. Cysteine and dialysis mediated inhibition of dynamic changes in glycosylated egg white protein during storage. Food Chem 2025; 480:143819. [PMID: 40147279 DOI: 10.1016/j.foodchem.2025.143819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Glycosylation is commonly used to improve the solubility and functionality of egg white protein (EWP), but glycosylated EWP is prone to quality deterioration during storage. To enhance its storage stability, cysteine (Cys) addition and dialysis-based desugar treatment were applied to xylo-oligosaccharide (XOS) glycosylated EWP (GEW) in accelerated storage examinations. Both Cys addition and dialysis minimized changes in soluble protein content, color difference, and particle size during storage. Further, they inhibited the Maillard reaction and the accumulation of its intermediate products. Cys addition effectively maintained protein structures and prevented protein crosslinking. However, dialysis lost the filling and protective effect of free sugars, lowering the denaturation temperature of ovalbumin. Cys and dialysis effectively maintained the stability of emulsifying properties, while Cys better preserved gelation. Overall, both Cys addition and dialysis markedly enhanced the storage stability of GEW, with Cys proving to be more effective.
Collapse
Affiliation(s)
- Lulu Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fan Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shende Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianwen Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zijian Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Hunan Jiapin Jiawei Technology Development Group Co. LTD, Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, China.
| |
Collapse
|
2
|
Wang KL, Yu BK, Zhao HF, Liu YX, Wu CY, Zhang YH, Mu ZS. Preparation and characterization of microcapsules for tuna oil by maillard reaction products of whey protein isolate and Arabic gum via complex coacervation. Food Chem 2025; 475:143269. [PMID: 39956057 DOI: 10.1016/j.foodchem.2025.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to prepare Maillard reaction products (MRPs) from whey protein isolate (WPI) and different reducing sugars (glucose, fructose, maltose, lactose), and utilize the optimal MRPs to fabricate tuna oil (TO) microcapsules for enhancing TO's storage stability. The results showed that the optimal wet heat reaction duration of WPI and reducing sugar was 8 h at 75 °C. Glycosylation improves the functional properties of WPI. WPI-maltose coupling (WPI-M) and Arabic gum were selected as the wall material to prepare TO microcapsules by complex coacervation, and the encapsulation efficiency of microcapsules reached 87.41 %. Compared to WPI, WPI-M microcapsules have a more homogeneous emulsion morphology. The peroxide value of microencapsulated protected TO was 35.78 % lower than that of free TO after accelerated oxidation at 55 °C for 16 days. Microcapsules prepared with MRPs wall materials by complex coacervation offer a promising approach for the preservation of compounds.
Collapse
Affiliation(s)
- Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo-Kang Yu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Fu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye-Xuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun-Ying Wu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Zhi-Shen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China.
| |
Collapse
|
3
|
Wen C, Tang J, Wu M, Liu H, Lin X, Fan M, Liu G, Zhang J, Liang L, Liu X, Li Y, Duan Y, Xu X. Preparation, characterization, and stability of pectin-whey protein isolate-based nanoparticles with mitochondrial targeting ability. Int J Biol Macromol 2025; 301:140383. [PMID: 39880250 DOI: 10.1016/j.ijbiomac.2025.140383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Quercetin (Que) is a polyhydroxy flavonoid with strong inhibitory activity against cancer cells. However, the poor water solubility and low bioavailability of Que. limit its application in the functional food industry. In the present study, the nanoparticle loaded with Que. was prepared with whey isolate protein (WPI) stabilized by triphenylphosphonium bromide (TPP) and pectin (P) as wall materials. The formation mechanism, release of Que., and antitumor activity of nanoparticles were investigated. The results showed that the optimal ratio of WPI: TPP: Que.: P in the preparation of nanoparticles (WPI-TPP-Que-P) was 50:8:1:20 (w/w/w/w). The encapsulation rate of Que. in the WPI-TPP-Que-P was 82.64 % with a particle size of 261.7 nm and a zeta potential of -42.1 mV. Compared with WPI-TPP-Que, the retention rate of WPI-TPP-Que-P increased by 4.03 % after in vitro digestion. The release kinetic result indicated that WPI-TPP-Que-P release was dominated by non-Fickian diffusion. In addition, WPI-TPP-Que-P was taken in and achieved intracellular targeting to mitochondria and promoted apoptosis (apoptosis rate: 83.6 %) by decreasing mitochondrial membrane potential and IL-10 content and improving the content of TNF-α in HepG-2 cells. This study highlights the promising application of P-modified mitochondria-targeted nanocarriers for enhanced Que. delivery.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
4
|
Zhang L, Bai R, Jiang S, Li Z, Chen Y, Ye X, Yu J, Ding W. Effect of electron beam irradiation on glycosylation reaction and structural characterization of whey isolate protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:179-188. [PMID: 39166742 DOI: 10.1002/jsfa.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Whey protein isolate (WPI) is a high-quality animal protein resource. The modification of WPI through physical, chemical and biological methods can substantially improve the functional properties of proteins. This study investigated the effect of electron beam irradiation (EBI) on the modification of WPI-xylose glycosylation. RESULTS The degree of grafting and browning revealed that EBI promoted WPI glycosylation. The maximum emission wavelength of intrinsic fluorescence was red-shifted and the fluorescence intensity was reduced, suggesting that irradiation induced the unfolding of the WPI structure, thereby promoting glycosylation. Fourier-transformed infrared spectroscopy revealed that the covalent binding of the conjugates occurred on the introduction of the hydrophilic groups, resulting in decreased surface hydrophobicity. When compared with conventional wet-heat glycosylation, irradiation-assisted glycosylation improved the emulsifying activity of WPI from 179.76 ± 0.83 to 277.83 ± 1.44 m2 g-1, and the emulsifying and rheological properties improved. CONCLUSION These results confirmed that EBI can increase the degree of WPI glycosylation and improve the functional properties of proteins, thereby laying a theoretical foundation for the further application of WPI. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd, Yangling, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Wang X, Wang Z, Zhang K, Szeto IMY, Yan Y, Liu B, Zhang J, Evivie SE, Li B, Duan S. Evaluating the binding mechanism, structural changes and stability of ternary complexes formed by the interaction of folic acid with whey protein concentrate-80 and L-ascorbyl 6-palmitate. Food Chem 2024; 457:139924. [PMID: 38917563 DOI: 10.1016/j.foodchem.2024.139924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
In the present study, we investigated the mechanisms associated with the stabilizing effects of whey protein concentrate-80 (WPC80) and L-ascorbyl 6-palmitate (LAP) on folic acid (FA). Multispectral techniques show that WPC80 binds to FA and LAP mainly through hydrophobic interactions, and that energy is transferred from WPC80 to FA and LAP in a nonradiative form (FA/LAP); The combination of FA/LAP resulted in a change in the conformation and secondary structure content of WPC80, an increase in the absolute zeta potential of the system, and a shift in the particle size distribution towards smaller sizes. The compound system exhibits strengthened antioxidant properties and favorable binding properties. Besides, WPC80 improves the storage stability of FA under different conditions. These results demonstrated that the ternary complex formed by FA co-binding with WPC80 and LAP is an effective way to improve the stability against of FA.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Zengbo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Kangyong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ignatius Man-Yau Szeto
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China
| | - Yalu Yan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China
| | - Biao Liu
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China
| | - Jie Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Sufang Duan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China.
| |
Collapse
|
6
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Dursun Capar T, Yalcin H. Conjugation prepared by wet-Maillard reactions improves the stability and properties of lutein and lycopene loaded nanoparticles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2008-2019. [PMID: 39285990 PMCID: PMC11401807 DOI: 10.1007/s13197-024-05976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 09/19/2024]
Abstract
In this study, lutein and lycopene were encapsulated in plant protein (faba bean protein concentrate, (FPC))-carrageenan (Car) conjugates prepared by Maillard reaction in an aqueous media. The conjugation improved encapsulation yield that reached to 82.69% and 93.07%, for lycopene and lutein, respectively. The mean particle diameters for lutein loaded nanoparticles observed smaller in FPC-Car conjugates (66.60 nm) than FPC (71.49 nm). Scanning electron microscopy images showed that FPC-Car conjugates were more spherical and no fractures or fissures on the surface, revealing that wall materials provided better protection and retention for core materials. The diameter of lycopene nanoparticles coated with FPC remained constant between pH 3-4 and 7-9 but increased to 220 nm at pH 4-6. Even though the diameter of lutein nanoparticles coated with FPC remains steady between pH 5 and 9, increased to 953 nm at pH 3. The bioaccessibility of the lutein or lycopene samples encapsulated by FPC were found as higher than FPC-Car conjugates. These findings suggest that protein-polysaccharide conjugates could be used as a wall material to encapsulate lipophilic lutein and lycopene in order to improve their stability, property and bioaccessibility. As a result, FPC-Car conjugates may be an alternative for the formation of functional beverages as well as other nutraceutical products. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05976-4.
Collapse
Affiliation(s)
- Tugba Dursun Capar
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Hasan Yalcin
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Liang B, Feng S, Zhang X, Ye Y, Sun C, Ji C, Li X. Physicochemical properties and in vitro digestion behavior of emulsion micro-gels stabilized by κ-carrageenan and whey protein: Effects of sodium alginate addition. Int J Biol Macromol 2024; 271:132512. [PMID: 38795879 DOI: 10.1016/j.ijbiomac.2024.132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Emulsion micro-gels exhibit significant potential as functional ingredients for modifying food texture, replacing saturated fats, or serving as templates for the controlled release of bioactive compounds. Structural design principles are being applied more frequently to develop innovative emulsion micro-gels. In this paper, whey protein concentrate (WPC), κ-carrageenan and sodium alginate (SA) were utilized for preparing emulsion micro-gels. To reveal the regulation mechanism of the structural and physicochemical properties of emulsion micro-gels on lipid digestion, the influence of SA additions on the structural, physicochemical properties and in vitro digestion behavior of κ-carrageenan/WPC-based emulsion micro-gel were explored. The FTIR results suggest that the emulsion micro-gels are formed through non-covalent interactions. With the increase of SA addition (from 0.7 g/100 mL to 1.0 g/100 mL), the decreased mean droplet size, the increased hardness, elasticity indexes, and water holding capacity, the reduced the related peak times all indicated that the emulsion micro-gels exhibit enhanced rheological, stability, and mechanical properties. It can be concluded from the microstructure, particle size distribution of the emulsion micro-gels during simulated digestion and free fatty acid release that both κ-carrageenan/WPC-based emulsion micro-gel and κ-carrageenan/WPC/SA-based emulsion micro-gel can inhibit lipid digestion due to the ability to maintain structural stability and hindering the penetration of bile salts and lipase through the hydrogel networks. And the ability is regulated by the binding properties the gel matrix and oil droplets, which determine the structure and physicochemical properties of emulsion micro-gels. The research suggested that the structure of emulsion micro-gels can be modified to produce various lipid digestion profiles. It may be significant for certain practical application in the design of low-fat food and controlled release of bioactive agents.
Collapse
Affiliation(s)
- Bin Liang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, 264025, PR China.
| | - Sisi Feng
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, 264025, PR China
| | - Xirui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Ying Ye
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China.
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu normal university, Jinan, Shandong 250200, PR China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| |
Collapse
|
9
|
Shen S, Liu X, Tang D, Yang H, Cheng J. Digestive characteristics of astaxanthin oil in water emulsion stabilized by a casein-caffeic acid-glucose ternary conjugate. Food Chem 2024; 438:138054. [PMID: 38006699 DOI: 10.1016/j.foodchem.2023.138054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
To overcome the barrier of poor oral bioavailability of astaxanthin, a stable oil-in-water emulsion was constructed using casein-caffeic acid-glucose ternary conjugates (CSC) to deliver astaxanthin, and its gastrointestinal behavior was evaluated in vitro with sodium caseinate (CSN) as a control. Results showed that, CSC-stabilized emulsion shower better resistance to the adverse conditions of the gastric environment than CSN-stabilized emulsion, and exhibited lower average particle size and aggregation (4972.33 nm, -5.93 mv) after simulated gastric digestion. Besides, after simulated intestinal digestion, the reducing capacity and astaxanthin transfer efficiency of CSC emulsion into the micellar phase were 686.74 μmol Trolox/100 mL and 26.2 %, which were 2.6 and 4.05-fold higher than that of CSN emulsion. The above results suggest that CSC can be used for better delivery of astaxanthin, which could be useful in designing foods such as functional beverages, pharmaceuticals and nutritional supplements for delivery of lipophilic bioactives.
Collapse
Affiliation(s)
- Shuangwei Shen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
10
|
Zhu F. Modifications of whey proteins for emulsion based applications: Current status, issues and prospectives. Food Res Int 2024; 178:113935. [PMID: 38309906 DOI: 10.1016/j.foodres.2024.113935] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Whey proteins are a major group of dairy proteins with high potential for various food based applications. Whey protein isolate has a limited range of functionalities. This functional range can be expanded using diverse modification methods to suit specific applications. This review summarizes the recent advances in the modifications of whey proteins using chemical, physical, and enzymatic methods and their combinations as well as the modification effects on the physicochemical properties. The uses of these modified whey proteins in emulsion based food and beverage systems are described. The limitations in the studies summarized are critically discussed, while future research directions are suggested on how to better utilize whey proteins for emulsion based uses through modifications.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Nasrollahzadeh A, Mollaei Tavani S, Arjeh E, Jafari SM. Production of conjugated linoleic acid by lactic acid bacteria; important factors and optimum conditions. Food Chem X 2023; 20:100942. [PMID: 38144824 PMCID: PMC10740029 DOI: 10.1016/j.fochx.2023.100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023] Open
Abstract
Conjugated linoleic acid (CLA) has recently attracted significant attention as a health-promoting compound. CLA is a group of positional isomers of linoleic acid (LA) with a conjugated double bond naturally occurring in dairy and ruminant meat products. Microbial biosynthesis of CLA is a practical approach for commercial production due to its high safety and purity. There are some factors for the microbial CLA production such as strain type, microbial growth phase, pH, temperature and incubation time, based on which the amount and type of CLA can be controlled. Understanding the interplay of these factors is essential in optimizing the quantity and composition of microbial CLA, as discussed in the current study. Further exploration of CLA and its influences on human health remains a dynamic and evolving area of study.
Collapse
Affiliation(s)
- Ahmad Nasrollahzadeh
- Department of Food Science and Technology, Urmia University, Urmia, Iran
- Nobonyad Nasr Food Industry Specialists Company, Tehran, Iran
| | - Samaneh Mollaei Tavani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Edris Arjeh
- Department of Food Science and Technology, Urmia University, Urmia, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
12
|
Synergistic effect of microfluidization and transglutaminase cross-linking on the structural and oil-water interface functional properties of whey protein concentrate for improving the thermal stability of nanoemulsions. Food Chem 2023; 408:135147. [PMID: 36527918 DOI: 10.1016/j.foodchem.2022.135147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Generally, whey protein concentrate (WPC) undergoes high-temperature denaturation and aggregation, which reduces its emulsifying properties and is not conducive to as an emulsifier to maintain the thermal stability of emulsions. In this study, dynamic high-pressure microfluidization technology (DHPM) combined with TGase (TG) cross-linking was applied to prepare DHPM-TG-WPC, and the thermal stabilization mechanism of nanoemulsions prepared with DHPM-TG-WPC was explored. Results showed DHPM treatment could promote the formation of TG-crosslinked WPC polymers. Compared to WPC, the free sulfhydryl and free amino group content of DHPM-TG-WPC was significantly decreased (P < 0.05), the surface hydrophobicity and interfacial tension of DHPM-TG-WPC were increased by 45.23 % and 62.34 %, respectively. And its emulsifying stability index and interface protein adsorption was significantly enhanced (P < 0.05). Furthermore, compared to WPC, DHPM-WPC and TG-WPC, DHPM-TG-WPC-stabilized nanoemulsions showed the best 15 days of storage stability after thermal sterilization. This study provides a theoretical basis for the application of modified-WPC emulsion.
Collapse
|
13
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Zhang Y, Zhang T, Dong C, Zhao R, Zhang X, Wang C. Lycopene-loaded emulsions stabilized by whey protein covalently modified with pectin or/and chlorogenic acid: Enhanced physicochemical stability and reduced bio-accessibility. Food Chem 2023; 417:135879. [PMID: 36933434 DOI: 10.1016/j.foodchem.2023.135879] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Lycopene-loaded emulsions were formulated with whey protein isolate (WPI) covalently modified with high methoxylated pectin (HMP) or/and chlorogenic acid (CA) prepared by dry heating or/and alkali grafting. Covalent WPI products were confirmed by SDS-PAGE and degree of graft/CA binding equivalent values. The α-helix and β-sheet percentage, surface hydrophobicity and fluorescence intensity of WPI decreased significantly (p < 0.05) upon binding. Both binary and ternary complexes enhanced the stability of the emulsions, and lycopene retained more after UV irradiation, thermal treatment, storage, compared with emulsions stabilized by WPI, with the best protection by both ternary complexes. In vitro simulated digestion results showed that free fatty acids were released in the order of WPI > WPI-HMP > WPI-CA > WPI-HMP-CA ≈ WPI-CA-HMP. Bio-accessibility analysis showed the same trend as the fatty acid release rate. These results may provide a theoretical basis for applications of conjugating protein with polysaccharide or/and polyphenol emulsions.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China; School of Grains, Jilin Business and Technology College, Changchun, Jilin 130507, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoge Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
15
|
Gantumur MA, Sukhbaatar N, Shi R, Hu J, Bilawal A, Qayum A, Tian B, Jiang Z, Hou J. Structural, functional, and physicochemical characterization of fermented whey protein concentrates recovered from various fermented-distilled whey. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Chen W, Li J, Ma Y, Shi R, Yu H, Gantumur MA, Bilawal A, Jiang Z. Binding interaction and stability of alpha-lactalbumin and retinol: Effects of pre- or post-acidification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Insight into binding mechanism between three whey proteins and mogroside V by multi-spectroscopic and silico methods: Impacts on structure and foaming properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Zhao D, Ge Y, Xiang X, Dong H, Qin W, Zhang Q. Structure and stability characterization of pea protein isolate-xylan conjugate-stabilized nanoemulsions prepared using ultrasound homogenization. ULTRASONICS SONOCHEMISTRY 2022; 90:106195. [PMID: 36240589 PMCID: PMC9576981 DOI: 10.1016/j.ultsonch.2022.106195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/02/2023]
Abstract
Preparation of pea protein isolate-xylan (PPI-X) conjugate-stabilized nanoemulsions using ultrasonic homogenization and the corresponding structure and environmental stability were investigated in this study. Conditions used to prepare nanoemulsions were optimized using a response surface methodology as follows: protein concentration 8.86 mg/mL, ultrasound amplitudes 57 % (370.5 W), and ultrasound time 16 min. PPI-X conjugate-stabilized nanoemulsions formed under these conditions exhibited less mean droplet size (189.4 ± 0.45 nm), more uniform droplet distribution, greater absolute value of zeta-potential (44.8 ± 0.22 mV), and higher protein adsorption content compared with PPI-stabilized nanoemulsions. PPI-X conjugate-stabilized nanoemulsions also exhibited even particle distribution and dense network structure, which might be reasons for the observed high interfacial protein adsorption content of conjugate-stabilized nanoemulsions. Moreover, better stability against environmental stresses, such as thermal treatment, freeze-thaw treatment, ionic strength and type, and storage time was also observed for the conjugate-stabilized nanoemulsions, indicating that this type of nanoemulsions possess a potential to endure harsh food processing conditions. Therefore, results provide a novel approach for the preparation of protein-polysaccharide conjugate-stabilized nanoemulsions to be applied as novel ingredients to meet special requirements of processed foods.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Yuhong Ge
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Xianrong Xiang
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Hongmin Dong
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, NY, USA
| | - Wen Qin
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Qing Zhang
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| |
Collapse
|
19
|
Ma J, Miao Y, Li J, Ma Y, Wu M, Wang W, Xu C, Jiang Z, Hou J. Incorporation of Blue Honeysuckle Juice into Fermented Goat Milk: Physicochemical, Sensory and Antioxidant Characteristics and In Vitro Gastrointestinal Digestion. Foods 2022; 11:foods11193065. [PMID: 36230140 PMCID: PMC9562031 DOI: 10.3390/foods11193065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of fruit juice may improve the physicochemical and functional characteristics of dairy products. The study evaluated the effect of 1−6% (v/v) blue honeysuckle juice (BHJ) on the physicochemical, sensory and antioxidant characteristics of fermented goat milk (FGM) during 21 days of refrigerated storage and in vitro gastrointestinal digestion. The incorporation of BHJ significantly increased (p < 0.05) the water-holding capacity, viscosity, redness (a*) value, total phenolic content (TPC) and ferric ion-reducing antioxidant power during storage. Additionally, BHJ affected the microstructure and sensory score of the samples. FGM treated with 4% (v/v) BHJ exhibited the highest overall acceptability. The supplementation of BHJ diminished the goaty flavor and promoted in vitro protein digestion. Furthermore, the TPC was enhanced in addition to the antioxidant activity of FGM containing BHJ throughout the in vitro digestion. Therefore, FGM supplemented with BHJ serves as a novel and attractive goat dairy product.
Collapse
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Yusi Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhe Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengguo Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
20
|
Comparison and Characterization of the Structure and Physicochemical Properties of Three Citrus Fibers: Effect of Ball Milling Treatment. Foods 2022; 11:foods11172665. [PMID: 36076847 PMCID: PMC9455636 DOI: 10.3390/foods11172665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Effects of ball milling (BM) on the structure and physicochemical properties of three types of citrus fibers were investigated. With the extension of the grinding time, the particle size of citrus fibers significantly decreased. Fourier transform infrared spectroscopy (FTIR) showed that the three citrus fibers had similar chemical groups, and more -OH and phenolic acid groups were exposed after BM, and pectin and lignin were not degraded. Scanning electron microscope (SEM) results showed that the appearance of particles changed from spherical to fragmented, irregular shapes. The water holding capacity (WHC), oil holding capacity (OHC), and water swelling capacity (WSC) of citrus fibers LM, JK, and FS reached the maximum value after BM of 2 h (increasing by 18.5%), 4 h (increasing by 46.1%), and 10 h (increasing by 38.3%), respectively. After 10 h BM, citrus fibers FS and JK had the highest adsorption capacity of cholesterol and sodium cholate, increasing by 48.3% and 48.6%, respectively. This indicates that BM transforms the spatial structure of citrus fibers and improves their physicochemical properties.
Collapse
|
21
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J, Jiang Z. Low-cholesterol-low-fat mayonnaise prepared from soybean oil body as a substitute for egg yolk: The effect of substitution ratio on physicochemical properties and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Wang W, Li J, Wang M, Gu L, Liu Z, Xu C, Ma J, Jiang L, Jiang Z, Hou J. Soybean-Oil-Body-Substituted Low-Fat Ice Cream with Different Homogenization Pressure, Pasteurization Condition, and Process Sequence: Physicochemical Properties, Texture, and Storage Stability. Foods 2022; 11:foods11172560. [PMID: 36076745 PMCID: PMC9455727 DOI: 10.3390/foods11172560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this research was to explore the impacts of different homogenization pressures, pasteurization conditions, and process sequence on the physical and chemical properties of soybean oil body (SOB)-substituted low-fat ice cream as well as the storage stability of SOB-substituted ice cream under these process parameters. With the increase of homogenization pressure (10–30 MPa), the increase of pasteurization temperature (65 °C for 30 min–85 °C for 15 min), and the addition of SOB before homogenization, the overrun and apparent viscosity of ice cream increased significantly, and the particle size, hardness, and melting rate decreased significantly. Thus, frozen dairy products of desired quality and condition could be obtained by optimizing process parameters. In addition, the SOB ice cream showed better storage stability, which was reflected in lower melting rate and hardness and more stable microstructure compared with the full-milk-fat ice cream. This study opened up new ideas for the application of SOB and the development of nutritious and healthy ice cream. Meanwhile, this research supplied a conceptual basis for the processing and quality optimization of SOB ice cream.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-5519-0710
| |
Collapse
|
23
|
Wang W, Xu C, Liu Z, Gu L, Ma J, Hou J, Jiang Z. Physicochemical properties and bioactivity of polysaccharides from Isaria cicadae Miquel with different extraction processes: effects on gut microbiota and immune response in mice. Food Funct 2022; 13:9268-9284. [PMID: 35993148 DOI: 10.1039/d2fo01646j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of different extraction processes on the physicochemical characterization, digestibility, antioxidant activity and prebiotic activity of Isaria cicadae Miquel (ICM) fruiting body polysaccharides was studied. Furthermore, the effect of ultrasound-assisted extraction of ICM (U-ICM) on gut microbiota, the intestinal barrier and immune response was deeply explored. This study found that ICMs showed high indigestibility in both α-amylase and artificial gastric juice, indicating that ICMs have the potential as dietary fiber. In contrast, U-ICM had the best antioxidant activity and prebiotic potential. Meanwhile, there was a structure-activity relationship between the antioxidant activity of ICMs and the content of uronic acid, arabinose and galactose. When healthy mice were fed U-ICM for 42 days, the relative abundances of Lactobacillus, Akkermansia, and Bacteroides were found to increase significantly, while that of Clostridium decreased significantly. Meanwhile, U-ICM significantly promotes the expression of tight junction protein and the production of cytokines, indicating that U-ICM had the function of enhancing the intestinal barrier and regulating the host immune response. In conclusion, U-ICM as dietary fiber has the potential to be developed as a gut health-promoting prebiotic component or functional food. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of ICMs.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Liya Gu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
24
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J. Physicochemical Properties, Stability and Texture of Soybean-Oil-Body-Substituted Low-Fat Mayonnaise: Effects of Thickeners and Storage Temperatures. Foods 2022; 11:foods11152201. [PMID: 35892786 PMCID: PMC9332731 DOI: 10.3390/foods11152201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
With the increasing consumer demand for low-fat and low-cholesterol foods, low-fat mayonnaise prepared from soybean oil body (SOB) substitute for egg yolk has great consumption potential. However, based on previous studies, it was found that the stability and sensory properties of mayonnaise substituted with SOB were affected due to there being less lecithin and SOB containing more water. Therefore, this study investigated the effects of different ratios of xanthan gum, pectin and modified starch as stabilizers on the apparent viscosity, stability, texture and microstructure of SOB-substituted mayonnaise. It was found that the apparent viscosity and stability of SOB-substituted mayonnaise increased significantly when xanthan gum, pectin and modified starch were added in a ratio of 2:1:1. Meanwhile, the emulsified oil droplets of SOB-substituted mayonnaise were similar in size and uniformly dispersed in the emulsion system with different thickener formulations. In addition, the storage stability of SOB-substituted mayonnaise was explored. Compared with full egg yolk mayonnaise, SOB-substituted mayonnaise had better oxidative stability and bacteriostatic, which is important for the storage of mayonnaise. This study provided a theoretical basis for the food industry application of SOB. Meanwhile, this study provided new ideas for the development and storage of low-fat mayonnaise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
25
|
Dou N, Sun R, Su C, Ma Y, Zhang X, Wu M, Hou J. Soybean Oil Bodies as a Milk Fat Substitute Improves Quality, Antioxidant and Digestive Properties of Yogurt. Foods 2022; 11:foods11142088. [PMID: 35885331 PMCID: PMC9320349 DOI: 10.3390/foods11142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/27/2023] Open
Abstract
In this experiment, the effect of replacing milk fat with soybean fat body (25%, 50%, 75%, 100%) on the quality, antioxidant capacity and in vitro digestive characteristics of yogurt was investigated while maintaining the total fat content of the yogurt unchanged. The results showed that increasing the substitution amount of soy fat body for milk fat had little effect on the pH and acidity of yogurt during the storage period, while the physicochemical properties, degree of protein gel network crosslinking, saturated fatty acid content, PV value and TBARS value of the yogurt significantly decreased (p < 0.05). Meanwhile, protein content, solids content, unsaturated fatty acid content, tocopherol content and water holding capacity significantly increased (p < 0.05). Flavor analysis revealed that yogurts with soybean oil bodies were significantly different when compared to those without soybean oil bodies (p < 0.05), and yogurt with 25% substitution had the highest sensory score. After in vitro digestion, the free fatty acid release, antioxidant capacity and protein digestibility of soybean oil body yogurt were significantly higher (p < 0.05). The SDS-PAGE results showed that the protein hydrolysis of the soybean oil body yogurt was faster. Therefore, the use of an appropriate amount of soybean oil bodies to replace milk fat is able to enhance the taste of yogurt and improve the quality of the yogurt.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-5519-0710
| |
Collapse
|
26
|
Sun C, Zhang M, Zhang X, Li Z, Guo Y, He H, Liang B, Li X, Ji C. Design of protein-polysaccharide multi-scale composite interfaces to modify lipid digestion. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Li M, Li J, Huang Y, Gantumur MA, Bilawal A, Qayum A, Jiang Z. Comparison of Oxidative and Physical Stabilities of Conjugated Linoleic Acid Emulsions Stabilized by Glycosylated Whey Protein Hydrolysates via Two Pathways. Foods 2022; 11:foods11131848. [PMID: 35804664 PMCID: PMC9265985 DOI: 10.3390/foods11131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The objective of the research was to analyze and compare the oxidative and physical stabilities of conjugated linoleic acid (CLA) emulsions stabilized by two glycosylated hydrolysates (GPP-A and GPP-B) that were formed via two different pathways. This study showed that GPP-A exhibited higher browning intensity and DPPH radical scavenging ability in comparison with GPP-B. Moreover, the CLA emulsion formed by GPP-A exhibited a lower creaming index, average particle size, primary and secondary oxidative products, in comparison with GPP-B-loaded emulsion. However, the GPP-A-loaded emulsion showed a higher absolute potential and fraction of interfacial adsorption than that of the CLA emulsion formed by GPP-B. Therefore, the CLA emulsion formed by GPP-A exhibited stronger stabilities in comparison with the GPP-B-loaded emulsion. These results suggested that GPP-A showed an emulsification-based delivery system for embedding CLA to avoid the loss of biological activities. Additionally, the development of CLA emulsions could exert its physiological functions and prevent its oxidation.
Collapse
|
29
|
Combination of microwave heating and transglutaminase cross-linking enhances the stability of limonene emulsion carried by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Zhou X, Wang M, Zhang L, Liu Z, Su C, Wu M, Wei X, Jiang L, Hou J, Jiang Z. Hydroxypropyl methylcellulose (HPMC) reduces the hardening of fructose-containing and maltitol-containing high-protein nutrition bars during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Wang W, Wang M, Xu C, Liu Z, Gu L, Ma J, Jiang L, Jiang Z, Hou J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022; 11:foods11101504. [PMID: 35627074 PMCID: PMC9141774 DOI: 10.3390/foods11101504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Soybean oil body (SOB) has potential as a milk fat substitute due to its ideal emulsification, stability and potential biological activity. In this study, SOB was used as a milk fat substitute to prepare ice cream, expecting to reduce the content of saturated fatty acid and improve the quality defects of ice cream products caused by the poor stability of milk fat at low temperatures. This study investigated the effect of SOB as a milk fat substitute (the substitution amount was 10–50%) on ice cream through apparent viscosity, particle size, overrun, melting, texture, sensory and digestive properties. The results show SOB substitution for milk fat significantly increased the apparent viscosity and droplet uniformity and decreased the particle size of the ice cream mixes, indicating that there were lots of intermolecular interactions to improve ice cream stability. In addition, ice cream with 30% to 50% SOB substitution had better melting properties and texture characteristics. The ice cream with 40% SOB substitution had the highest overall acceptability. Furthermore, SOB substitution for milk fat increased unsaturated fatty acid content in ice cream and fatty acid release during digestion, which had potential health benefits for consumers. Therefore, SOB as a milk fat substitute may be an effective way to improve the nutritional value and quality characteristics of dairy products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|