1
|
Zheng W, Li Y, Wang Y, He J, Zhao Q, Huang A. Identification of a novel peptide with anti-inflammatory activity from Binglangjiang buffalo fermented milk and its potential inhibitory mechanism in lipopolysaccharide-stimulated RAW264.7 cells. Food Chem 2025; 468:142451. [PMID: 39700804 DOI: 10.1016/j.foodchem.2024.142451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Binglangjiang buffalo fermented milk (BBFM) is rich in bioactive peptides and exhibits significant immunomodulatory activity, although the specific components and effects are not well understood. In this study, we investigated the anti-inflammatory activity peptides from BBFM using peptidomics and proteomics. A total of 769 peptides were identified using LC-MS/MS. Among these, a novel peptide (GPGAPADPGRPTG (GG13)), was screened out using LPS-stimulated RAW264.7 cells. The molecular weight of peptide GG13 was 1149.56 Da, and it exhibited high in-vitro safety and thermal stability. Furthermore, ELISA and Western blot analysis showed that peptide GG13 significantly inhibited the secretion of pro-inflammatory cytokines NO and TNF-α, as well as the expression of proteins iNOS and TNF-α in LPS-stimulated RAW264.7 cells, and proteomics analysis showed that peptide GG13 significantly down-regulated the protein expression of STAT1, NOS2, COX2, and CD40. The study provides a basis for further explore the development of health fermented milk products.
Collapse
Affiliation(s)
- Wentao Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuzhu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jinze He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Pan D, Sun Y, Zhang J, Zeng J, Yu S, Zhao D, Dong Z, Liu M, Liu S, Wang W, Wang S. An active protein from Dendrobium officinale residue: Protects the gastric mucosa and stabilized in the gastrointestinal tract. Int J Biol Macromol 2025; 294:139387. [PMID: 39753178 DOI: 10.1016/j.ijbiomac.2024.139387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
A large number of by-products generated in the food industry is discarded as waste, especially the residue left after extracting plant resources, which is typically repurposed as fertilizer. In this study, we extracted and purified a new protein, DOP1, from the residue of Dendrobium officinale Kimura & Migo (D. officinale), and explored the protective effect of DOP1 on alcohol-induced gastric mucosal injury. Its amino acid composition and the stability of secondary structure were measured by amino acid analysis and various spectroscopic methods. The microscopic morphology of DOP1 was observed by electron microscopy and its particle distribution was determined to be in the range of 3.7-5.5 nm. In addition, DOP1 was found to exhibit excellent protective activity against alcohol-induced gastric mucosal injury, as well as anti-inflammatory and antioxidant activities by in vitro and in vivo activity assays, which may be related to the upregulation of TFF2 through the activation of PPARγ. Intriguingly, DOP1 does not degrade and remains active after being digested by the gastrointestinal tract. From an economic and sustainable perspective, the discovery of DOP1 will provide new opportunities for the enhanced utilization and sustainable development of D. officinale resources.
Collapse
Affiliation(s)
- Daian Pan
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yanling Sun
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiayi Zhang
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Zeng
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, China
| | - Meichen Liu
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shichao Liu
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Weinan Wang
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Siming Wang
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Wang J, Bi H, Xu J, Zhou X, Yang B, Wen L. Formation mechanism and stability of ternary nanoparticles based on Mesona chinensis polysaccharides-walnut protein hydrolysates for icariin delivery. Int J Biol Macromol 2024; 283:137913. [PMID: 39577545 DOI: 10.1016/j.ijbiomac.2024.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Polysaccharide-protein complexes have proven to be effective nano-carrier with high stability. In this work, walnut protein hydrolysates (WPH) prepared through limited enzymolysis were considered as encapsulation carriers to solve the limited water solubility and bioavailability of icariin, a bioactive compound in functional foods. The pH-driven method was employed to prepare WPH-icariin nanoparticles (WPHI). Their characterization, formation, digestive properties, and immunomodulatory activity were investigated. The results showed that WPHI possessed superior encapsulation efficiency (82.35 %) and loading capacity (137.2 μg/mg) for icariin. Its water solubility (1647 μg/mL) and bioavailability (94.86 %) were significantly improved, by over 80 and 30 times, respectively. The combination of WPH with icariin resulted in the formation of irregular lamellar structure through hydrophobic, electrostatic, and disulfide bonds interactions. Moreover, WPHI demonstrated significant immunomodulatory activity, and thermal and digestive stabilities (> 93 %), but extremely poor pH and salt tolerance. To address these issues, Mesona chinensis polysaccharide (MCP)-WPHI was prepared. The incorporation of MCP significantly improved the physicochemical stability of nanoparticles. Compared to WPHI, MCP-WPHI showed improved pH, thermal, salt tolerance (0-250 mM), and storage stability. This study expanded the application of WPH and MCP in delivering icariin while providing new insights for developing multifunctional high-nutritional-quality food ingredients.
Collapse
Affiliation(s)
- Jinping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Jucai Xu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd., Guangzhou 510530, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
An D, Li L. Effects of molecular weight of hydrolysate on the formation of soy protein isolate hydrolysate nanofibrils: Kinetics, structures, and interactions. Food Chem 2024; 456:139687. [PMID: 38889496 DOI: 10.1016/j.foodchem.2024.139687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Enzymatic hydrolysis prior to protein fibrillation was an effective way to facilitate the formation of nanofibrils. This study aimed to investigate the effects of molecular weights of hydrolysate on the kinetics, structures, and interactions of soy protein isolate (SPI) hydrolysate nanofibrils. The results showed that hydrolysate with molecular weight > 10 kDa showed a distinct fibrillation kinetics curve and a higher apparent rate constant (27.72) during fibrillation, indicating their vital role in determining the fibrillation. Hydrolysate with molecular weight > 10 kDa could form nanofibrils with higher radius gyration (17.11 ± 0.77 Å) due to stronger hydrophobic interaction, showing a stronger fibrillation ability. Hydrolysate with molecular weight within 5-10 kDa exhibited enhanced π-π stacking interactions during fibrillation, thereby promoting the extension of nanofibrils, and contributing to the formation of more nanofibrils. Hydrolysate with molecular weight < 5 kDa tended to randomly aggregate during fibrillation, resulting in a significant loss of cross-β structures in nanofibrils. Therefore, hydrolysate with different molecular weights exhibited synergistic effects during fibrillation.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Peres Fabbri L, Cavallero A, Vidotto F, Gabriele M. Bioactive Peptides from Fermented Foods: Production Approaches, Sources, and Potential Health Benefits. Foods 2024; 13:3369. [PMID: 39517152 PMCID: PMC11545331 DOI: 10.3390/foods13213369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial fermentation is a well-known strategy for enhancing the nutraceutical attributes of foods. Among the fermentation outcomes, bioactive peptides (BAPs), short chains of amino acids resulting from proteolytic activity, are emerging as promising components thanks to their bioactivities. Indeed, BAPs offer numerous health benefits, including antimicrobial, antioxidant, antihypertensive, and anti-inflammatory properties. This review focuses on the production of bioactive peptides during the fermentation process, emphasizing how different microbial strains and fermentation conditions influence the quantity and quality of these peptides. Furthermore, it examines the health benefits of BAPs from fermented foods, highlighting their potential in disease prevention and overall health promotion. Additionally, this review addresses the challenges and future directions in this field. This comprehensive overview underscores the promise of fermented foods as sustainable and potent sources of bioactive peptides, with significant implications for developing functional foods and nutraceuticals.
Collapse
Affiliation(s)
| | | | | | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy (A.C.); (F.V.)
| |
Collapse
|
6
|
Pitchakarn P, Buacheen P, Taya S, Karinchai J, Temviriyanukul P, Inthachat W, Chaipoot S, Wiriyacharee P, Phongphisutthinant R, Ounjaijean S, Boonyapranai K. Anti-Inflammatory, Cytotoxic, and Genotoxic Effects of Soybean Oligopeptides Conjugated with Mannose. Foods 2024; 13:2558. [PMID: 39200485 PMCID: PMC11353420 DOI: 10.3390/foods13162558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity. Moreover, recent research found that an attachment of chemical moieties to peptides could improve their properties including their biodistribution, pharmacokinetic, and biological activities with lower toxicity. This study therefore aimed to acquire scientific evidence to support the further application and safe use of the soybean oligopeptide (OT) conjugated with allulose (OT-AL) or D-mannose (OT-Man). The anti-inflammation, cytotoxicity, and genotoxicity of OT, OT-AL, and OT-Man were investigated. The results showed that OT, AL, Man, OT-AL, and OT-Man at doses of up to 1000 µg/mL were not toxic to HepG2 (liver cancer cells), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and pre- and mature-3T3-L1 (fibroblasts and adipocytes, respectively), while slightly delaying the proliferation of RAW 264.7 cells (macrophages) at high doses. In addition, the oligopeptides at up to 800 µg/mL were not toxic to isolated human peripheral blood mononuclear cells (PBMCs) and did not induce hemolysis in human red blood cells (RBCs). OT-Man (200 and 400 µg/mL), but not OT, AL, Man, and OT-AL, significantly reduced the production of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells, suggesting that the mannose conjugation of soy peptide had an inhibitory effect against LPS-stimulated inflammation. In addition, the secretion of interleukin-6 (IL-6) stimulated by LPS was significantly reduced by OT-AL (200 and 400 µg/mL) and OT-Man (400 µg/mL). The tumor necrosis factor-α (TNF-α) level was significantly decreased by OT (400 µg/mL), AL (400 µg/mL), OT-AL (200 µg/mL), and OT-Man (200 and 400 µg/mL) in the LPS-stimulated cells. The conjugation of the peptides with either AL or Man is likely to be enhance the anti-inflammation ability to inhibit the secretion of cytokines. As OT-Man exhibited a high potential to inhibit LPS-induced inflammation in macrophages, its mutagenicity ability was then assessed in bacteria and Drosophila. These findings showed that OT-Man did not trigger DNA mutations and was genome-safe. This study provides possible insights into the health advantages and safe use of conjugated soybean peptides.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; (P.T.); (W.I.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; (P.T.); (W.I.)
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Pairote Wiriyacharee
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
Lemus-Conejo A, Villanueva-Lazo A, Martin ME, Millan F, Millan-Linares MC. Sacha Inchi ( Plukenetia volubilis L.) Protein Hydrolysate as a New Ingredient of Functional Foods. Foods 2024; 13:2045. [PMID: 38998552 PMCID: PMC11241537 DOI: 10.3390/foods13132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Foundation Centre for Research and Development of Functional Food-CIDAF, Avda del Conocimiento 37, 18100 Granade, Spain
| | - Alvaro Villanueva-Lazo
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Francisco Millan
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
8
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Jiang K, Liu B, Sun C, Zhou Q, Zheng X, Liu M, Xu G, Jin W, Tian H, Hu H. Promotion of improved intestinal barrier health by soybean-derived bioactive peptides in Chinese mitten crab ( Eriocheir sinensis) fed a low fishmeal diet. Br J Nutr 2024; 131:974-986. [PMID: 37886873 DOI: 10.1017/s0007114523002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
Collapse
Affiliation(s)
- Kemeng Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Xiaochuan Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Wu Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Hongyan Tian
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224000, People's Republic of China
| | - He Hu
- Jiangsu FIELD Technology Co., Ltd, Huaian, 214081, People's Republic of China
| |
Collapse
|
10
|
Xu F, Yang F, Qiu Y, Wang C, Zou Q, Wang L, Li X, Jin M, Liu K, Zhang S, Zhang Y, Li B. The alleviative effect of C-phycocyanin peptides against TNBS-induced inflammatory bowel disease in zebrafish via the MAPK/Nrf2 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109351. [PMID: 38171429 DOI: 10.1016/j.fsi.2023.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an incurable and highly complex chronic inflammatory bowel disease (IBD) affecting millions of people worldwide. C-phycocyanin (C-PC) has been reported to possess outstanding anti-inflammatory activities and can effectively inhibit various inflammation-related diseases. Whether C-PC-derived bioactive peptides can inhibit intestinal inflammation is worth research and consideration. METHODS The inhibition activities of three anti-neuroinflammatory peptides were evaluated using 2-4-6-trinitrobenzen sulfonic acid (TNBS)-induced zebrafish colitis model. Subsequently, the abilities of peptides to promote gastrointestinal motility were also examined. The changes in the intestinal pathological symptoms and ultrastructure of intestinal, reactive oxygen species (ROS) levels, and antioxidant enzymes were then determined after co-treatment with peptides and TNBS. Transcriptome analysis was used to investigate the underlying ameliorating TNBS-induced colitis effects molecular mechanisms of better activity peptide. Furthermore, quantitative reverse-transcription polymerase chain reaction and molecular docking techniques verified the mRNA sequencing results. RESULTS Three peptides, MHLWAAK, MAQAAEYYR and MDYYFEER, which significantly inhibit macrophage migration, were synthesized. The results showed that these peptides could effectively alleviate the inflammatory responses in the TNBS-induced zebrafish model of colitis. In addition, co-treatment with TNBS and C-PC peptides could decrease ROS production and increase antioxidant enzyme activities in zebrafish larvae. Moreover, MHLWAAK had the most significantly therapeutic effects on colitis in zebrafish. The transcriptome analysis suggests that the effect of MHLWAAK on TNBS-induced colitis may be associated with the modulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinase (MAPK) signaling pathway associated genes. In addition, molecular docking was conducted to study the prospective interaction between peptides and the key proteins that streamline the Nrf2 and MAPK signaling pathways. IL-6, JNK3, TNF-α, KEAP1-NRF2 complex and MAPK may be the core targets of MHLWAAK in treating colitis. CONCLUSION The results suggested that the three C-PC-derived peptides could ameliorate TNBS-induced colitis in zebrafish, and these peptides might be a promising therapeutic candidate for UC treatment.
Collapse
Affiliation(s)
- Fenghua Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, China
| | - Fei Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Yuezi Qiu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Qinglin Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China.
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
11
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Zhao Q, Zheng W, Yuan Z, Wang X, Huang A. Anti-inflammatory effect of two novel peptides derived from Binglangjiang buffalo whey protein in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Chem 2023; 429:136804. [PMID: 37490818 DOI: 10.1016/j.foodchem.2023.136804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/27/2023]
Abstract
Whey protein hydrolysate from Binglangjiang buffalo, a unique genetic resource, has anti-inflammatory activity, but its anti-inflammatory composition and effects are unknown. The aim of this study was to investigate the anti-inflammatory peptides from Binglangjiang buffalo whey protein hydrolysate. A total of 1483 peptides were identified using LC-MS/MS, and 12 peptides were chosen for chemical synthesis using peptidomics, and then two novel anti-inflammatory peptides (DQPFFHYN (DN8) and YSPFSSFPR (YR9)) were screened out using LPS-stimulated RAW264.7 cells. The molecular weights of DN8 and YR9 with β-turn conformations were 1067.458 Da and 1087.52 Da, respectively, and showed a high in-vitro safety profile and thermal stability, but were intolerant to pepsin. Furthermore, ELISA and Western blot analysis indicated that peptides DN8 and YR9 significantly suppressed the secretion of pro-inflammatory cytokines NO, TNF-α, and IL-6 and the expression of mediators iNOS, TNF-α, and IL-6 in LPS-stimulated RAW264.7 cells. The study provides insights into the development of novel food-based anti-inflammatory nutritional supplements.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wentao Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ziyou Yuan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
13
|
Ma J, Su K, Chen M, Wang S. Study on the antioxidant activity of peptides from soybean meal by fermentation based on the chemical method and AAPH-induced oxidative stress. Food Sci Nutr 2023; 11:6634-6647. [PMID: 37823157 PMCID: PMC10563698 DOI: 10.1002/fsn3.3612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 10/13/2023] Open
Abstract
Preparation and antioxidant activities of soybean peptides using solid fermentation to decrease the content of trypsin inhibitor (TI) and antigen protein were investigated in this study. The results showed the optimal fermentation conditions were as follows: fermentation time 48 h, the ratio of material to solvent 1:2, inoculum size 12%, and the ratio of Lactic acid bacteria and Aspergillus oryzae 2:1. The hydrolysate was were divided into four components of <1, 1-3, 3-5, and >5 kDa by ultrafiltration based on molecular weight, and the <1 kDa peptides expressed the highest antioxidant activities. Meanwhile, the cell antioxidant activity of the <1 kDa soybean peptides was investigated using AAPH-induced erythrocyte hemolysis, which effectively inhibited erythrocyte hemolysis with the inhibit rate of 85.8% through inhibition of the ROS intracellular generation. In addition, soybean peptides could significantly restore the intracellular antioxidant enzymes (SOD, GSH-Px, and CAT) activities, as well as inhibited intracellular MDA generation and depletion of GSH. The intracellular antioxidant detoxifying mechanism of soybean peptides was associated with both non-enzymatic and enzymatic defense systems. According to this study, fermentation could effectively improve the antioxidant activities of soybean peptides.
Collapse
Affiliation(s)
- JuanJuan Ma
- Guangzhou College of Technology and BusinessGuangzhouChina
| | - Keying Su
- Guangzhou College of Technology and BusinessGuangzhouChina
| | - Meimei Chen
- Guangzhou College of Technology and BusinessGuangzhouChina
| | - Shuo Wang
- Guangzhou College of Technology and BusinessGuangzhouChina
| |
Collapse
|
14
|
Kusumah J, Castañeda-Reyes ED, Bringe NA, Gonzalez de Mejia E. Soybean ( Glycine max) INFOGEST Colonic Digests Attenuated Inflammatory Responses Based on Protein Profiles of Different Varieties. Int J Mol Sci 2023; 24:12396. [PMID: 37569771 PMCID: PMC10418973 DOI: 10.3390/ijms241512396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean compounds have been established to modulate inflammation, but less is known about how whole soybean compositions work together after digestion. The objective was to evaluate and compare the anti-inflammatory responses of different soybean varieties under simulated gastrointestinal digestion, with additional consideration of the glycinin:β-conglycinin ratio (GBR). Soybean colonic digests (SCD) inhibited cyclooxygenase (COX)-2 (25-82%), 5-lipoxidase (LOX) (18-35%), and inducible nitric oxide (iNOS) (8-61%). Varieties 88, GN3, and 93 were the most effective inhibitors. SCD (1 mg/mL) of varieties 81 and GN1 significantly (p < 0.05) reduced nitrite production by 44 and 47%, respectively, compared to lipopolysaccharide (LPS)-stimulated macrophages. SCD effectively reduced pro-inflammatory cytokine interleukin (IL)-6 (50 and 80% for 96 and GN1, respectively). Western blot results showed a decrease in the expression of iNOS, p65, and p50. The GBR was in the range of 0.05-1.57. Higher ratio correlated with higher production of IL-1β (r = 0.44) and tumor necrosis factor-alpha (TNF-α, r = 0.56). Inflammatory microarray results showed a significant decrease in expression of markers granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6 in cells treated with GN1 SCD compared to LPS. The results suggested that SCD exerted its anti-inflammatory potential through nuclear factor kappa B (NF-κΒ) pathway inhibition by decreasing the levels of NF-κB-dependent cytokines and subunits, and inhibition of pro-inflammatory enzyme activity.
Collapse
Affiliation(s)
- Jennifer Kusumah
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| | - Erick Damian Castañeda-Reyes
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| | | | - Elvira Gonzalez de Mejia
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| |
Collapse
|
15
|
Li M, Zhang X, Li J, Liu L, Zhu Q, Qu C, Zhang Y, Wang S. Identification and In Silico Simulation on Inhibitory Platelet-Activating Factor Acetyl Hydrolase Peptides from Dry-Cured Pork Coppa. Foods 2023; 12:foods12061190. [PMID: 36981115 PMCID: PMC10048671 DOI: 10.3390/foods12061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The unique processing technology of dry-cured meat products leads to strong proteolysis, which produces numerous peptides. The purpose of this investigation was the systematic isolation, purification, and identification of potentially cardioprotective bioactive peptides from dry-cured pork coppa during processing. According to the results of anti-platelet-activating factor acetyl hydrolase activity and radical scavenging ability in vitro, the inhibitory effect of M1F2 in purified fractions on cardiovascular inflammation was higher than that of M2F2. The peptide of M1F2 was identified by nano-liquid chromatography–tandem mass spectrometry. A total of 30 peptides were identified. Based on bioinformatics methods, including in silico analysis and molecular docking, LTDKPFL, VEAPPAKVP, KVPVPAPK, IPVPKK, and PIKRSP were identified as the most promising potential platelet-activating factor acetyl hydrolase inhibitory peptides. Overall, bioactive peptides produced during dry-cured pork coppa processing demonstrate positive effects on human health.
Collapse
Affiliation(s)
- Mingming Li
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China
- China Meat Research Center, Beijing 100068, China
| | - Xin Zhang
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Jiapeng Li
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Linggao Liu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China
- Correspondence: (Q.Z.); (S.W.)
| | - Chao Qu
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Yunhan Zhang
- China Meat Research Center, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
- Correspondence: (Q.Z.); (S.W.)
| |
Collapse
|
16
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
17
|
Peptide release, radical scavenging capacity, and antioxidant responses in intestinal cells are determined by soybean variety and gastrointestinal digestion under simulated conditions. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Juárez-Chairez MF, Cid-Gallegos MS, Meza-Márquez OG, Jiménez-Martínez C. Biological functions of peptides from legumes in gastrointestinal health. A review legume peptides with gastrointestinal protection. J Food Biochem 2022; 46:e14308. [PMID: 35770807 DOI: 10.1111/jfbc.14308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Extensively consumed worldwide, legumes such as beans, soybeans, chickpeas, and peas represent a great source of protein. Legume-derived proteins provide bioactive peptides, small sequences of amino acids produced by enzymatic hydrolysis, gastrointestinal digestion, fermentation, or germination. Recent studies showed diverse biological effects of these peptides as antioxidants, antihypertensives, anti-inflammatory, antimicrobial, antithrombotic, antidiabetic, hypocholesterolemic, and even immunomodulators. These beneficial effects aid in preventing and treating chronic illnesses, particularly inflammatory disorders, obesity, and cardiovascular diseases. Thus, this work discusses these biological functions in gastrointestinal digestion health of bioactive peptides obtained from common beans, soybeans, chickpeas, peas, and other legumes. PRACTICAL APPLICATIONS: Knowledge of the nutraceutical properties of legumes can encourage the use of these seeds as ingredients in the development and design of functional foods.
Collapse
Affiliation(s)
- Milagros Faridy Juárez-Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Ofelia Gabriela Meza-Márquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| |
Collapse
|
19
|
Martinez-Lopez A, Rivero-Pino F, Villanueva A, Toscano R, Grao-Cruces E, Marquez-Paradas E, Martin ME, Montserrat-de la Paz S, Millan-Linares MC. Kiwicha ( Amaranthus caudatus L.) protein hydrolysates reduce intestinal inflammation by modulating the NLRP3 inflammasome pathway. Food Funct 2022; 13:11604-11614. [DOI: 10.1039/d2fo02177c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amaranthus caudatus hydrolysates are investigated as a valuable source of active peptides able to take part as functional ingredients in food and nutraceutical preparations to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Martinez-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Alvaro Villanueva
- Department of Food & Health, Instituto of Fat (IG-CSIC), Ctra. Utrera Km 1, 41013 Seville, Spain
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|