1
|
Sheng W, Yang L, Yang Y, Wang C, Jiang G, Tian Y. Photo-responsive Cu-tannic acid nanoparticle-mediated antibacterial film for efficient preservation of strawberries. Food Chem 2025; 464:141711. [PMID: 39447267 DOI: 10.1016/j.foodchem.2024.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The existing films used for fruit preservation suffer from insufficient preservation abilities. This study introduces Cu-tannic acid (Cu-TA) nanoparticles, synthesized from tannic acid (TA) and Cu2+, to enhance food packaging properties. Integrated into a chitosan-gelatin (CG) matrix, the resultant Cu-TA nanocomposite films exhibit superior antibacterial efficacy and killing rates of Escherichia coli and Staphylococcus aureus more than 99 %, and double the shelf life of strawberries, underscoring the exceptional freshness preservation capabilities of film. Additionally, the tensile strength of the Cu-TA nanocomposite films increased by 1.75 times, the DPPH radical scavenging percentage increased from 29.4 % to 68.4 %, and the water vapor permeability (WVP) decreased by about 60 % compared to the pure CG films. Comprehensive cytotoxicity and migration assessments confirm the safety of film, paving the way for their application in food packaging. The excellent performance of the Cu-TA nanocomposite films positions them as a formidable solution for protecting perishable food items.
Collapse
Affiliation(s)
- Wenyang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Li H, Wang Z, Zhu F, Li G. Alginate-based active and intelligent packaging: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135441. [PMID: 39260631 DOI: 10.1016/j.ijbiomac.2024.135441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Alginate-based packaging materials have emerged as promising alternatives to conventional petroleum-based plastics due to their biodegradability, renewability, and versatile functionalities. This review provides a comprehensive analysis of the recent advances in the development and application of alginate-based films and coatings for food packaging. The composition and fabrication methods of alginate-based packaging materials are discussed, highlighting the incorporation of various functional compounds to enhance their physicochemical properties. The mechanisms of action and the factors influencing the release and migration of active compounds from the alginate matrix are explored. The application of alginate-based packaging materials for the preservation of various food products, including meat, fish, dairy, fruits, and vegetables, is reviewed, demonstrating their effectiveness in extending shelf-life and maintaining quality. The development of alginate-based pH-sensitive indicators for intelligent food packaging is also discussed, focusing on the colorimetric response of natural pigments to spoilage-related pH changes. Furthermore, the review highlights the challenges and future perspectives of alginate-based packaging materials, emphasizing the need for novel strategies to improve their performance, sustainability, and industrial adoption.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Zongji Wang
- Regenerative Medicine Institute, Linyi University, Linyi 276000, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Vasiljevic ZZ, Vunduk J, Dojcinovic MP, Miskovic G, Tadic NB, Vidic J, Nikolic MV. ZnO and Fe2TiO5 nanoparticles obtained by green synthesis as active components of alginate food packaging films. Food Packag Shelf Life 2024; 43:101280. [DOI: 10.1016/j.fpsl.2024.101280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Manikandan V, Min SC. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review. Int J Biol Macromol 2023; 252:126381. [PMID: 37595723 DOI: 10.1016/j.ijbiomac.2023.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In food production sectors, food spoilage and contamination are major issues that threaten and negatively influence food standards and safety. Several physical, chemical, and biological methods are used to extend the shelf-life of food products, but they have their limitations. Henceforth, researchers and scientists resort to novel methods to resolve these existing issues. Nanomaterials-based extension of food shelf life has broad scope rendering a broad spectrum of activity including high antioxidant and antimicrobial activity. Numerous research investigations have been made to identify the possible roles of nanoparticles in food preservation. A wide range of nanomaterials via different approaches is ultimately applied for food preservation. Among them, chemically synthesized methods have several limitations, unlike biological synthesis. However, biological synthesis protocols are quite expensive and laborious. Predominant studies demonstrated that nanoparticles can protect fruits and vegetables by preventing microbial contamination. Though several nanomaterials designated for food preservation are available, detailed knowledge of the mechanism remains unclear. Hence, this review aims to highlight the various nanomaterials and their roles in increasing the shelf life of food products. Adding to the novel market trends, nano-packaging will open new frontiers and prospects for ensuring food safety and quality.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
5
|
Ortega F, Minnaard J, Arce V, García M. Nanocomposite starch films: Cytotoxicity studies and their application as cheese packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Kong J, Ge X, Sun Y, Mao M, Yu H, Chu R, Wang Y. Multi-functional pH-sensitive active and intelligent packaging based on highly cross-linked zein for the monitoring of pork freshness. Food Chem 2023; 404:134754. [DOI: 10.1016/j.foodchem.2022.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
7
|
Pandey RP, Vidic J, Mukherjee R, Chang CM. Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics 2023; 15:612. [PMID: 36839932 PMCID: PMC9959606 DOI: 10.3390/pharmaceutics15020612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Jasmina Vidic
- AgroParisTech, The Institut National de la Recherche Agronomique (INRAE), Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
| |
Collapse
|
8
|
Wang C, Yan T, Yan T, Wang Z. Fabrication of Hesperetin/hydroxypropyl-β-cyclodextrin Complex Nanoparticles for Enhancement of Bioactivity Using Supercritical Antisolvent Technology. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|