1
|
Fang Y, Liu C, Luo S, Hu X. The synergistic effect of hydroxypropyl methylcellulose and κ-carrageenan or pectin on anti-freezing. Food Chem 2025; 477:143531. [PMID: 40015028 DOI: 10.1016/j.foodchem.2025.143531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Ten polysaccharides were mixed to select polysaccharides with the synergistic anti-freezing effect in this study. It was found that hydroxypropyl methylcellulose (HPMC) and pectin (PEC) or κ-carrageenan (κ-CAR) synergistically decreased the freezing temperature of water and enhanced the ice recrystallization inhibition activity. Moreover, HPMC/κ-CAR exhibited greater synergy than HPMC/PEC. Raman spectroscopy analysis demonstrated that these polysaccharides increased the disorder of water molecules and inhibited the transition from liquid water to solid ice, and HPMC and PEC or κ-CAR had a synergistic effect on increasing the disorder of water molecules. Particularly, dynamic ice-shaping measurements showed that the HPMC/κ-CAR mixture changed circular ice into hexagonal ice in 20.0 % sucrose solution, whereas the HPMC/PEC mixture did not. Moreover, κ-CAR was more compatible with HPMC than PEC. The above differences might explain why κ-CAR was more effective than PEC in improving the anti-freezing ability of HPMC.
Collapse
Affiliation(s)
- Yuehong Fang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China.
| |
Collapse
|
2
|
Du R, Chen Z, Zhao S, Ge J, Zhao D. Enhanced dextran production by Weissella confusa in co-culture with Candida shehatae and its quorum sensing regulation mechanism. Int J Biol Macromol 2025; 295:139662. [PMID: 39793821 DOI: 10.1016/j.ijbiomac.2025.139662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Lactic acid bacteria (LAB) are well-known for its expertise in synthesizing exopolysaccharides (EPS), which are linked to significant health benefits, such as its prebiotic effects and ability to modulate the immune system. However, the synthesis of EPS is hindered by low yields. The objective of this study was to investigate the impact of co-cultivation on EPS output by Weissella confusa XG-3 when paired with Candida shehatae. The structure and characteristics of the purified EPS were analyzed. Gel permeation chromatography (GPC) revealed a molecular weight of 3.45 × 106 Da. High-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy and fourier transform infrared (FT-IR) spectroscopy showed that the EPS was a linear homopolysaccharide, mainly composed of glucose units, with a proposed structure of dextran featuring α-(1, 6) glycosidic linkages and occasional α-(1,3) branching. Fermentation processes were conducted in both mono-culture and co-culture settings, with tracking of pivotal gene expression. The result showed that the expression of luxS, ackA and wzb was significantly up-regulated in the co-culture system, which was positively correlated with dextransucrase activity and dextran production. C. shehatae promoted the growth of W. confusa XG-3 by consuming organic acids in the culture system through direct contact, initiating quorum sensing (QS), inducing dsr expression, increasing dextransucrase activity, and ultimately promoting dextran synthesis.
Collapse
Affiliation(s)
- Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zehai Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shouqi Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
3
|
Noufeu T, Li Y, Toure NF, Yao H, Zeng X, Du Q, Pan D. Overview of Glycometabolism of Lactic Acid Bacteria During Freeze-Drying: Changes, Influencing Factors, and Application Strategies. Foods 2025; 14:743. [PMID: 40077446 PMCID: PMC11898726 DOI: 10.3390/foods14050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Lactic acid bacteria (LAB) play a vital role in food fermentation and probiotics microeconomics. Freeze-drying (FD) is a commonly used method for preserving LAB powder to extend its shelf life. However, FD induces thermal, osmotic, and mechanical stresses that can impact the glycometabolism of LAB, which is the process of converting carbohydrates into energy. This review explores the effect of FD on glycometabolism, factors influencing glycometabolism, and feasible strategies in the FD process of LAB. During the three stages of FD, freezing, primary drying or sublimation, and second drying, the glycolytic activity of LAB is disrupted in the freezing stage; further, the function of glycolytic enzymes such as hexokinase, phosphofructokinase, and pyruvate kinase is hindered, and adenosine triphosphate (ATP) production drops significantly in the sublimation stage; these enzyme activities and ATP production nearly cease and exopolysaccharide (EPS) synthesis alters during the secondary drying stage. Factors such as strain variations, pretreatment techniques, growth medium components, FD parameters, and water activity influence these changes. To counteract the effects of FD on LAB glycometabolism, strategies like cryoprotectants, encapsulation, and genetic engineering can help preserve their glycometabolic activity. These methods protect LAB from harsh FD conditions, safeguarding glycolytic flux and enzymatic processes involved in carbohydrate metabolism. A deeper understanding of these glycometabolic changes is essential for optimizing FD processes and enhancing the use of LAB in food, medicine, and biotechnology, ultimately improving their performance upon rehydration.
Collapse
Affiliation(s)
- Tchouli Noufeu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yueqin Li
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Ndeye Fatou Toure
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Hui Yao
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Yong Y, Ahmad HN, Zhang H, Gu Y, Zhu J. Topological structure, rheological characteristics and biological activities of exopolysaccharides produced by Saccharomyces cerevisiae ADT. Int J Biol Macromol 2025; 286:138297. [PMID: 39631608 DOI: 10.1016/j.ijbiomac.2024.138297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Saccharomyces cerevisiae ADT is an edible fungus, with limited research on its exopolysaccharides (EPS). Three types of exopolysaccharides (EPS60, EPS80, and EPS100) were obtained through multiple purification steps using varying concentrations of ethanol in this study. The topological structure, rheological properties, and biological characteristics of EPS were investigated. High performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) analyses indicated that the three EPS are primarily made up of mannose with a small amount of glucose. Acetyl groups were also found, along with the presence of α-type pyranose and β-type pyranose. The Congo Red test and X-ray diffraction results reflected the absence of a triple helix structure and crystal properties. Atomic force microscopy (AFM) revealed the self-assembly of three exopolysaccharides into various topological structures under different concentration gradients, and a clear network structure of entangled chains was observed. EPS60, EPS80 and EPS100 displayed pseudoplasticity, weak gel behavior and thermal stability. Significantly, EPS exhibited antioxidant activity in a dose-dependent manner and showed no acute cytotoxicity to RAW264.7 and HEK293T cells. Therefore, EPS in this study is anticipated to be utilized in natural antioxidants, medications, and functional materials.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Zhang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
5
|
Yang H, Hao L, Jin Y, Huang J, Zhou R, Wu C. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation. Biotechnol Adv 2024; 74:108397. [PMID: 38909664 DOI: 10.1016/j.biotechadv.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Wu M, Pakroo S, Nadai C, Molinelli Z, Speciale I, De Castro C, Tarrah A, Yang J, Giacomini A, Corich V. Genomic and functional evaluation of exopolysaccharide produced by Liquorilactobacillus mali t6-52: technological implications. Microb Cell Fact 2024; 23:158. [PMID: 38812023 PMCID: PMC11138040 DOI: 10.1186/s12934-024-02431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study explores the biosynthesis, characteristics, and functional properties of exopolysaccharide produced by the strain Liquorilactobacillus mali T6-52. The strain demonstrated significant EPS production with a non-ropy phenotype. RESULTS The genomic analysis unveiled genes associated with EPS biosynthesis, shedding light on the mechanism behind EPS production. These genes suggest a robust EPS production mechanism, providing insights into the strain's adaptability and ecological niche. Chemical composition analysis identified the EPS as a homopolysaccharide primarily composed of glucose, confirming its dextran nature. Furthermore, it demonstrated notable functional properties, including antioxidant activity, fat absorption capacity, and emulsifying activity. Moreover, the EPS displayed promising cryoprotective activities, showing notable performance comparable to standard cryoprotective agents. The EPS concentration also demonstrated significant freeze-drying protective effects, presenting it as a potential alternative cryoprotectant for bacterial storage. CONCLUSIONS The functional properties of L. mali T6-52 EPS reveal promising opportunities across various industrial domains. The strain's safety profile, antioxidant prowess, and exceptional cryoprotective and freeze-drying characteristics position it as an asset in food processing and pharmaceuticals.
Collapse
Affiliation(s)
- Manyu Wu
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Shadi Pakroo
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Zeno Molinelli
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA, Italy
| | - Crisitina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA, Italy
| | - Armin Tarrah
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Jijin Yang
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Padova, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Padova, Italy
| |
Collapse
|
7
|
Wang Z, Zhang M, Hao L, Jiao X, Wu C. Two novel polysaccharides from Huangshui: Purification, structure, and bioactivities. Int J Biol Macromol 2024; 267:131396. [PMID: 38582468 DOI: 10.1016/j.ijbiomac.2024.131396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 → 4)-Glcp-(1 → 2)-Glcp-(1 → 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 → 6)-Manp-(1 → 3)-Glcp-(1 → 6)-Glcp-(1 → 2)-Manp-(1 → 6)-Glcp-(1 → 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.
Collapse
Affiliation(s)
- Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Zhang F, Wang L, Zhang Z, Zheng B, Zhang Y, Pan L. A novel exopolysaccharide from Weissella cibaria FAFU821: Structural characterization and cryoprotective activity. Food Chem X 2023; 20:100955. [PMID: 38144786 PMCID: PMC10740096 DOI: 10.1016/j.fochx.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 12/26/2023] Open
Abstract
Exopolysaccharides produced by Weissella cibaria has attracted increasing attention owing to their biological activity. Here, a strain was isolated from the home-made fermented octopus, which was identified as W. cibaria FAFU821. In addition, the polysaccharide were isolated and purified by cellulose DE-52 column and Sephadex G-100 column, and named EPS821-1. In this work, the structure of EPS821-1 and its cryoprotective activity on Bifidobacterium longum subsp. longum F2 were investigated in vitro. These results suggested that the EPS821-1 is a novel glucan, which mainly consists of α-(1 → 6) linkage with α-(1 → 4), α-(1 → 4,6) and α-(1 → 3,6) residue as branches. In addition, EPS821-1 existed the three-dimensional network structure and exhibited the excellent cryoprotective activities for B. longum subsp. longum F2, which was 2.75 folds higher than that of the controls. This study provided scientific evidence and insights for the application of EPS821-1 as cryoprotection in food field.
Collapse
Affiliation(s)
- Fan Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Pan
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Zhang M, Hong M, Wang Z, Jiao X, Wu C. Temperature stress improved exopolysaccharide yield from Tetragenococcus halophilus: Structural differences and underlying mechanisms revealed by transcriptomic analysis. BIORESOURCE TECHNOLOGY 2023; 390:129863. [PMID: 37839647 DOI: 10.1016/j.biortech.2023.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to enhance exopolysaccharide production by Tetragenococcus halophilus, and results showed that low temperature (20 °C) significantly improved exopolysaccharide production. Based on the analysis of batch fermentation kinetic parameters, a temperature-shift strategy was proposed, and the exopolysaccharide yield was increased by 28 %. Analysis of the structure of exopolysaccharide suggested that low temperature changed the molecular weight and monosaccharide composition. Transcriptomic analysis was performed to reveal mechanisms of low temperature improving exopolysaccharide production. Results suggested that T. halophilus regulated utilization of carbon sources through phosphotransferase system and increased the expression of key genes in exopolysaccharide biosynthesis to improve exopolysaccharide production. Meanwhile, metabolic pathways involved in glycolysis, amino acids synthesis, two-component system and ATP-binding cassette transporters were affected at low temperature. Results presented in this paper provided a theoretical basis for biosynthetic pathway of exopolysaccharide in T. halophilus and aided to strengthen its production and application in many areas.
Collapse
Affiliation(s)
- Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mengting Hong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Bamigbade G, Ali AH, Subhash A, Tamiello-Rosa C, Al Qudsi FR, Esposito G, Hamed F, Liu SQ, Gan RY, Abu-Jdayil B, Ayyash M. Structural characterization, biofunctionality, and environmental factors impacting rheological properties of exopolysaccharide produced by probiotic Lactococcus lactis C15. Sci Rep 2023; 13:17888. [PMID: 37857676 PMCID: PMC10587178 DOI: 10.1038/s41598-023-44728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)β-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.
Collapse
Affiliation(s)
- Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Camila Tamiello-Rosa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| | - Gennaro Esposito
- Science Division - New York University Abu Dhabi, NYUAD Campus, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University (UAEU), PO Box 1555, Al Ain, UAE
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore, 117542, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, UAE.
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE.
| |
Collapse
|
11
|
Wang D, He Z, Xia H, Huang J, Jin Y, Zhou R, Hao L, Wu C. Engineering acetyl-CoA metabolism to enhance stress tolerance of yeast by regulating membrane functionality. Food Microbiol 2023; 115:104322. [PMID: 37567632 DOI: 10.1016/j.fm.2023.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 08/13/2023]
Abstract
Zygosaccharomyces rouxii has excellent fermentation performance and good tolerance to osmotic stress. Acetyl-CoA is a crucial intermediate precursor in the central carbon metabolic pathway of yeast. This study investigated the effect of engineering acetyl-CoA metabolism on the membrane functionality and stress tolerance of yeast. Firstly, exogenous supplementation of acetyl-CoA improved the biomass and the ability of unsaturated fatty acid synthesis of Z. rouxii under salt stress. Q-PCR results suggested that the gene ACSS (coding acetyl-CoA synthetase) was significantly up-expressed. Subsequently, the gene ACSS from Z. rouxii was transformed and heterologously expressed in S. cerevisiae. The recombinant cells exhibited better multiple stress (salt, acid, heat, and cold) tolerance, higher fatty acid contents, membrane integrity, and fluidity. Our findings may provide a suitable means to enhance the stress tolerance and fermentation efficiency of yeast under harsh fermentation environments.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Huan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
12
|
Zhao K, Hu Z, Zhou M, Chen Y, Zhou F, Ding Z, Zhu B. Bletilla striata composite nanofibrous membranes prepared by emulsion electrospinning for enhanced healing of diabetic wounds. J Biomater Appl 2023; 38:424-437. [PMID: 37599387 DOI: 10.1177/08853282231197901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Diabetic wounds impose enormous distress and financial burden on patients, and finding effective dressings to manage wounds is critical. As a Chinese herbal medicine with a long history of Clinical application, Bletilla striata has significant medicinal effects in the therapy of various wounds. In this study, PLA and the pharmacodynamic substances of Bletilla striata were prepared into fibrous scaffolds by emulsion electrospinning technology for the management of diabetic wounds in mice. The results of scanning electron microscopy showed that the core-shell structure fibre was successfully obtained by emulsion electrospinning. The fibre membrane exhibited excellent water absorption capability and water vapor transmission rate, could inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa, had good compatibility, and achieved excellent healing effect on diabetic wounds. Especially in the in vivo wound healing experiment, the wound healing rate of composite fibre membrane treatment reached 98.587 ± 2.149% in 16 days. This work demonstrated the good therapeutic effect of the developed fibrous membrane to diabetic wound, and this membrane could be potentially applied to chronic wound healing.
Collapse
Affiliation(s)
- Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|