1
|
Yang Z, Song Y, Chen L, Wang Z, Wang L, Guo Z, Jiang L, Huang Z, Tian Y. Soybean β-conglycinin-debranched starch flexible nano-conjugates: Focus on formation mechanism and physicochemical characteristics. Food Chem 2025; 479:143795. [PMID: 40086375 DOI: 10.1016/j.foodchem.2025.143795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
This study developed soybean 7S globulin-debranched starch (DBS) nano-conjugates via glycation to investigate the impact of DBS on 7S's physicochemical properties and the effect of different globulin-to-starch ratios on the conjugates. The results showed that 7S-DBS nano-conjugates with a 5:1 ratio had the smallest particle size (189.92 nm), lowest PDI (0.423), and enhanced solubility, surface hydrophobicity, foaming properties, and molecular flexibility. Increasing globulin content improved interfacial and functional properties. Fluorescence scanning revealed decreased signals from aromatic amino acids. Diffraction and electron energy spectra revealed structural changes in the nano-conjugates, indicated by carbon, nitrogen, and oxygen content, while microstructural observations confirmed improved interfacial properties through roughness changes. The conjugate's contact angle was 90.2°, indicating good wettability. Molecular docking highlighted non-covalent interactions in forming globulin-starch nano-conjugates, identifying key binding sites during glycation. This work enhances understanding of polysaccharide effects on globulin and demonstrates the potential of flexible pickering particles in plant-based foods.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanyang Song
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lechuan Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China.
| | - Yan Tian
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Wang M, Yang Y, Xing J, Zhou W, Tao W, Fan L, Li J. Effect of soybean phosphatidylethanolamine-tamarind gum Maillard conjugate on physicochemical stability of water-in-oil emulsions. Int J Biol Macromol 2025; 303:140259. [PMID: 39880255 DOI: 10.1016/j.ijbiomac.2025.140259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Lipid oxidation hinders the development of water-in-oil (W/O) emulsions. This work aimed to determine the impact of soybean phosphatidylethanolamine (SP)/tamarind gum (TG) ratios on interface activity and anti-oxidant capacity of Maillard conjugates (MCs) in W/O emulsions. Results showed that grafting degree of MCs reached maximum with SP/TG ratio at 1:1 (43.5 %). Compared with SP and mixtures, interface activity (larger reduction of interfacial tension) and anti-oxidant capacity of MCs, especially with SP/TG = 1:1, were enhanced. The improvement of interface activity was owing to more stable adsorption at the interface caused by the increase of zeta potential and water contact angle as well as faster interface saturation benefited from broader steric network of TG moiety. The higher DPPH scavenging ability and ferric-reducing antioxidant power of MC were attributed to the combined effects of grafting degree, interface activity and molecule behavior of TG moiety. When the MC was added, the emulsion was observed smaller droplet size (1.3 μm), higher zeta potential (-73.5 mV) and lower contents of primary and secondary oxidation products (decreased by 70.9 % and 78.7 %, respectively). Hence, soybean phosphatidylethanolamine-tamarind gum-Maillard conjugate was effective to improve the physicochemical stability of W/O emulsions.
Collapse
Affiliation(s)
- Mengzhu Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Ruan YY, Fan SS, Jing KN, Song Y, Ding ZY, Wu DT, Hu YC, Zou L, Li W. Structural and functional modifications of quinoa protein via hyaluronic acid-induced Maillard reaction. Int J Biol Macromol 2025; 298:139940. [PMID: 39824407 DOI: 10.1016/j.ijbiomac.2025.139940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
In recent years, quinoa protein (QP) has attracted attention for its balanced amino acids composition, but its limited techno-functional properties continue to pose challenges for its utilization. Non-enzymatic Maillard glycation is considered as a promising strategy to expand the utilization of plant proteins in food processing due to its cost-effectiveness, spontaneous nature, and the lack of need for additives to initiate the reaction. Furthermore, the use of hyaluronic acid (HA) as an ingredient in food products is becoming increasingly accepted and popular. Therefore, the present study aims to prepare QP-HA glyconjugates by wet heating and to investigate the effects of sugar/protein ratios and reaction times on the structural features and functional properties of QP. The results showed that heating time and sugar/protein concentration ratio obviously affected the degree of grafting, structure and hydrophobicity of the conjugates. The random coil content of QP-HA increased significantly, resulting in a more flexible structure after Maillard glycation. After 3 h of glycation reaction, the QP-HA conjugates showed better emulsification, solubility, thermal stability and antioxidant activity compared to QP. Accordingly, these results indicate that polysaccharide-induced Maillard reaction is a potentially attractive approach for selective functionality enhancement and nutraceutical development of QP, which provides a new way to expand the application range of QP.
Collapse
Affiliation(s)
- Yu-Yue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Sha-Sha Fan
- Institute of Instrumental Analysis and Applied Technology, Chengdu Institute of Food Inspection, Chengdu 611135, Sichuan, PR China
| | - Kai-Ni Jing
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Zi-Yang Ding
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Chengdu Agricultural College, Chengdu 611130, Sichuan, PR China.
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; School of Basic Medicine, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
4
|
Li H, Cao Y, Wang L, Wang F, Xiong L, Shen X, Song H. Pickering high internal phase emulsions stabilized by soy protein isolate/κ-carrageenan complex for enhanced stability, bioavailability, and absorption mechanisms of nobiletin. Carbohydr Polym 2025; 351:123117. [PMID: 39779025 DOI: 10.1016/j.carbpol.2024.123117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology. Results showed that under optimal conditions (pH 7 and 1.0 % KC), the SPI/KC HIPEs exhibited improved physicochemical properties. Furthermore, encapsulation of NOB in HIPEs significantly improved its stability against UV exposure, heat, and storage conditions. Additionally, simulated gastrointestinal digestion studies revealed that the SPI/KC HIPEs improved the digestion stability and bioaccessibility of NOB, with controlled release in the intestinal phase. Moreover, the SPI/KC HIPEs facilitated increased cellular uptake and bioavailability of NOB, with clathrin-mediated endocytosis and macropinocytosis as primary absorption pathways. The encapsulated NOB also showed enhanced inhibition of inflammatory markers, including NO, IL-6, and TNF-α. These findings suggested that SPI/KC HIPEs provided a promising delivery system for improving the bioavailability and bioactivity of hydrophobic compounds.
Collapse
Affiliation(s)
- Hong Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yubo Cao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
5
|
Yang Z, Song Y, Chen L, Zhang W, Xie D, Jiang L, Huang Z, Li D. Insight into the structural, interfacial and functional properties of soybean 11S globulin-debranched starch conjugates through alkaline Maillard reaction. Carbohydr Polym 2025; 350:123054. [PMID: 39647955 DOI: 10.1016/j.carbpol.2024.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
This study examined the effects of the alkaline Maillard reaction on the structural, interfacial, and functional properties of soybean 11S globulin-debranched starch (DBS) conjugates. The results showed that the degree of DBS binding to 11S globulin was influenced by the polymer ratios, which in turn affected the structural, interfacial, and functional characteristics. The 11S-DBS conjugates with a 2:1 biopolymer ratio exhibited the highest grafting degree, largest zeta potential absolute value, smallest particle size, and greatest thermal stability. Conjugates with higher globulin content demonstrated superior interfacial and functional properties, including improved solubility, increased surface hydrophobicity, and reduced interfacial tension. 3D fluorescence scanning revealed a decrease in the signal of aromatic amino acid residues, while microstructural observation provided insights into the binding behavior of different 11S-DBS conjugates. Molecular docking simulations highlighted the key role of hydrogen bonding in the formation of these conjugates. This study enhances understanding of soybean globulin-polysaccharide interaction mechanisms, expanding their potential applications in the food, medical, and bioengineering industries.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanyang Song
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Dan Xie
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China.
| | - Dongze Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Hu Y, Sun Y, Zeng X, Zhou C, Xia Q, Pan D, Wu Z, Huang M, Yan H. Enhanced interfacial stabilization of high internal phase emulsion using goose liver protein via ultrasonication fortified interfacial curcumin complexation. Food Res Int 2025; 203:115903. [PMID: 40022410 DOI: 10.1016/j.foodres.2025.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
The interfacial complexation between goose liver protein (GLP) and oily dispersed curcumin in impacting the protein interfacial dynamics and high internal phase emulsions (HIPEs) stabilization was validated. Results from surface hydrophobicity, size, atomic force microscopy, and fluorescence quenching showed that pre-ultrasonication (100 W, 300 W and 500 W) conduced to pronounced heterogeneous hydrophobic interaction that elevated GLP adsorption and association at the interface. The synergistic curcumin complexation with medium ultrasonication (300 W+Cur) maximized GLP interfacial deposition and elasticity (11.58 and 32.80 mN/m for π10800 and Ed) due to most sufficient GLP unfolding. The HIPE for 300 W+Cur gave the highest network intersection with densely packed droplets from the lowest D [4,3] (38.17 ± 0.20 μm) while highest oil holding (91.91 %) and rheological stability. Turbiscan stability index, TBARS and fatty acid profile suggested that the 300 W+Cur displayed also the highest physiochemical stability (40 °C, 7 days) via sufficient oil enclosure and networking, as was also the case when oil polarity varied. This study reported firstly that the HIPEs stabilization could be tuned by interfacial GLP-curcumin complexation affinity (i.e., through protein pre-ultrasonication), which could potentiate GLP based HIPEs with tailored rheological and mechanical properties for applications.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongbing Yan
- Hangzhou Dakang Pickled Food, Co., Ltd. Hangzhou, 310020, PR China
| |
Collapse
|
7
|
Li R, Guo X, Liu P, Li Y, Qiu S, Wang Y. Effect of carrageenan on stability and 3D printing performance of high internal phase pickering emulsion stabilized by soy protein isolate aggregates under neutral condition. Carbohydr Polym 2025; 349:123020. [PMID: 39638508 DOI: 10.1016/j.carbpol.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) stabilized by heat induced soy protein isolate aggregates (HSPI) alone had limited stability and poor 3D printing performance. While there is few research about HIPPE stabilized by HSPI and polysaccrides at neutral pH condition, where HSPI and ĸ-carrageenan (CG) were combined to fabricate HIPPE in this research. It was found that the incorporation of CG significantly decreased the droplet size and improved the storage stability of the resulting HIPPE. Moreover, the presence of CG improved the freeze-thaw stability of HIPPE after one freeze-thaw cycle. In addition, the addition of CG significantly improved the structural integrity of the 3D printed HIPPE and enhanced the printing precision. This was because the presence of CG decreased the interfacial tension, increased the zeta potential and viscosity of HSPI-CG, thus promoting the adsorption of particles to the oil-water interface more effectively. Moreover, the presence of CG significantly enhanced the viscoelasticity of the resulting HIPPE. These results can be further attributed to the strong hydrogen bonding and hydrophobic interaction between HSPI and CG at neutral pH condition, which can be confirmed from results of Fourier-transform infrared spectroscopy and Isothermal titration calorimeter. So the incorporation of CG endowed HIPPE with more excellent properties at a lower solid particle concentration.
Collapse
Affiliation(s)
- Rui Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuqin Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China
| | - Pengfei Liu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuanyuan Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Si Qiu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China.
| |
Collapse
|
8
|
Lv Y, Hao S, Wang Y, Xing S, Tan M. Hepatocytes and mitochondria dual-targeted astaxanthin WPI-SCP nanoparticles for the alleviation of alcoholic liver injury. Int J Biol Macromol 2024; 285:137992. [PMID: 39581423 DOI: 10.1016/j.ijbiomac.2024.137992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Alcoholic liver injury is one of the most frequent liver diseases around the world, and nutritional intervention has been considered as an effective way to alleviate alcohol liver injury. To alleviate the liver damage caused by alcohol, a type of astaxanthin (AXT) loaded nanoparticles were designed for dual targeting of hepatocytes and mitochondria. Firstly, galactooligosaccharides (GOS) were conjugated to whey protein isolate (WPI) and sea cucumber peptide (SCP) via the Maillard reaction, achieving a grafting degree of 29 %, then triphenylphosphonium (TPP) was linked by amide reaction. Secondly, AXT was loaded into the complex of SCP-WPI-GOS-TPP (SWGT) to form AXT@SCP-WPI-GOS-TPP(AXT@SWGT) nanoparticles. The Pearson coefficient increased from 0.69 to 0.76 after introducing TPP targeting moiety. In vivo experiments showed that AXT@SWGT significantly alleviated liver injury caused by alcohol. The vacuolation and fat accumulation associated with alcoholic liver injury was alleviated. The alcohol dehydrogenase and aldehyde dehydrogenase activity were improved by 296.88 % and 34.19 %, respectively. AXT@SWGT significantly enhanced the biological activities of glutathione by 76.86 %, catalase by 145.42 %, and superoxide dismutase by 33.48 %, thereby alleviating oxidative stress. The results indicated that the AXT@SWGT might have the potential to intervene alcoholic liver injury via the dual targeting strategy.
Collapse
Affiliation(s)
- Yueqi Lv
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China.
| |
Collapse
|
9
|
Li J, Li L. Physical modification of vegetable protein by extrusion and regulation mechanism of polysaccharide on the unique functional properties of extruded vegetable protein: a review. Crit Rev Food Sci Nutr 2024; 64:11454-11467. [PMID: 37548410 DOI: 10.1080/10408398.2023.2239337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Development and utilization of high quality vegetable protein resources has become a hotspot. Food extrusion as a key technology can efficiently utilize vegetable protein. By changing the extrusion conditions, vegetable protein can obtain unique functional properties, which can meet the different needs of food processing. However, extrusion of single vegetable protein also exposes many disadvantages, such as low degree functional properties, poor quality stability and lower tissue fibrosis. Therefore, addition of polysaccharide has become a new development trend to compensate for the shortcomings of extruded vegetable protein. The unique functional properties of vegetable protein-polysaccharide conjugates (Maillard reaction products) can be achieved after extrusion due to regulation of polysaccharides and adjustment of extrusion parameters. However, the physicochemical changes caused by the intermolecular interactions between protein and polysaccharide during extrusion are complex, so control of these changes is still challenging, and further studies are needed. This review summarizes extrusion modification of vegetable proteins or polysaccharides. Next, the effect of different types of polysaccharides on vegetable proteins and its regulation mechanism during extrusion is mainly introduced, including the extrusion of starch polysaccharide-vegetable protein, and non-starch polysaccharide-vegetable protein. Finally, it also outlines the development perspectives of extruded vegetable protein-polysaccharide.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
10
|
Li M, Li T, Han D, Wu S, Gong J. Elucidating the effects of hofmeister salts on the formation mechanism and biocompatibility of lysozyme-hyaluronic acid complexes. Int J Biol Macromol 2024; 281:136558. [PMID: 39401621 DOI: 10.1016/j.ijbiomac.2024.136558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to investigate the morphologies, biocompatibility, and formation mechanism of lysozyme-hyaluronic acid complexes in the presence of various Hofmeister salts. During the complexation of lysozyme (Lys) and hyaluronic acid (HA), salts can control the formation of colloidal nanoparticles, amyloid-like aggregates, and amorphous aggregates. Circular dichroism spectra revealed that the α-helix content of Lys involved in complexation significantly increased from 21.40 % to 34.19 %, whereas the β-sheet content significantly decreased from 38.65 % to 24.42 % with increasing salt concentration. The fluorescence spectra indicated that the number of binding sites for HA and Lys decreased from 2.19 to 0.63 as the salt concentration increased from 0 to 300 mM, which was consistent with the different anion-specific effects (NaCl < NaBr < NaI). Interestingly, in vitro experiment results demonstrated that colloidal nanoparticles and amorphous aggregates have good biocompatibility, with NCM460 cell viability exceeding 85.92 %, whereas amyloid like aggregates exhibit certain cytotoxicity, with cell viability significantly reduced to 50.47 %. Overall, these findings provide a better understanding of the conformational changes of Lys involved in complexation with HA in the presence of salts, expanding its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tong Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
11
|
Qin YQ, Fan YG, Ren JN, Wang LY, Han NF, Fan G. Structural and functional properties of whey protein isolate-inulin conjugates prepared with ultrasound or wet heating method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7281-7290. [PMID: 38655901 DOI: 10.1002/jsfa.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in the food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), new C-N bonds were formed in Fourier-transform infrared (FTIR) spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of circular dichroism (CD) spectroscopy also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Nan-Feng Han
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| |
Collapse
|
12
|
Chen J, Zhang W, Chen Y, Li M, Liu C, Wu X. Effect of glycosylation modification on structure and properties of soy protein isolate: A review. J Food Sci 2024; 89:4620-4637. [PMID: 38955774 DOI: 10.1111/1750-3841.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Soybean protein isolate (SPI) is a highly functional protein source used in various food applications, such as emulsion, gelatin, and food packaging. However, its commercial application may be limited due to its poor mechanical properties, barrier properties, and high water sensitivity. Studies have shown that modifying SPI through glycosylation can enhance its functional properties and biological activities, resulting in better application performance. This paper reviews the recent studies on glycosylation modification of SPI, including its quantification method, structural improvements, and enhancement of its functional properties, such as solubility, gelation, emulsifying, and foaming. The review also discusses how glycosylation affects the bioactivity of SPI, such as its antioxidant and antibacterial activity. This review aims to provide a reference for further research on glycosylation modification and lay a foundation for applying SPI in various fields.
Collapse
Affiliation(s)
- Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| |
Collapse
|
13
|
Wang Y, Tao L, Wang Z, Wang Y, Lin X, Dai J, Shi C, Dai T, Sheng J, Tian Y. Effect of succinylation-assisted glycosylation on the structural characteristics, emulsifying, and gel properties of walnut glutenin. Food Chem 2024; 446:138856. [PMID: 38430765 DOI: 10.1016/j.foodchem.2024.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
In this study, we examined the effects of various sodium alginate (ALG) concentrations (0.2%-0.8%) on the functional and physicochemical characteristics of succinylated walnut glutenin (GLU-SA). The results showed that acylation decreased the particle size and zeta potential of walnut glutenin (GLU) by 122- and 0.27-fold, respectively. In addition, the protein structure unfolded, providing conditions for glycosylation. After GLU-SA was combined with ALG, the surface hydrophobicity decreased and the net negative charge and disulfide bond content increased. The protein structure was analyzed by FTIR, Endogenous fluorescence spectroscopy, and SEM, and ALG prompted GLU-SA cross-linking to form a stable three-dimensional network structure. The results indicated that dual modification improved the functional properties of the complex, especially its potential protein gel and emulsifying properties. This research provide theoretical support and a technical reference for expanding the application of GLU in the processing of protein and oil products.
Collapse
Affiliation(s)
- Yuanli Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyue Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| |
Collapse
|
14
|
Chai J, Zhao X, Xu Y, Xu X. An unfolding/aggregation kinetic instructed rational design towards improving graft degree of glycation for myofibrillar protein. Food Chem 2024; 446:138876. [PMID: 38432134 DOI: 10.1016/j.foodchem.2024.138876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Glycation is an effective strategy for the application of myofibrillar protein (MP) in beverage formulas by improving water solubility. In conventional glycation, the efficiency was limited as MP-saccharides conjugates mostly produced at low temperature due to thermosensitivity. This study was aimed to explore unfolding/aggregation kinetics of MP, including aggregate behavior, structural characteristics, and micromorphology, which guided the selection of temperature for glycation. It was shown that 40 °C/47.5 °C were critical temperature for MP unfolding/aggregation, respectively. Accordingly, an innovative technology of glycation (cyclic continuous glycation, CCG) was established by combining such temperatures. The results confirmed that cyclic continuous heating (CCH) inhibited excessive exposure of sulfhydryl and hydrophobic groups impeding protein aggregation. Importantly, it was revealed that rational designed CCG promoted covalent binding of MP to glucose by regulating unfolding-aggregation balance, exhibiting higher glycation degree. Overall, CCG-modified MP is expected to motivate the application of meat proteins in food formulations.
Collapse
Affiliation(s)
- Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xue Zhao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yujuan Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
15
|
Wang Y, Liu J, Xia K, Ding Z, Wang B, Yu X, Liu J, Yuan P, Duan S. Enhancing the stability of O/W emulsions by the interactions of casein/carboxymethyl chitosan and its application in whole nutrient emulsions. Int J Biol Macromol 2024:133589. [PMID: 39084970 DOI: 10.1016/j.ijbiomac.2024.133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The influence of Carboxymethyl chitosan (CMCS) on the emulsification stability mechanism of casein (CN) and its effects on the stability of whole nutrient emulsions were investigated. The complex solutions of CN and CMCS were prepared and the turbidity, ultraviolet (UV) absorption spectrum, fluorescence spectrum, circular dichroism (CD) spectrum, Fourier transform infrared (FTIR) spectrum, interfacial tension and microstructural observations were used to study the inter-molecular interaction of CMCS and CN. The effects of CMCS on the emulsion stability of CN were further analyzed by particle size, ζ-potential, instability index and rheological properties. Moreover, the accelerated stability of whole nutrient emulsions prepared by CMCS and CN was evaluated. The results revealed that CN-CMCS complexes were mainly formed by hydrogen bonding. The stability of the CN-CMCS composite emulsions were improved, as evidenced by the interfacial tension decreasing from 165.96 mN/m to 158.49 mN/m, the particle size decreasing from 45.85 μm to 12.98 μm, and the absolute value of the potential increasing from 29.8 mV to 33.5 mV. The stability of whole nutrient emulsion was also significantly enhanced by the addition of CN-CMCS complexes. Therefore, CN-CMCS complex could be served as a novel emulsifier to improve the stability of O/W emulsions.
Collapse
Affiliation(s)
- Yingxiang Wang
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Jinyang Liu
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Kai Xia
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Zhenjiang Ding
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | | | - Xinyu Yu
- Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100124, China
| | - Jia Liu
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Peng Yuan
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Shenglin Duan
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China.
| |
Collapse
|
16
|
Zhang T, Li S, Yang M, Li Y, Ma S, Zhang H, Li L, Liu X, Liu J, Du Z. The influence of unique interfacial networks based on egg white proteins for the stabilization of high internal phase Pickering emulsions: Physical stability and free fatty acid release kinetics. Food Chem 2024; 442:138448. [PMID: 38245983 DOI: 10.1016/j.foodchem.2024.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
This study was oriented towards the impacts of unique interfacial networks, formed by glycosylated and non-glycosylated egg white proteins, on the characteristics of high internal phase Pickering emulsions (HIPPEs). Glycosylated egg white protein particles (EWPG) manifested a more compact protein tertiary structure and amplified surface hydrophobicity, forming durable coral-like networks at the oil-water interface. The non-glycosylated egg white protein particles (EWP) could form spherical cluster interfacial networks. Raman spectroscopy analysis illuminated that EWPG could exhibit better interactions with aliphatic amino acids via hydrogen bonds and hydrophobic interactions. The release of free fatty acid (FFA) from both HIPPEs followed the first-order kinetic model with a combination of diffusion. EWPG-stabilized HIPPEs demonstrated superior physical stability and cellular antioxidant activity. This research shed light on the promising prospects of HIPPEs as promising amphiphilic delivery systems with capabilities to co-deliver hydrophilic and hydrophobic nutraceuticals and amplify their intracellular biological potency.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Longxiang Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
17
|
Yan X, Bai X, Liu X, Liu F. Enhanced functional properties of pea protein isolate microgel particles modified with sodium alginate: Mixtures and conjugates. Food Chem 2024; 441:138358. [PMID: 38266315 DOI: 10.1016/j.foodchem.2024.138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/29/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Protein microgels are emerging as versatile soft particles due to their desirable interfacial activities and functional properties. In this study, pea protein isolate microgel particles (PPIMP) were prepared by heat treatment and transglutaminase crosslinking, and PPIMP were non-covalently and covalently modified with sodium alginate (SA). The effects of polymer ratio and pH on the formation of PPIMP-SA mixtures and conjugates were investigated. The optimal ratio of PPIMP and SA was found to be 20:1, with the optimal pH being 7 and 10, respectively. PPIMP-SA conjugates were prepared by Maillard reaction. It was found that ultrasound (195 W, 40 min) enhanced the degree of glycation of PPIMP, with a highest value of 37.21 ± 0.71 %. SDS-PAGE, browning intensity and FTIR data also confirmed the formation of PPIMP-SA conjugates. Compared with PPIMP and PPIMP-SA mixtures, PPIMP-SA conjugates exhibited better thermal stability, antioxidant, emulsifying and foaming properties, which opens up opportunities for protein microgel in various food applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangqi Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
18
|
Liu Y, Guo X, Liu T, Fan X, Yu X, Zhang J. Study on the structural characteristics and emulsifying properties of chickpea protein isolate-citrus pectin conjugates prepared by Maillard reaction. Int J Biol Macromol 2024; 264:130606. [PMID: 38447830 DOI: 10.1016/j.ijbiomac.2024.130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Chickpea protein isolate (CPI) typically exhibits limited emulsifying properties under various food processing conditions, including pH variations, different salt concentrations, and elevated temperatures, which limits its applications in the food industry. In this study, CPI-citrus pectin (CP) conjugates were prepared through the Maillard reaction to investigate the influence of various CP concentrations on the structural and emulsifying properties of CPI. With the CPI/CP ratio of 1:2, the degree of graft reached 35.54 %, indicating the successful covalent binding between CPI and CP. FT-IR and intrinsic fluorescence spectroscopy analyses revealed alterations in the secondary and tertiary structures of CPI after glycosylation modification. The solubility of CPI increased from 81.39 % to 89.59 % after glycosylation. Moreover, freshly prepared CPI emulsions showed an increase in interfacial protein adsorption (70.33 % to 92.71 %), a reduction in particle size (5.33 μm to 1.49 μm), and a decrease in zeta-potential (-34.9 mV to -52.5 mV). Simultaneously, the long-term stability of the emulsions was assessed by employing a LUMiSizer stability analyzer. Furthermore, emulsions prepared with CPI:CP 1:2 exhibited excellent stability under various environmental stressors. In conclusion, the results of this study demonstrate that the glycosylation is a valuable approach to improve the emulsifying properties of CPI.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
19
|
Zhong W, Wang Q, Shen X. Quinoa protein/polysaccharide electrostatic complex stabilized vegan high internal phase emulsions for 3D printing: Role of complex state and gelling-type polysaccharides. Food Chem 2024; 434:137447. [PMID: 37716139 DOI: 10.1016/j.foodchem.2023.137447] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Rational selection of the complex state and polysaccharide type may enhance the performance of electrostatic complex stabilized high internal phase emulsions (HIPEs). Herein, quinoa proteins were extracted to form electrostatic complexes separately with three gelling-type polysaccharides to fabricate HIPEs. Results showed that the complexes in soluble state (pH 8.4-5.6) exhibited moderate size, high negative potential and enhanced protein hydrophobicity, and could achieve HIPEs with 84% oil phase upon acidification to pH 6 at low concentrations. Its excellent interfacial structure enhanced stability during heating, freeze-thawing and long-term storage, and exhibited promising 3D printing potential. Furthermore, the complexes formed by sulfated polysaccharide carrageenan had higher amphiphilicity than those formed by carboxylated polysaccharide pectin or sodium alginate, and their stabilized HIPE had preferable droplet size, stability and 3D printing resolution than its counterparts. This study may provide new insights into the performance enhancement of protein/polysaccharide electrostatic complex stabilized HIPEs.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Qi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
20
|
Chen K, Zhang M, Wang D, Mujumdar AS, Deng D. Development of quinoa (Chenopodium quinoa Willd) protein isolate-gum Arabic conjugates via ultrasound-assisted wet heating for spice essential oils emulsification: Effects on water solubility, bioactivity, and sensory stimulation. Food Chem 2024; 431:137001. [PMID: 37562335 DOI: 10.1016/j.foodchem.2023.137001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
Quinoa protein isolate-gum Arabic (QPI-GA) conjugates were developed by ultrasound-assisted wet heating to improve the water solubility and bioactivity of spice essential oils (EOs) in this study. The optimal conditions for QPI-GA conjugates preparation were found to be: heating temperature of 72 ℃, ultrasound power of 450 W, and reaction time of 46 min. QPI-GA conjugates displayed significantly higher emulsifying efficiency and stronger tolerance to pH variation, high salt concentration, and storage than raw materials. The emulsifying efficiency of emulsions was also influenced by the pH and viscosity of EOs, zeta potential of the emulsion as well as the relative density and lipid/water partition coefficient (P) of EOs were the possible factors impacting the stability of EO emulsions. The water solubility, antioxidant ability, and antibacterial ability of tested EOs were improved after emulsification. Meanwhile, encapsulation with QPI-GA conjugates played a good effect on reducing the sensory stimulation of EOs.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Dayuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co., Zhengzhou, Henan, China
| |
Collapse
|
21
|
Santos MAS, Fonseca LR, Okuro PK, Cunha RL. High internal phase emulsion stabilized by sodium caseinate:quercetin complex as antioxidant emulsifier. Food Res Int 2023; 173:113247. [PMID: 37803560 DOI: 10.1016/j.foodres.2023.113247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
High internal phase emulsion (HIPE) was produced and stabilized using a novel antioxidant emulsifier formed by the complexation between sodium caseinate (SC) and quercetin (Q). Colloidal complexes, produced via an alkaline process, showed great ability to reduce the interfacial tension between oil-water phases, promoting stabilization of the HIPEs even at low concentrations (1.5% w/v in the aqueous fraction). HIPEs at 0.80 volume fraction of dispersed phase presented remarkable viscosity due to the high-packing network of oil droplets surrounded by a thin liquid layer. Moreover, the emulsions showed a gel-like behavior and kinetic stability for 45-days at 25 °C. The approach of SC:Q complexes on HIPEs development is promising to reduce lipid oxidation, translated by the formation of hydroperoxides and malondialdehyde during storage, especially for the complex formed with the highest amount of the phenolic compound. In this study, the development of HIPEs with outstanding kinetic and oxidative stability is reported as a potential alternative for the development of healthier products with reduced saturated and trans-fat content.
Collapse
Affiliation(s)
- Matheus A S Santos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil.
| | - Larissa R Fonseca
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Paula K Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| |
Collapse
|
22
|
Han Q, Wang H, Zhou T, Wang Y, Shen Z, Yu D, Liu X, Liu W, Lv W. Ultrastable Emulsion Stabilized by the Konjac Glucomannan-Xanthan Gum Complex. ACS OMEGA 2023; 8:31344-31352. [PMID: 37663472 PMCID: PMC10468834 DOI: 10.1021/acsomega.3c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Surfactant-free emulsions are currently gaining increased interest due to their technofunctional, health-promoting, economic, biocompatible, and sustainable characteristics. Herein, we report an ultrastable, surfactant-free emulsion stabilized by the konjac glucomannan (KGM)-xanthan gum (XG) complex. The results suggested that KGM-XG tended to adsorb onto the oil/water interface, causing a reduction in interfacial tension. The emulsion droplets were less than 1 μm in diameter and had a narrow size distribution. Using laser confocal microscopy and cryo-SEM, it was observed that KGM-XG generated a compact film on the surface of emulsion droplets while simultaneously constructing a three-dimensional network in the continuous phase. Both of these factors contributed to the stability of the emulsion. The present study presents a straightforward approach for producing highly stable emulsions stabilized by polysaccharides. These emulsions can be effectively utilized to enhance the water resistance of cellulose paper, which is extensively employed in the packaging industry.
Collapse
Affiliation(s)
- Qian Han
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Huili Wang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Tongxin Zhou
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Yantao Wang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Zhenpeng Shen
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Dehai Yu
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Xiaona Liu
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Wenxia Liu
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Wenzhi Lv
- College
of Chemistry and Chemical Engineering, Qiannan
Normal-University for Nationalities, Duyun 558000, China
| |
Collapse
|
23
|
Zhang H, Tian Y, Pan S, Zheng L. Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions. Foods 2023; 12:2706. [PMID: 37509797 PMCID: PMC10379661 DOI: 10.3390/foods12142706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroyed the tertiary structures and transformed secondary structures from an ordered one to a disordered one, leading to the more flexible structures of glycated 7S compared with untreated 7S. All these results affected the structural unfolding and rearrangement of glycated 7S at the oil/water interface. Therefore, glycated 7S improved interfacial adsorption and formed an interfacial viscoelasticity layer, increasing emulsifying performance to stabilize high internal phase emulsions (HIPE) with self-supportive structures. Furthermore, the solid gel-like network of HIPE stabilized by glycated 7S led to emulsification stability. This result provided new ideas to improve the functional properties of plant proteins by changing the interfacial structure.
Collapse
Affiliation(s)
- Hongjian Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Grain and Oil Science, Qionghai 571400, China
| | - Yan Tian
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianhe Zheng
- Hainan Institute of Grain and Oil Science, Qionghai 571400, China
| |
Collapse
|
24
|
Nooshkam M, Varidi M, Zareie Z, Alkobeisi F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem X 2023; 18:100725. [PMID: 37397219 PMCID: PMC10314162 DOI: 10.1016/j.fochx.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The sensitivity of protein-stabilized emulsions to flocculation, coalescence, and phase separation under destabilization conditions (i.e., heating, aging, pH, ionic strength, and freeze-thawing) may limit the widespread use of proteins as effective emulsifiers. Therefore, there is a great interest in modulating and improving the technological functionality of food proteins by conjugating them with polysaccharides, through the Maillard reaction. The present review article highlights the current approaches of protein-polysaccharide conjugate formation, their interfacial properties, and the behavior of protein-polysaccharide conjugate stabilized emulsions under various destabilization conditions, including long-term storage, heating and freeze-thawing treatments, acidic conditions, high ionic strength, and oxidation. Protein-polysaccharide conjugates are capable of forming a thick and cohesive macromolecular layer around oil droplets in food emulsions and stabilizing them against flocculation and coalescence under unfavorable conditions, through steric and electrostatic repulsion. The protein-polysaccharide conjugates could be therefore industrially used to design emulsion-based functional foods with high physicochemical stability.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Zahra Zareie
- Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Alkobeisi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
25
|
Tirgarian B, Farmani J. A novel approach for the development of edible oleofoams using double network oleogelation systems. Food Chem 2023; 426:136634. [PMID: 37348400 DOI: 10.1016/j.foodchem.2023.136634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Whipped oleogels (oleofoams) are commonly stabilized by crystalline particles. Still, external factors like temperature fluctuations could change the state of the crystals (phase transitions), leading to the destabilization and disruption of oleofoams. Herein, a double network oleogelation system comprised of a primary crystalline network (using glycerol monostearate) and a secondary colloidal network (stabilized by soy protein isolate-anionic polysaccharides Mailard conjugates) is proposed as a novel strategy to overcome these challenges. It was observed that the incorporation of the secondary network resulted in a lower over-run, but a higher melting point, elasticity, foam stability, and more uniform bubble size distribution. This was explained by the strong interfacial stabilization provided by the colloidal network that can protect the crystalline particle against coarsening and oil drainage. These double network oleofoams, which could retain 41-48 % air (oleogel-based), display great potential for utilization in low-calorie lipid-based products.
Collapse
Affiliation(s)
- Behraad Tirgarian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| |
Collapse
|
26
|
Wang X, Shi G, Fan S, Ma J, Yan Y, Wang M, Tang X, Lv P, Zhang Y. Targeted delivery of food functional ingredients in precise nutrition: design strategy and application of nutritional intervention. Crit Rev Food Sci Nutr 2023; 64:7854-7877. [PMID: 36999956 DOI: 10.1080/10408398.2023.2193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.
Collapse
Affiliation(s)
- Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Guohua Shi
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Che T, Song Y, Su W, Xing S, Wang H, Tan M. Hepatic parenchymal cell and mitochondrial-targeted astaxanthin nanocarriers for relief of high fat diet-induced nonalcoholic fatty liver disease. Food Funct 2023; 14:2908-2920. [PMID: 36883333 DOI: 10.1039/d2fo04036k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic syndrome disorder. Here, hepatic parenchymal cell and mitochondrial-targeted nanocarriers were constructed to deliver astaxanthin (AST) to liver tissue to maximize AST intervention efficiency. The hepatic parenchymal cell-targeting was achieved using galactose (Gal) conjugated onto whey protein isolate (WPI) through the Maillard reaction by recognizing asialoglycoprotein receptors specifically expressed in hepatocytes. Grafting triphenylphosphonium (TPP) onto glycosylated WPI by an amidation reaction enabled the nanocarriers (AST@TPP-WPI-Gal) to achieve dual targeting capability. The AST@TPP-WPI-Gal nanocarriers could target mitochondria in steatotic HepG2 cells with an enhanced anti-oxidative and anti-adipogenesis effect. The ability of AST@TPP-WPI-Gal to target liver tissue was verified by an NAFLD mice model, and the results showed that AST@TPP-WPI-Gal could regulate blood lipid disorders, protect liver function, and remarkably reduce liver lipid accumulation (40%) compared with that of free AST. Therefore, AST@TPP-WPI-Gal might have potential as a dual targeting hepatic agent for nutritional intervention for NAFLD.
Collapse
Affiliation(s)
- Tongtong Che
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yukun Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
28
|
Whey Protein Isolate- Mesona chinensis Polysaccharide Conjugate: Characterization and Its Applications in O/W Emulsions. Foods 2023; 12:foods12051068. [PMID: 36900587 PMCID: PMC10000475 DOI: 10.3390/foods12051068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Mesona chinensis polysaccharide (MCP), a common thickener, stabilizer and gelling agent in food and pharmaceuticals, also has antioxidant, immunomodulatory and hypoglycemic properties. Whey protein isolate (WPI)-MCP conjugate was prepared and used as a stabilizer for O/W emulsion in this study. FT-IR and surface hydrophobicity results showed there could exist interactions between -COO- in MCP and -NH3+ in WPI, and hydrogen bonding may be involved in the covalent binding process. The red-shifted peaks in the FT-IR spectra suggested the formation of WPI-MCP conjugate, and MCP may be bound to the hydrophobic area of WPI with decreasing surface hydrophobicity. According to chemical bond measurement, hydrophobic interaction, hydrogen bond and disulfide bond played the main role in the formation process of WPI-MCP conjugate. According to morphological analysis, the O/W emulsion formed by WPI-MCP had a larger size than the emulsion formed by WPI. The conjugation of MCP with WPI improved the apparent viscosity and gel structure of emulsions, which was concentration-dependent. The oxidative stability of the WPI-MCP emulsion was higher than that of the WPI emulsion. However, the protection effect of WPI-MCP emulsion on β-carotene still needs to be further improved.
Collapse
|
29
|
Colloidal network oleogels structured by sonothermal conjugates of sodium caseinate and anionic gums. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
30
|
Cui H, Zang Z, Jiang Q, Bao Y, Wu Y, Li J, Chen Y, Liu X, Yang S, Si X, Li B. Utilization of ultrasound and glycation to improve functional properties and encapsulated efficiency of proteins in anthocyanins. Food Chem 2023; 419:135899. [PMID: 37023676 DOI: 10.1016/j.foodchem.2023.135899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The purpose of this study is to explore the optimal conditions for the preparation of bovine serum albumin (BSA)/casein (CA)-dextran (DEX) conjugates by ultrasonic pretreatment combined with glycation (U-G treatment). When BSA and CA were treated with ultrasound (40% amplitude, 10 min), the grafting degree increased 10.57% and 6.05%, respectively. Structural analysis revealed that ultrasonic pretreatment changed the secondary structure, further affected functional properties of proteins. After U-G treatment, the solubility and thermal stability of BSA and CA was significantly increased, and the foaming and emulsifying capacity of proteins were also changed. Moreover, ultrasonic pretreatment and glycation exhibited a greater impact on BSA characterized with highly helical structure. Complexes fabricated by U-G-BSA/CA and carboxymethyl cellulose (CMC) exhibited protection on anthocyanins (ACNs), delaying the thermal degradation of ACNs. In conclusion, the protein conjugates treated by ultrasonic pretreatment combined with glycation have excellent functionality and are potential carrier materials.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoli Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
31
|
Wang N, Cheng J, Jiang Y, Meng Y, Zhang K, Ban Q, Wang X. Emulsions stabilised by casein and hyaluronic acid: Effects of high intensity ultrasound on the stability and vitamin E digestive characteristics. ULTRASONICS SONOCHEMISTRY 2023; 94:106314. [PMID: 36724648 PMCID: PMC9923223 DOI: 10.1016/j.ultsonch.2023.106314] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to prepare an emulsion stabilised by an ultrasound-treated casein (CAS)-hyaluronic acid (HA) complex and to protect vitamin E during in vitro digestion. It was found that high-intensity ultrasound (HIU) treatment significantly changed the hydrogen bonding, electrostatic interaction and hydrophobic interaction between CAS and HA, reduced the particle size of the CAS-HA complex, increased the intermolecular electrostatic repulsion, and thus significantly improved the emulsifying properties of the CAS-HA complex. Meanwhile, the creaming index (CI) and confocal laser scanning microscopy images showed that the stability of the CAS-HA-stabilised emulsion was the best when treated at 150 W for 10 min, which could be attributed to the enhanced adsorption capacity of the CAS-HA complex at the oil-water interface and the viscosity of the formed emulsion. In vitro digestion experiments revealed that the emulsion stabilised by the ultrasound-treated CAS-HA complex had a good protective effect on vitamin E. This study is significant for the development of emulsions for the delivery of lipophilic nutrients.
Collapse
Affiliation(s)
- Ningzhe Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yao Meng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kaida Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining 272007, China; Moxibustion College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
32
|
Improving Pea Protein Emulsifying Capacity by Glycosylation to Prepare High-Internal-Phase Emulsions. Foods 2023; 12:foods12040870. [PMID: 36832945 PMCID: PMC9956244 DOI: 10.3390/foods12040870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pea protein has been extensively studied because of its high nutritional value, low allergenicity, environmental sustainability, and low cost. However, the use of pea protein in some food products is hindered due to the low functionality of pea protein, especially as an emulsifier. High-internal-phase emulsions (HIPEs) are attracting attention because of their potential application in the replacement of hydrogenated plastic fats in foods. In this study, the use of glycated pea protein isolate (PPI) as an emulsifier to prepare HIPEs is proposed. The functionalization of a commercial PPI in two ratios of maltodextrin (MD) (1:1 and 1:2) via glycosylation (15 and 30 min), to act as an emulsifier in HIPEs, is investigated. HIPE properties, such as oil loss and texture, were evaluated and related to microstructural properties. Glycated-PPI-stabilized HIPEs showed high consistency, firmness, viscosity, and cohesiveness values; a tight and homogeneous structure; and physical stability throughout storage. The results showed that emulsions were more stable when using a 1:2 ratio and 30 min of heat treatment. However, the reaction time was more determinant for improving the textural properties when a 1:1 ratio was used for glycosylation than when a 1:2 ratio was used. Glycosylation with MD via the Maillard reaction is a suitable method to enhance the emulsifying and stabilizing properties of PPI.
Collapse
|
33
|
Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym 2023; 302:120430. [PMID: 36604091 DOI: 10.1016/j.carbpol.2022.120430] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant proteins have high nutritional value, a wide range of sources and low cost. However, it is easily affected by the environmental factors of processing and lead the problem of poor functionality. These problems of plant proteins can be improved by the polysaccharides induced Maillard reaction. The interaction between proteins and polysaccharides through Maillard reaction can change the structure of proteins as well as improve the functional properties and biological activity. The products of Maillard reaction, such as reductone intermediates, heterocyclic compounds and melanoidins have certain antioxidant, antibacterial and other biological activities. However, heterocyclic amines, acrylamide, and products generated in the advanced stage of the Maillard reaction also have a negative impact, which may increase cytotoxicity and be associated with chronic diseases. Therefore, it is necessary to effectively control the process of Maillard reaction. This review focuses on the modification of plant proteins by polysaccharide-induced Maillard reaction and the effects of Maillard reaction on protein structure, functional properties and biological activity. It also points out how to accurately reflect the changes of protein structure in Maillard reaction. In addition, it also points out the application ways of plant protein-polysaccharide complexes in the food industry, for example, emulsifiers, delivery carriers of functional substances, and natural antioxidants due to their improved solubility, emulsifying, gelling and antioxidant properties. This review provides theoretical support for controlling Maillard reaction based on protein structure.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
34
|
Wan C, Cheng Q, Zeng M, Huang C. Recent progress in emulsion gels: from fundamentals to applications. SOFT MATTER 2023; 19:1282-1292. [PMID: 36744514 DOI: 10.1039/d2sm01481e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Min Zeng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
35
|
Tirgarian B, Farmani J, Farahmandfar R, Milani JM, Van Bockstaele F. Switchable pH-responsive Biopolymeric Stabilizers Made by Sonothermal Glycation of Sodium Caseinate with κappa-carrageenan. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
36
|
Su Y, Zhang W, Chang C, Li J, Sun Y, Cai Y, Xiong W, Gu L, Yang Y. Changes in partial properties of glycosylated egg white powder during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1261-1272. [PMID: 36088607 DOI: 10.1002/jsfa.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Glycosylation is an effective method to modify protein. However, there is a lack of research on the property changes of glycosylated protein during storage. In the present study, the changes in the physicochemical, functional, and structural properties of xylo-oligosaccharide (XOS) glycosylated egg white powder (EWP) (XOS-EWP conjugates) prepared with different glycosylation conditions (XOS/EWP ratio and reaction time) were investigated when stored at 25 °C and 60% relative humidity. RESULTS In the 12 weeks of storage, the degree of grafting, browning, and the formation of Maillard reaction products of XOS-EWP conjugates increased. The increase in XOS/EWP ratio and reaction time led to an increase in protein aggregation, though a decrease in solubility, due to increased degree of glycosylation and structural changes. Furthermore, improved gel hardness of XOS-EWP conjugates deteriorated, while improved emulsification ability was kept stable during storage. For the sample with a lower XOS/EWP ratio and reaction time, the gel hardness and emulsifying properties underwent little or no deterioration even improving during storage. The results could be attributed to the limited degree of glycosylation, further unfolding of the protein structure, increased surface hydrophobicity of protein, and improved thermal characteristics. CONCLUSION During storage, the Maillard reaction would continue to occur in the glycosylated EWP, further affecting the performance of modified EWP. Modified EWP prepared under different glycosylation conditions performed differently during storage. Modified EWP with a larger XOS/EWP ratio and reaction time meant it was harder to maintain good performance. Modified EWP with a smaller XOS/EWP ratio and reaction time changed significantly to better performances. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanyuan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yundan Cai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wen Xiong
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Hao J, Wang Q, Li X, Xu D. Extraction of structurally intact and well-stabilized rice bran oil bodies as natural pre-emulsified O/W emulsions and investigation of their rheological properties and components interaction. Food Res Int 2023; 164:112457. [PMID: 36738012 DOI: 10.1016/j.foodres.2023.112457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The isolated plant oil bodies (OBs) have shown promising applications as natural pre-emulsified O/W emulsions. Rice bran OBs can be used as a new type plant-based resource with superior fatty acids composition and abundant γ-oryzanol. This paper investigated the method of extracting structurally intact and stable rice bran OBs. Due to the adequate steric hindrance and electrostatic repulsion effects, rice bran OBs extracted by NaHCO3 medium had smaller particle size, better physical stability, and natural structure. The protein profile of NaHCO3-extracted rice bran OBs showed oleosin-L and oleosin-H, while exogenous proteins in PBS and enzyme-assisted- extracted rice bran OBs could interact with interfacial proteins through hydrophobic forces to aggregate adjacent OBs, further remodeling the OBs interface. It was also found that the small-sized rice bran OBs could adsorb on the interface of the larger-sized rice bran OBs like Pickering stabilizers. Rice bran OBs exhibited pseudoplastic fluids characteristic, but underwent a transition from solid-like to liquid-like behavior depending on the extraction method. The disorder of NaHCO3-extracted rice bran OBs protein molecules increased their surface hydrophobicity. The random coil structure favored more proteins adsorption at the interface of rice bran OBs extracted by PBS. Enzyme-assisted extraction of rice bran OBs had the highest content of β-sheet structure, which facilitated the stretching and aggregation of protein spatial structure. It was also confirmed the hydrogen bonding and hydrophobic interaction between the triacylglycerol or phospholipid and proteins molecules, and the membrane compositions of rice bran OBs differed between extraction methods.
Collapse
Affiliation(s)
- Jia Hao
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Qiuyu Wang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Xiaoyu Li
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Duoxia Xu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
38
|
Kirtil E, Oztop MH. Mechanism of adsorption for design of role-specific polymeric surfactants. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Edible oleofilms with high vegetable oil content obtained from novel soy protein isolate/gelatin/chitosan nanofiber emulgels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Liu L, Chen M, Coldea TE, Yang H, Zhao H. Emulsifying properties of arabinoxylans derived from brewers’ spent grain by ultrasound-assisted extraction: structural and functional properties correlation. CELLULOSE 2023; 30:359-372. [DOI: 10.1007/s10570-022-04912-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/22/2022] [Indexed: 07/02/2024]
|
41
|
In Vitro Digestion and Storage Stability of β-Carotene-Loaded Nanoemulsion Stabilized by Soy Protein Isolate (SPI)-Citrus Pectin (CP) Complex/Conjugate Prepared with Ultrasound. Foods 2022; 11:foods11162410. [PMID: 36010417 PMCID: PMC9407190 DOI: 10.3390/foods11162410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we employed the ultrasound-prepared electrostatic complex and covalent conjugate of soy protein isolate (SPI) and citrus pectin (CP) to prepare β-carotene-loaded nanoemulsions. The in vitro digestion and storage stability of nanoemulsions stabilized by different types of emulsifiers were investigated and compared. Nanoemulsions stabilized by ultrasound-treated complex/conjugate showed the highest encapsulation efficiency; during gastric digestion, these nanoemulsions also demonstrated the smallest droplet sizes and the highest absolute values of zeta potential, indicating that both electrostatic complexation/covalent conjugation and ultrasound treatment could significantly improve the stability of the resulting nanoemulsions. In comparison, complexes were more beneficial for the controlled release of β-carotene; however, the conjugate-stabilized nanoemulsion showed an overall higher bioaccessibility. The results were also confirmed by optical micrographs. Furthermore, nanoemulsions stabilized by ultrasound-prepared complexes/conjugates exhibited the highest stability during 14-day storage at 25 °C. The results suggested that ultrasound-prepared SPI–CP complexes and conjugates had great application potential for the delivery of hydrophobic nutrients.
Collapse
|