1
|
Wang Y, Wu Y, Wu Y, Feng Z, Li D, Liu Q. A gold nanoflower particle-based immunochromatographic assay sensor for on-site detection of six species of Salmonella in water and food samples. Anal Chim Acta 2025; 1350:343813. [PMID: 40155160 DOI: 10.1016/j.aca.2025.343813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Salmonella is a prevalent zoonotic pathogen that threatens food safety and human health. Owing to the large number of Salmonella species and their significant variations in pathogenicity and virulence, it is difficult to classify Salmonella strains quickly, which makes rapid detection of Salmonella outbreaks and research on foodborne diseases difficult. RESULTS Therefore, in this study, an ICA sensor for the detection of multiple Salmonella strains with high pathogenicity based on broad-spectrum Salmonella antibodies was developed using AuNFs as probes. Compared with other Salmonella ICA sensors, the sensor was able to detect six different types of Salmonella. The ICA sensor had a visual LOD of 104 CFU/mL for S. Paratyphi A, S. Typhimurium, S. Paratyphi B, S. Saintpaul, S. Heidelberg and S. enterica. The ICA sensor had no cross-reaction with 20 common foodborne pathogens, which could effectively avoid incorrect results caused by cross-reaction and delay accurate tracing of pathogenic bacteria. Moreover, the feasibility of the ICA sensor was verified by detecting Salmonella in spiked drinking water, orange juice, and milk. The ICA sensor achieved a visual detection limit of 104 CFU/mL and detected as low as 1 CFU/mL in chicken and egg samples after 6-8 h of enrichment. SIGNIFICANCE In conclusion, this sensor offers a rapid, cost-effective, and reliable solution for the on-site detection of multiple Salmonella strains, addressing critical needs in food safety and public health.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yafang Wu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Youxue Wu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhaoyi Feng
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Dezhi Li
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qing Liu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Mansouri S. Nanozymes-Mediated Lateral Flow Assays for the Detection of Pathogenic Microorganisms and Toxins: A Review from Synthesis to Application. Crit Rev Anal Chem 2025:1-20. [PMID: 40249095 DOI: 10.1080/10408347.2025.2491683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In today's context, there is an increasing awareness among individuals regarding the importance of healthy and safe food consumption. Consequently, there is a growing demand for food products that are safeguarded against the detrimental effects of pathogens and harmful microbial metabolites. Actually, these organisms and their associated toxins pose a significant risk to food safety and are recognized as a critical threat to human health because of their capacity to induce foodborne infections and intoxications. Consequently, in order to address such challenges, it is imperative to enhance recognizing systems comprising bio/nanosensors for detections, which are trustworthy, quick, beneficial and economical. The advent of digital color imaging technology has led to the gradual establishment of lateral flow assays (LFAs) as one of the most significant sensors for point-of-care applications. Unlike colloidal gold nanoparticles (AuNPs), nanozymes offer enhanced color intensity through target-induced precise enrichment of nanozymes at the test line. Additionally, they amplify the color signal by facilitating the catalytic oxidation of colorless substrates into colored products. This dual functionality presents significant potential for the development of well-organized LFAs. In light of this, significant attempts are dedicated to the development of nanozyme-based LFAs. This review aims to outline recent advancements in the synthesis and design of nanozymes with varying compositions that exhibit distinct activities, as well as the structure and employment of nanozyme-based LFAs for the detection of pathogenic microorganisms and their associated toxins. Furthermore, the existing challenges and prospective development directions are outlined to assist readers in advancing the nanozyme-based LFAs performance.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
3
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Yang J, Sun L, Zhang Y, Shen Q. Metal and metal oxide nanoparticle-assisted molecular assays for the detection of Salmonella. DISCOVER NANO 2025; 20:65. [PMID: 40172753 PMCID: PMC11965082 DOI: 10.1186/s11671-025-04237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
This paper provides a comprehensive overview of the diverse applications and innovations of nanoparticles in the detection of Salmonella. It encompasses a comprehensive range of novel methods, including efficient enrichment, nucleic acid extraction, immunoassays, nucleic acid tests, biosensors, and emerging strategies with the potential for future applications. The surface modification of specific antibodies or ligands enables nanoparticles to achieve highly selective capture of Salmonella, while optimizing the nucleic acid extraction process and improving detection efficiency. The employment of nanoparticles in immunological and nucleic acid tests markedly enhances the specificity and sensitivity of the reaction, thereby optimizing the determination of detection results. Moreover, the distinctive physicochemical properties of nanoparticles enhance the sensitivity, selectivity, and stability of biosensors, thereby facilitating the rapid advancement of bio-detection technologies. It is particularly noteworthy that there has been significant advancement in the application and innovative research of nanozymes in molecular assays. This progress has not only resulted in enhanced detection efficiency but has also facilitated innovation and improvement in detection technologies. As nanotechnologies continue to advance, the use of metal and metal oxide nanoparticles in Salmonella detection is likely to become a more promising and reliable strategy for ensuring food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
4
|
Pang L, Huang Y, Li R, Guo L, Man C, Yang X, Jiang Y. Effects of postbiotics produced by Lactobacillus plantarum JM015 isolated from traditional fermented dairy products on Salmonella-induced intestinal inflammation: A preventive strategy. Food Chem 2025; 469:142549. [PMID: 39708644 DOI: 10.1016/j.foodchem.2024.142549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Huang
- Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Dang TV, Jang IS, Nguyen QH, Choi HS, Yu BJ, Kim MI. Signal-off colorimetric and signal-on fluorometric dual-mode aptasensor for ultrasensitive detection of Salmonella Typhimurium using graphitic carbon nitride. Food Chem 2025; 465:142176. [PMID: 39579407 DOI: 10.1016/j.foodchem.2024.142176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Food safety is severely burdened by the prevalence of foodborne pathogens and the diseases they cause, necessitating the development of rapid, easy-to-use, highly sensitive, and reliable detection methods. Here, a signal-off colorimetric and signal-on fluorometric dual-mode detection method for Salmonella Typhimurium (S. typhimurium) was developed based on its unique interaction with aptamer DNA and graphitic carbon nitride (GCN). In the absence of a target Salmonella species, 6-carboxyfluorescein (FAM)-labeled aptamers are adsorbed on the surface of GCN primarily via a π-π interaction, resulting in reduced fluorescence of FAM through GCN-mediated quenching as well as improved peroxidase-like activity of GCN to generate intense blue color through facilitated electrostatic attraction between the negatively charged aptamer and positively charged 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The introduction of S. typhimurium to the sample solution causes the detachment of the aptamer from GCN due to its higher affinity for S. typhimurium than GCN, thereby rapidly reducing the colorimetric signal and recovering the fluorescence. We successfully determined the number of S. typhimurium using this method in a remarkably short duration (10-30 min), highlighting its rapidity. The limit of detection values for S. typhimurium were as low as 8 and 3 CFU/mL when using colorimetric and fluorometric methods, respectively. Moreover, this method can be used to detect S. typhimurium spiked in real vegetable extract and milk with high reproducibility and reliability. This method serves as a convenient route to the rapid, sensitive, selective, and reliable detection of pathogens from complex food samples, with the potential to replace conventional yet laborious methods currently in use.
Collapse
Affiliation(s)
- Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - In Seung Jang
- Low-Carbon Transition R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Quynh Huong Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Hyeun Seok Choi
- Regional Industrial Innovation Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Byung Jo Yu
- Low-Carbon Transition R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| |
Collapse
|
6
|
Bae D, Kim M, Choi JS. Enzymatic properties of iron oxide nanoclusters and their application as a colorimetric glucose detection probe. RSC Adv 2025; 15:4573-4580. [PMID: 39931409 PMCID: PMC11809189 DOI: 10.1039/d5ra00047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Nanozymes have attracted attention owing to their distinct catalytic capabilities and potential applications, being advantageous compared to natural enzymes in terms of storage and cost efficiency. In this study, we investigated the enzymatic properties of iron oxide nanoclusters (IOCs) formed through the clustering of small nanoparticles. Our findings reveal that the enzymatic activity of IOCs is enhanced as their size increases. Additionally, we demonstrated that the size of the unit particles within IOCs is highly dependent on the nucleation environment, which is a crucial factor in determining the overall size of the IOCs. Importantly, the surface area of IOCs is more closely related to the size of the individual unit particles rather than the entire cluster. Smaller unit particle sizes within IOCs resulted in an increase in nanocluster size, thereby augmenting the specific surface area. The optimal IOC exhibited superior stability under various conditions and a broader range of reactivity compared to natural enzymes, making it a promising probe material for point-of-care tests across diverse environments. Furthermore, its effectiveness as a glucose detection probe was demonstrated, highlighting its potential for practical applications. The remarkable enzyme-like efficacy of IOCs not only enhances their utility in on-site detection technologies but also establishes them as a versatile detection probe.
Collapse
Affiliation(s)
- Dahyun Bae
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Minhee Kim
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Jin-Sil Choi
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| |
Collapse
|
7
|
Hendrickson OD, Byzova NA, Dzantiev BB, Zherdev AV. Prussian-Blue-Nanozyme-Enhanced Simultaneous Immunochromatographic Control of Two Relevant Bacterial Pathogens in Milk. Foods 2024; 13:3032. [PMID: 39410067 PMCID: PMC11475848 DOI: 10.3390/foods13193032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Salmonella typhimurium and Listeria monocytogenes are relevant foodborne bacterial pathogens which may cause serious intoxications and infectious diseases in humans. In this study, a sensitive immunochromatographic analysis (ICA) for the simultaneous detection of these two pathogens was developed. For this, test strips containing two test zones with specific monoclonal antibodies (MAb) against lipopolysaccharides of S. typhimurium and L. monocytogenes and one control zone with secondary antibodies were designed, and the double-assay conditions were optimized to ensure high analytical parameters. Prussian blue nanoparticles (PBNPs) were used as nanozyme labels and were conjugated with specific MAbs to perform a sandwich format of the ICA. Peroxidase-mimic properties of PBNPs allowed for the catalytic amplification of the colorimetric signal on test strips, enhancing the assay sensitivity. The limits of detection (LODs) of Salmonella and Listeria cells were 2 × 102 and 7 × 103 cells/mL, respectively. LODs were 100-fold less than those achieved due to the ICA based on the traditional gold label. The developed double ICA was approbated for the detection of bacteria in cow milk samples, which were processed by simple dilution by buffer before the assay. For S. typhimurium and L. monocytogenes, the recoveries from milk were 86.3 ± 9.8 and 118.2 ± 10.5% and correlated well with those estimated by the enzyme-linked immunosorbent assay as a reference method. The proposed approach was characterized by high specificity: no cross-reactivity with other bacteria strains was observed. The assay satisfies the requirements for rapid tests: a full cycle from sample acquisition to result assessment in less than half an hour. The developed ICA has a high application potential for the multiplex detection of other foodborne pathogens.
Collapse
Affiliation(s)
| | | | | | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (O.D.H.); (N.A.B.); (B.B.D.)
| |
Collapse
|
8
|
Hu J, Chen CH, Wang L, Zhang MR, Li Z, Tang M, Liu C. Multi-functional nanozyme-based colorimetric, fluorescence dual-mode assay for Salmonella typhimurium detection in milk. Mikrochim Acta 2024; 191:464. [PMID: 39007936 DOI: 10.1007/s00604-024-06539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.
Collapse
Affiliation(s)
- Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Chao-Hui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Mao-Rong Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man Tang
- School of Electronic and Electrical Engineering, Hubei Engineering and Technology Research Centre for Functional Fibre Fabrication and Testing, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
9
|
Yuan J, Wang L, Huang L, He K, Wang H, Xu X, Su B, Wang J. CRISPR-Cas12a-Mediated Hue-Recognition Lateral Flow Assay for Point-of-Need Detection of Salmonella. Anal Chem 2024; 96:220-228. [PMID: 38109169 DOI: 10.1021/acs.analchem.3c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nucleic acid detection of pathogens in a point-of-need (PON) manner is of great significance yet remains challenging for sensitive and accurate visual discrimination. Here, we report a CRISPR-Cas12a-mediated lateral flow assay for PON detection of Salmonella typhimurium (S.ty) that is a prevailing pathogen disseminated through tainted food. The variation of the fluorescence color of the test line is exploited to interpret the results, enabling the discrimination between positive and negative samples on the basis of a hue-recognition mechanism. By leveraging the cleavage activity of Cas12a and hue-recognition readout, the assay facilitated by recombinase polymerase amplification can yield a visual detection limit of 1 copy μL-1 for S.ty genomic DNA within 1 h. The assay also displays a high specificity toward S.ty in fresh chicken samples, as well as a sensitivity 10-fold better than that of the commercial test strip. Moreover, a semiquantitative detection of S.ty ranging from 0 to 4 × 103 CFU/mL by the naked eye is made possible, thanks to the easily discernible color change of the test line. This approach provides an easy, rapid, accurate, and user-friendly solution for the PON detection of Salmonella and other pathogens.
Collapse
Affiliation(s)
- Jingrui Yuan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
10
|
Wang S, Hu J, You H, Li D, Yu Z, Gan N. Tesla valve-assisted biosensor for dual-mode and dual-target simultaneous determination of foodborne pathogens based on phage/DNAzyme co-modified zeolitic imidazolate framework-encoded probes. Anal Chim Acta 2023; 1275:341591. [PMID: 37524477 DOI: 10.1016/j.aca.2023.341591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Sensitive and accurate detection of multiplex foodborne pathogens is crucial for food safety. In this work, a dual-mode and dual-target biosensor regulated by a Tesla valve was established for simultaneously determining Escherichia coli O157:H7 (E. coli) and Salmonella typhimurium (S. T). Two zeolitic imidazolate framework (ZIF-8) signal probes decorated with electroactive materials (ferrocene or methylene blue), DNAzyme, and different phages were synthesized to specifically recognize the targets and generate fluorescent/electrochemical dual-mode signals. In the presence of bacteria, they were captured and enriched on two individual working electrodes through the modified 4-mercaptophenylboric acid. The encoded signal probes added on different working electrodes could be conjugated with the corresponding target bacteria depending on the specificity of phages. Under the acidic condition, the DNAzyme could catalyze click chemistry for fluorescent signals. Simultaneously, the released ferrocene and methylene blue from ZIF-8 could generate electrochemical signals at different potentials. Benefiting from the flow regulation feature of the Tesla valve, the triggered fluorescent and electrochemical signals in the two individual electrodes would not influence each other, achieving simultaneous dual-mode and dual-target determination of foodborne pathogens. It depicted good linearity ranged 10-107 CFU mL-1. And the corresponding detection of limits were 5 CFU mL-1 and 8 CFU mL-1 for two bacteria, respectively. A low false positive was realized through the dual-mode strategy. The proposed biosensor can not only on-site, specifically, and sensitively determine E. coli and S. T, but also provide the wide prospect in rapid screening of other foodborne pathogens.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, China
| | - Jianhao Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, China
| | - Hang You
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, China
| | - Dengfeng Li
- School of Marine, Ningbo University, Ningbo, 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, China.
| |
Collapse
|
11
|
Preechakasedkit P, Panphut W, Lomae A, Wonsawat W, Citterio D, Ruecha N. Dual Colorimetric/Electrochemical Detection of Salmonella typhimurium Using a Laser-Induced Graphene Integrated Lateral Flow Immunoassay Strip. Anal Chem 2023; 95:13904-13912. [PMID: 37638540 DOI: 10.1021/acs.analchem.3c02252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Foodborne illnesses caused by the ingestion of contaminated foods or beverages are a serious concern due to the millions of reported cases per year. It is essential to develop sensitive and rapid detection methods of foodborne pathogens to ensure food safety for producers and consumers. Unfortunately, current detection techniques still suffer from time-consuming operations and the need for highly skilled personnel. Here, we introduce a highly sensitive dual colorimetric/electrochemical detection approach for Salmonella enterica serovar typhimurium (S. typhimurium) based on a laser-induced graphene-integrated lateral flow immunoassay (LIG-LFIA) strip. The LIG electrode was fabricated by laser engraving on a polyimide tape containing a pseudo silver/silver chloride reference electrode from silver sintering and chlorination. Using double-sided tape inserted into the strip, automatic sequential reagent delivery was enabled for the dual-mode signal readout by single-sample loading. A gold-deposited gold nanoparticle strategy was first employed to simultaneously obtain a colorimetric signal for early screening and a signal turn-on electrochemical response for high-sensitivity and -quantitative analysis. A superior performance of the strip was established, characterized by a short analysis time (12 min assay +15 min sample preparation), a broad working concentration range (1 cfu/10 mL to 108 cfu/mL), and the lowest limit of detection (1 ± 0.5 cfu/10 mL; mean ± standard deviation, n = 3) among reported multimode S. typhimurium detection schemes. The strip was successfully applied in the analysis of various food products without any bacterial enrichment or amplification required, and the results were comparable to those of the standard culture method.
Collapse
Affiliation(s)
- Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Wattana Panphut
- Department of Industrial Microbiology, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Nok Street, Dusit, Bangkok 10300, Thailand
| | - Atchara Lomae
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Wanida Wonsawat
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Nok Street, Dusit, Bangkok 10300, Thailand
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Nipapan Ruecha
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4351-4376. [PMID: 37615701 DOI: 10.1039/d3ay00844d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Huang X, Chen L, Zhi W, Zeng R, Ji G, Cai H, Xu J, Wang J, Chen S, Tang Y, Zhang J, Zhou H, Sun P. Urchin-Shaped Au-Ag@Pt Sensor Integrated Lateral Flow Immunoassay for Multimodal Detection and Specific Discrimination of Clinical Multiple Bacterial Infections. Anal Chem 2023; 95:13101-13112. [PMID: 37526338 DOI: 10.1021/acs.analchem.3c01631] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A new lateral flow immunoassay strip (LFIA) combining sensitive detection and identification of multiple bacteria remains a huge challenge. In this study, we first developed multifunctional urchin-shaped Au-Ag@Pt nanoparticles (UAA@P NPs) with a unique combination of colorimetric-SERS-photothermal-catalytic (CM/SERS/PT/CL) properties and integrated them with LFIA for multiplexed detection and specific discrimination of pathogenic bacteria in blood samples. Unlike the conventional LFIA that relied on antibody (Ab), this novel LFIA introduced 4-mercaptophenylboronic acid (4-MPBA) as an ideal Ab replacer that was functionalized on UAA@P NPs (UAA@P/M NPs) with outstanding binding and enrichment capacities toward bacteria. Taking Staphylococcus aureus (S. aureus) as model bacteria, the limit of detection (LOD) was 3 CFU/mL for SERS-LFIA, 27 CFU/mL for PT-LFIA, and 18 CFU/mL for CL-LFIA, three of which were over 330-fold, 37-fold, and 55-fold more sensitive than ordinary visual CM-LFIA, respectively. Besides, this SERS-LFIA is capable of identifying three types of bacterial spiked blood samples (E. coli, S. aureus, and P. aeruginosa) effectively according to specific bacterial Raman "fingerprints" by partial least-squares-discriminant analysis (PLS-DA). More importantly, this LFIA was successfully applied to blood samples with satisfactory recoveries from 90.3% to 108.8% and capable of identifying the infected patients (N = 4) from healthy subjects (N = 2) with great accuracy. Overall, the multimodal LFIA incorporates bacteria discrimination and quantitative detection, offering an avenue for early warning and diagnosis of bacterial infection.
Collapse
Affiliation(s)
- Xueqin Huang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingzhi Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weixia Zhi
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runmin Zeng
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guanxu Ji
- Oncology Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jinyong Wang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shanze Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Tang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianglin Zhang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haibo Zhou
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pinghua Sun
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Yu Q, Xia X, Xu C, Wang W, Zheng S, Wang C, Gu B, Wang C. Introduction of a multilayered fluorescent nanofilm into lateral flow immunoassay for ultrasensitive detection of Salmonella typhimurium in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37455653 DOI: 10.1039/d3ay00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fast and sensitive identification of foodborne bacteria in complex samples is the key to the prevention and control of microbial infections. Herein, an ultrasensitive lateral flow assay (LFIA) based on multilayered fluorescent nanofilm (GO/DQD)-guided signal amplification was developed for the rapid and quantitative determination of Salmonella typhimurium (S. typhi). The film-like GO/DQD was prepared through the electrostatic mediated layer-by-layer assembly of numerous carboxylated CdSe/ZnS quantum dots (QDs) onto an ultrathin graphene oxide (GO) nanosheet, which possessed advantages including higher QD loading, larger surface areas, superior luminescence, and better stability, than traditional spherical nanomaterials. The antibody-modified GO/DQD can effectively attach onto a target bacterial cell to form a GO/DQD-bacteria immunocomplex containing almost ten thousand QDs, thus greatly improving the detection sensitivity of LFIA. The constructed GO/DQD-LFIA biosensor achieved the rapid and sensitive detection of S. typhi in 14 min with detection limits of as low as 9 cells/mL. Moreover, compared with traditional LFIA techniques for bacteria detection, the proposed assay exhibited excellent stability and accuracy in real food samples and enormously improved sensitivity (2-3 orders of magnitude), demonstrating its great potential in the field of rapid diagnosis.
Collapse
Affiliation(s)
- Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Xuan Xia
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Changyue Xu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Wenqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Shuai Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, PR China.
| |
Collapse
|
15
|
Xu Z, Liu B, Li D, Yu Z, Gan N. Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection. BIOSENSORS 2023; 13:401. [PMID: 36979613 PMCID: PMC10046507 DOI: 10.3390/bios13030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Both live and dead Salmonella typhimurium (S.T) are harmful to human health, but there are differences in pathological mechanism, dosage, and security. It is crucial to develop a rapid and simultaneous assay to distinguish and quantify live and dead S.T in foods. Herein, one dual-mode biosensor for simultaneous detection of live and dead S.T was fabricated based on two phage probes, using portable bioluminescence and fluorescent meter as detectors, respectively. Firstly, a magnetic phage capture probe (M-P1) and a phage signal tag (P2-S) labeled with SYTO 13 fluorescent dye were prepared, respectively. Both M-P1 and P2-S can specifically conjugate with S.T to form a magnetic sandwich complex. After magnetic separation, the isolated complex can emit a fluorescent signal under an excited 365 nm laser, which can reflect the total amount of S.T. Afterwards, the lysozyme was added to decompose the captured live S.T, which can release ATP and produce a bioluminescent signal corresponding to the live S.T amount. The dead S.T concentration can be deduced by the difference between total and live examples. The detection limit of 55 CFU/mL for total S.T and 9 CFU/mL for live ones was within 20 min. The assay was successfully employed in milk samples and prospectively for on-site screening of other dead and live bacteria, while changing the phages for the targets.
Collapse
Affiliation(s)
- Zhenli Xu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Bailu Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Dengfeng Li
- Faculty of Marine, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Zhou H, Guo W, Hao T, Xie J, Wu Y, Jiang X, Hu Y, Wang S, Guo Z. Electrochemical sensor for single-cell determination of bacteria based on target-triggered click chemistry and fast scan voltammetry. Food Chem 2023; 417:135906. [PMID: 36913866 DOI: 10.1016/j.foodchem.2023.135906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Herein, an electrochemical sensor for single-cell determination of bacteria was developed based on target-triggered click chemistry and fast scan voltammetry (FSV). In it, bacteria not only are the detection target, but also can use their own metabolism to achieve first-level signal amplification. More electrochemical labels were immobilized on functionalized 2D nanomaterials to achieve second-level signal amplification. At 400 V/s, FSV can achieve third-level signal amplification. The linear range and limit of quantification (LOQ) are 1 ∼ 108 CFU/mL and 1 CFU/mL, respectively. When the reaction time of E. coli-instructed Cu2+ reduction is extended to 120 min, PCR-free single-cell determination of E. coli was achieved by electrochemical method first time. The feasibility of the sensor was verified by analysis of E. coli in seawater and milk samples with recoveries ranging from 94% to 110%. This detection principle is widely applicable, providing a new path for the establishment of single-cell detection strategy for bacteria.
Collapse
Affiliation(s)
- Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Wenbo Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Xiaohua Jiang
- School of Materials & Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
17
|
Zhao X, Smith G, Javed B, Dee G, Gun’ko YK, Curtin J, Byrne HJ, O’Connor C, Tian F. Design and Development of Magnetic Iron Core Gold Nanoparticle-Based Fluorescent Multiplex Assay to Detect Salmonella. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3917. [PMID: 36364693 PMCID: PMC9655581 DOI: 10.3390/nano12213917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Salmonella is a bacterial pathogen which is one of the leading causes of severe illnesses in humans. The current study involved the design and development of two methods, respectively using iron oxide nanoparticle (IONP) and iron core gold nanoparticle (ICGNP), conjugated with the Salmonella antibody and the fluorophore, 4-Methylumbelliferyl Caprylate (4-MUCAP), used as an indicator, for its selective and sensitive detection in contaminated food products. Twenty double-blind beverage samples, spiked with Salmonella enteritidis, Staphylococcus aureus, and Escherichia coli, were prepared in sterile Eppendorf® tubes at room temperature. The gold layer and spikes of ICGNPs increased the surface areas. The ratio of the surface area is 0.76 (IONPs/ICGNPs). The comparative sensitivity and specificity of the IONP-based and the ICGNP-based methods to detect Salmonella were determined. The ICGNP method shows the limit of detection is 32 Salmonella per mL. The ICGNPs had an 83.3% sensitivity and a 92.9% specificity value for the presence and detection of Salmonella. The IONP method resulted in a limit of detection of 150 Salmonella per mL, and a 66.7% sensitivity and 83.3% specificity for the presence and detection of Salmonella. The higher surface area of ICGNPs increases the efficiency of detection. The monitoring of Salmonella can thus be achieved by a rapid magnetic fluorescent assay using a smartphone for image capture and analyze, providing quantitative results. The findings from the present study would help to detect Salmonella rapidly in water. It can improve the microbial quality of water and food safety due to the presence of Salmonella in the water environment.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Gwendoline Smith
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Bilal Javed
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Garret Dee
- AMBER, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|