1
|
Ren P, Wei B, Qin W, Tang Q, Wang Y, Xue C. Impact of astaxanthin on the capacity of gut microbiota to produce tryptophan catabolites. Food Funct 2025; 16:524-538. [PMID: 39688008 DOI: 10.1039/d4fo04890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
This study utilized in vitro colonic fermentation to examine the impact of astaxanthin on the microbial catabolism of tryptophan. Astaxanthin significantly altered the gut microbiota and raised the tryptophan catabolism metabolite levels in an in vitro human colonic fermentation system. To eliminate the influence of substrate availability, we conducted in vitro colonic fermentation of the gut microbiota of astaxanthin-domesticated mice. We observed that the capacity of astaxanthin-domesticated gut microbiota to catalyze the conversion of tryptophan to indole and derivatives was considerably augmented. Astaxanthin significantly increased the relative abundance of Akkermansia, Ruminococcus, Bacteroides and Lactobacillus and elevated the levels of indole-3-lactic acid and indole-3-propionic acid. These results demonstrated that astaxanthin regulates tryptophan metabolism by modifying gut microbiota and increasing the levels of indole metabolites, such as indole-3-lactic acid and indole-3-propionic acid. This study provides insights into the physiological activity of astaxanthin and sheds light on the potential for enhancing tryptophan metabolism through dietary manipulation of the gut microbiota.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanting Qin
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
2
|
Zhao X, He W, Jakobsen LMA, Panah FM, Barbosa Correia BS, Nielsen DS, Hansen AK, Bertram HC. Influence of dairy matrix on the prebiotic effects of inulin related to gut metabolic activity and bone health. Food Funct 2024; 15:11129-11140. [PMID: 39436286 DOI: 10.1039/d4fo01635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Inulin is a well-recognized prebiotic ingredient established to modulate the gut microbiome and its metabolic functionality. However, little is known about how the food matrix interacts with the prebiotic efficacy of inulin. The aim of the present study was to investigate the interaction between the food matrix (milk vs. yogurt) and the gut microbiome modulatory effects of inulin and its influence on calcium bioavailability as reflected in bone mineralization. For this purpose, a 6-week dietary intervention was conducted in healthy young growing male rats (n = 36) which received a diet matrix that included: (1) milk, (2) milk supplemented with 5% inulin, (3) yogurt, or (4) yogurt supplemented with 5% inulin. All diets were limited in calcium content and provided a daily intake of 46 mg calcium per rat. We found that inulin fortification of a yogurt diet exerted a larger effect on gut fermentation as reflected in pH and the generation of acetate in the distal part of the intestine and feces compared with inulin fortification of milk. Inulin was also associated with a higher acetate concentration in plasma when supplied in yogurt compared with milk. No effects of inulin supplementation were found on bone parameters. In conclusion, the present study suggested that the prebiotic efficacy of inulin is higher when supplied in a fermented dairy product than milk. However, neither adding inulin to yogurt or milk affected bone mineralization or the bone structure.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Weiwei He
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Louise M A Jakobsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Farhad M Panah
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | | | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
3
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
4
|
Ferreira H, Duarte D, Carneiro TJ, Costa C, Barbosa JC, Rodrigues JE, Alves P, Vasconcelos M, Pinto E, Gomes A, Gil AM. Impact of a legumes diet on the human gut microbiome articulated with fecal and plasma metabolomes: A pilot study. Clin Nutr ESPEN 2024; 63:332-345. [PMID: 38964655 DOI: 10.1016/j.clnesp.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND & AIMS Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. METHODS Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. RESULTS While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. CONCLUSIONS Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.
Collapse
Affiliation(s)
- Helena Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Daniela Duarte
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tatiana J Carneiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Célia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Joana C Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - João E Rodrigues
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Paulo Alves
- Universidade Católica Portuguesa, CIIS - Centro de Investigação Interdisciplinar em Saúde, Escola Enfermagem (Porto), Portugal
| | - Marta Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Elisabete Pinto
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Ana Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
6
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
7
|
Sinha AK, Laursen MF, Brinck JE, Rybtke ML, Hjørne AP, Procházková N, Pedersen M, Roager HM, Licht TR. Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota. Nat Microbiol 2024; 9:1964-1978. [PMID: 38918470 PMCID: PMC11306097 DOI: 10.1038/s41564-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.
Collapse
Affiliation(s)
- Anurag K Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julius E Brinck
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L Rybtke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Dell'Olio A, Rubert J, Capozzi V, Tonezzer M, Betta E, Fogliano V, Biasioli F. Non-invasive VOCs detection to monitor the gut microbiota metabolism in-vitro. Sci Rep 2024; 14:15842. [PMID: 38982163 PMCID: PMC11233675 DOI: 10.1038/s41598-024-66303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.
Collapse
Affiliation(s)
- Andrea Dell'Olio
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Vittorio Capozzi
- Institute of Food Production Sciences, National Research Council, 71121, Foggia, Italy
| | - Matteo Tonezzer
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, 09042, Monserrato , Italy
| | - Emanuela Betta
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Franco Biasioli
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy.
| |
Collapse
|
9
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
10
|
Pedrosa LDF, Fabi JP. Dietary fiber as a wide pillar of colorectal cancer prevention and adjuvant therapy. Crit Rev Food Sci Nutr 2024; 64:6177-6197. [PMID: 36606552 DOI: 10.1080/10408398.2022.2164245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is the third most incident and second most lethal type of cancer worldwide. Lifestyle and dietary patterns are the key factors for higher disease development risk. The dietary fiber intake from fruits and vegetables, mainly formed by food hydrocolloids, can help to lower the incidence of this type of neoplasia. Different food polysaccharides have applications in anti-tumoral therapy, such as coadjuvant to mainstream drugs, carriage-like properties, or direct influence on tumoral cells. Some classes include inulin, β-glucans, pectins, fucoidans, alginates, mucilages, and gums. Therefore, it is fundamental to discuss colorectal cancer mechanisms and the roles played by different polysaccharides in intestinal health. Genetic, environmental, and immunological modulation of mutated pathways regarding colorectal cancer has been explored before. Microbial diversity, byproduct formation (primarily short-chain fatty acids), inflammatory profile control, and tumoral mutated pathways regulation are thoroughly explored mechanisms by which dietary fiber sources influence a healthy gut ambiance.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
11
|
Asensio-Grau A, Heredia A, García-Hernández J, Cabrera-Rubio R, Masip E, Ribes-Koninckx C, Collado MC, Andrés A, Calvo-Lerma J. Effect of beta-glucan supplementation on cystic fibrosis colonic microbiota: an in vitro study. Pediatr Res 2024; 95:1519-1527. [PMID: 38092964 DOI: 10.1038/s41390-023-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 05/26/2024]
Abstract
BACKGROUND Children with cystic fibrosis (CF) present with gut dysbiosis, and current evidence impedes robust recommendations on the use of prebiotics. This study aimed at establishing the prebiotic potential of a commercial beta-glucan on the in vitro colonic microbiota of a child with CF compared to a healthy counterpart (H). METHODS A dynamic simulator of colonic fermentation (twin-SHIME® model) was set up including the simulation of the proximal (PC) and distal colon (DC) of the CF and the H subjects by colonizing the bioreactors with faecal microbiota. During two weeks the system was supplied with the beta-glucan. At baseline, during treatment and post-treatment, microbiota composition was profiled by 16 S rRNA and short-chain fatty acids (SCFA) production was determined by GS-MS. RESULTS At baseline, Faecalibacterium, was higher in CF' DC than in the H, along higher Acidaminococcus and less Megasphaera and Sutterella. Beta-glucan supplementation induced increased microbiota richness and diversity in both subjects during the treatment. At genus level, Pseudomonas and Veillonella decreased, while Akkermansia and Faecalibacterium increased significantly in CF. CONCLUSION The supplementation with beta-glucan suggests positive results on CF colonic microbiota in the in vitro context, encouraging further research in the in vivo setting. IMPACT Current evidence supports assessing the effect of prebiotics on modifying cystic fibrosis microbiota. The effect of beta-glucan supplementation was evaluated in a controlled dynamic in vitro colonic ecosystem. Beta-glucan supplement improved diversity in cystic fibrosis colonic microbiota. The treatment showed increased abundance of Faecalibacterium and Akkermansia in cystic fibrosis. New evidence supports the use of prebiotics in future clinical studies.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain.
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain.
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
| | - Jorge García-Hernández
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Etna Masip
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Carmen Ribes-Koninckx
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
| | - Joaquim Calvo-Lerma
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
12
|
Huyan Z, Pellegrini N, Rubert J, Steegenga WT, Capuano E. Levels of lipid-derived gut microbial metabolites differ among plant matrices in an in vitro model of colon fermentation. Food Res Int 2024; 184:114230. [PMID: 38609219 DOI: 10.1016/j.foodres.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.
Collapse
Affiliation(s)
- Zongyao Huyan
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Josep Rubert
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
13
|
Smits MM, Dreyer SIL, Hunt JE, Drzazga AK, Modvig IM, Holst JJ, Kissow H. Indole-3-carboxyaldehyde does not reverse the intestinal effects of fiber-free diet in mice. Front Endocrinol (Lausanne) 2024; 15:1362711. [PMID: 38586454 PMCID: PMC10995233 DOI: 10.3389/fendo.2024.1362711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Objective Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.
Collapse
Affiliation(s)
- Mark M. Smits
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Serafina I. L. Dreyer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K. Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Ida M. Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024; 65:1729-1748. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Liu M, Xu X, Sun C, Zheng X, Zhou Q, Song C, Xu P, Gao Q, Liu B. Tea Tree Oil Improves Energy Metabolism, Non-Specific Immunity, and Microbiota Diversity via the Intestine-Hepatopancreas Axis in Macrobrachium rosenbergii under Low Fish Meal Diet Administration. Antioxidants (Basel) 2023; 12:1879. [PMID: 37891958 PMCID: PMC10604904 DOI: 10.3390/antiox12101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage. However, in comparison with LF, LTF significantly ameliorated morphological impairment in the hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve as prospective targets for the intestine-hepatopancreas axis to affect hepatopancreas apoptosis, metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated gut microbiota and positively improved energy metabolism and non-specific immunity, thereby alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| |
Collapse
|
16
|
Hu Y, He D, Yu B, Chen D. Effects of Different Types of Dietary Fibers on Lipid Metabolism and Bile Acids in Weaned Piglets. Animals (Basel) 2023; 13:3266. [PMID: 37893990 PMCID: PMC10603699 DOI: 10.3390/ani13203266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to investigate the effects of dietary fiber on the serum biochemistry, bile acid profile, and gut microbiota in piglets. Twenty-four pigs (initial body weight: 10.53 ± 1.23 kg) were randomly divided into three treatments with eight replicate pens of one pig per pen for 21 d. The dietary treatments consisted of the following: (1) a fiber-free diet (NS); (2) a fiber-free diet + 3% fructooligosaccharides (SI); (3) a fiber-free diet + 3% dietary fiber mixture (fructooligosaccharides, long-chain inulin, and microcrystalline cellulose at the ratio 1:1:1; MIX). The results showed that compared with the NS group, the 3% SI diet reduced the serum total cholesterol (TC) concentration of the piglets (p < 0.05). The metabolomics results showed that the 3% SI diet increased the level of taurohyocholic acid (THCA) and α-muricholic acid, and the 3% MIX diet increased the level of THCA and cholic acid (p < 0.05). The use of 3% SI or MIX decreased the glycodeoxycholic acid (GDCA) level in the bile of the piglets (p < 0.05). The correlation analysis shows that the GDCA was positively related to the TC. The 16S rRNA gene sequencing results showed that UCG-002 and Holdemanella were enriched in the SI group, while Bacteroides was enriched in the MIX group. The microbial function prediction indicated that SI supplementation tended to elevate the relative abundance of gut bacteria capable of expressing bile acid-metabolizing enzymes. To sum up, the regulatory effect of dietary fiber on lipid metabolism is related to bile acids in piglets. Compared with MIX, SI is more likely to regulate bile acids through the gut microbiota.
Collapse
Affiliation(s)
| | | | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an 625014, China; (Y.H.)
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an 625014, China; (Y.H.)
| |
Collapse
|
17
|
Gu Q, Gao X, Zhou Q, Li Y, Li G, Li P. Characterization of soluble dietary fiber from citrus peels (Citrus unshiu), and its antioxidant capacity and beneficial regulating effect on gut microbiota. Int J Biol Macromol 2023; 246:125715. [PMID: 37419261 DOI: 10.1016/j.ijbiomac.2023.125715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to evaluate the physicochemical, structural and functional properties of soluble dietary fiber extracted from citrus peels (Citrus unshiu) by ultrasound-assisted alkaline extraction. Unpurified soluble dietary fiber (CSDF) was compared with purified soluble dietary fiber (PSDF) in terms of composition, molecular weight, physicochemical properties, antioxidant activity, and intestinal regulatory capacity. Results showed that the molecular weight of soluble dietary fiber was >15 kDa, which showed good shear thinning characteristics and belonged to non-Newtonian fluid. The soluble dietary fiber showed good thermal stability under 200 °C. The contents of total sugar, arabinose and sulfate in PSDF were higher than those in CSDF. At the same concentration, PSDF showed stronger free radical scavenging ability. In fermentation model experiments, PSDF promoted the production of propionic acid and increased the abundance of Bacteroides. These findings suggested that soluble dietary fiber extracted by the ultrasound-assisted alkaline extraction has good antioxidant capacity and promotes intestinal health. It has broad development space in the field of functional food ingredients.
Collapse
Affiliation(s)
- Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xin Gao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yongquan Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guoqiang Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Huang Z, de Vries S, Fogliano V, Wells JM, van der Wielen N, Capuano E. Effect of whole foods on the microbial production of tryptophan-derived aryl hydrocarbon receptor agonists in growing pigs. Food Chem 2023; 416:135804. [PMID: 36893645 DOI: 10.1016/j.foodchem.2023.135804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Effects of whole foods on the microbial production of tryptophan-derived aryl hydrocarbon receptor (AhR) ligands in the intestine were investigated in a pig model. Ileal digesta and faeces of pigs after feeding of eighteen different foods were analyzed. Indole, indole-3-propionic acid, indole-3-acetic acid, indole-3-lactic acid, kynurenine, tryptamine, and indole-3-aldehyde were identified in ileal digesta, which were also identified in faeces but at higher concentrations except indole-3-lactic acid, together with skatole, oxindole, serotonin, and indoleacrylic acid. The panel of tryptophan catabolites in ileal digesta and faeces varied across different foods. Eggs induced the highest overall concentration of catabolites in ileal digesta dominated by indole. Amaranth induced the highest overall concentration of catabolites in faeces dominated by skatole. Using a reporter cell line, we observed many faecal samples but not ileal samples retained AhR activity. Collectively, these findings contribute to food selection targeting AhR ligands production from dietary tryptophan in the intestine.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Sonja de Vries
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
19
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
20
|
Huang Z, Boekhorst J, Fogliano V, Capuano E, Wells JM. Impact of High-Fiber or High-Protein Diet on the Capacity of Human Gut Microbiota To Produce Tryptophan Catabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6956-6966. [PMID: 37126824 PMCID: PMC10176579 DOI: 10.1021/acs.jafc.2c08953] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study investigated the effect of high-fiber-low-protein (HF) and high-protein-low-fiber (HP) diets on microbial catabolism of tryptophan in the proximal colon (PC) and distal colon(DC) compartments of the Simulator of the Human Intestinal Microbial Ecosystem. The microbiota in PC and DC was dominated by Bacteroidetes and Firmicutes, in which Bacteroidetes were more abundant in DC (∼60% versus 50%) and Firmicutes were more abundant in PC (∼40% versus 25%). Most of the tryptophan catabolites were determined at a higher concentration in PC samples than in DC samples, but the overall concentration of tryptophan catabolites was over 10-fold higher in DC samples than that in PC samples. Interestingly, indole-3-propionic acid and oxindole were only identified in DC samples. A two-week dietary intervention by the HF diet enriched the abundance of Firmicutes in PC, whereas the HP diet enriched the abundance of Proteobacteria. Compared to the HP diet, the HF diet favored the microbial production of indole-3-acetic acid, indole-3-lactic acid, indole-3-aldehyde, and indole-3-propionic acid in both PC and DC compartments. To conclude, these findings increase the understanding of the effect of diets on the microbial production of tryptophan catabolites in the colon.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
21
|
Zheng X, Liu B, Wang N, Yang J, Zhou Q, Sun C, Zhao Y. Low fish meal diet supplemented with probiotics ameliorates intestinal barrier and immunological function of Macrobrachium rosenbergii via the targeted modulation of gut microbes and derived secondary metabolites. Front Immunol 2022; 13:1074399. [PMID: 36466900 PMCID: PMC9713824 DOI: 10.3389/fimmu.2022.1074399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 09/03/2023] Open
Abstract
The unsuitable substitution ratio of fish meal by plant protein will reshape the intestinal microbial composition and intestine immunity. However, previous studies were mostly limited to investigating how different feed or probiotics characterized the microbial composition but ignored the biological interactions between bacteria and host physiology through secondary metabolites. Therefore, this study integrates the apparent indicators monitoring, 16S rDNA sequencing, and metabonomics to systematically investigate the effects of cottonseed protein concentrate (CPC) substitution of fish meal and Bacillus coagulans intervention on gut microbes, secondary metabolites, and intestinal immunity of Macrobrachium rosenbergii. Prawns were fed with three diets for 70 days: HF diets contained 25% fish meal, CPC in LF diets were replaced with 10% fish meal, and LF diets supplemented with 2 × 108 CFU/g diet B. coagulans were designated as BC diets. Results showed that CPC substitution induced a significant decrease in digestive enzyme activities (trypsin and lipase) and gut barrier protein PT-1 expression and a significant increase in γ-GT enzyme activity and inflammatory-related factors (Relish and Toll) expression. B. coagulans treatment mitigated the negative changes of the above indicators. Meanwhile, it significantly improved the expression levels of the barrier factor PT-1, the reparative cytokine IL-22, and Cu/Zn-SOD. CPC substitution resulted in a remarkable downregulated abundance of Firmicutes phyla, Flavobacterium spp., and Bacillus spp. B. coagulans treatment induced the callback of Firmicutes abundance and improved the relative abundance of Sphingomonas, Bacillus, and Ralstonia. Functional prediction indicated that CPC substitution resulted in elevated potential pathogenicity of microbial flora, and B. coagulans reduces the pathogenesis risk. Pearson's correlation analysis established a significant positive correlation between differential genera (Sphingomonas, Bacillus, and Ralstonia) and secondary metabolites (including sphingosine, dehydrophytosphingosine, amino acid metabolites, etc.). Meanwhile, the latter were significantly associated with intestinal immunoregulation-related genes (Cu/Zn-SOD, IL-22, PT-1, Toll, and Relish). This study indicated that B. coagulans could mediate specific gut microbes and the combined action of multiple functional secondary metabolites to affect intestinal barrier function, digestion, and inflammation. Our study revealed the decisive role of gut microbes and derived secondary metabolites in the model of dietary composition-induced intestinal injury and probiotic treatment from a new perspective.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ning Wang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie Yang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Yongfeng Zhao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|