1
|
Dos Santos ID, Zomer P, Pizzutti IR, Wagner R, Mol H. Multi-residue determination of biocides in dairy products and slurry feed using QuEChERS extraction and liquid chromatography combined with high resolution mass spectrometry (LC-ESI-QOrbitrap™-MS). Food Chem 2024; 457:140117. [PMID: 38905841 DOI: 10.1016/j.foodchem.2024.140117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Given that the determination of biocides in food and feed is currently not routinely done, more information on these compounds is useful for consumer's safety. This work describes a sensitive and reliable method for quantitative analysis of a wide range of biocides in dairy products and slurry feed. The method comprises acetate-buffered QuEChERS extraction without clean-up. Analyses were performed by LC-Q-Orbitrap™-MS and a full-scan acquisition event without fragmentation was followed by five fragmentation events (data-independent acquisition-DIA). The quantitative validation was performed according to SANTE/11312/2021 at 10, 50 and 200 ng g-1 spiking levels, and the results showed that the vast majority of the compounds met the criteria for trueness and precision. The LOQ was 10 ng g-1 for the majority of biocides depending on the matrix. The method was successfully applied to quantify biocides in dairy products and feed.
Collapse
Affiliation(s)
- Ingrid D Dos Santos
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, the Netherlands; Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Rio Grande do Sul state, Santa Maria 97105-900, RS, Brazil.
| | - Paul Zomer
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, the Netherlands
| | - Ionara R Pizzutti
- Center of Research and Analysis of Contaminants (CEPARC), Department of Chemistry, Roraima Avenue 1000, Camobi, Rio Grande do Sul state, Santa Maria 97105-900, RS, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Rio Grande do Sul state, Santa Maria 97105-900, RS, Brazil
| | - Hans Mol
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Wang J, Liu Y, Yu C, Wang X, Wang J. Swellable microneedle-coupled light-addressable photoelectrochemical sensor for in-situ tracking of multiple pesticides pollution in vivo. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134216. [PMID: 38581877 DOI: 10.1016/j.jhazmat.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.
Collapse
Affiliation(s)
- Jinmiao Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yanwen Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Cheng Yu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xinmeng Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Juan Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Wang Z, Li H, Jiang C, Liu W, Zhang S, Zhou Y, Liu K, Xiao Y, Hou R, Wan X, Liu Y. Mn-modified porphyrin metal-organic framework mediated colorimetric and photothermal dual-channel probe for sensitive detection of organophosphorus pesticides. J Colloid Interface Sci 2024; 661:1060-1069. [PMID: 38335790 DOI: 10.1016/j.jcis.2024.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Herein, a novel dual-mode probe for organophosphorus pesticides (OPs) colorimetric and photothermal detection was developed based on manganese modified porphyrin metal-organic framework (PCN-224-Mn). PCN-224-Mn had excellent oxidase-like activity and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB) to blue-green oxidation state TMB (oxTMB), which exhibited high temperature under near-infrared irradiation. l-ascorbate-2-phosphate was hydrolyzed by acid phosphatase to produce ascorbic acid, which weakened colorimetric and photothermal signals by impacting oxTMB generation. The presence of OPs blocked the production of ascorbic acid by irreversibly inhibiting the activity of acid phosphatase, causing the restoration of chromogenic reaction and the increase of temperature. Under the optimal conditions, the probe showed a good linear response to OPs in the concentration range of 5 ∼ 10000 ng/mL, using glyphosate as the analog. The detection limits of glyphosate in colorimetric mode and photothermal mode were 1.47 ng/mL and 2.00 ng/mL, respectively. The probe was successfully used for sensitive identification of OPs residues in tea, brown rice, and wheat flour. This work proposes a simple and reliable colorimetric/photothermal platform for OPs identification, which overcomes the problem that single-mode detection probes are susceptible to external factors, and has broad application potential in the field of food safety.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chuang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenya Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Siyu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yingnan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Wei S, Wang X, Zhao X, Zhao K, Xu L, Chen Y. Detection of pesticide residues on flexible and transparent fluorinated polyimide film based on surface-enhanced Raman spectroscopy technology. Anal Chim Acta 2023; 1283:341958. [PMID: 37977783 DOI: 10.1016/j.aca.2023.341958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Excessive pesticide residues will seriously endanger human health. The complexity and lag of the current popular analytical methods hinder the timeliness of food safety analysis. Surface-enhanced Raman scattering (SERS) was an ultra-sensitive vibration spectroscopy technology with the advantages of less time cost, non-destructive and semi-quantitative detection, which has attracted much attention in the rapid field detection of pesticide residue. It was clear that we need an efficient and convenient substrate for pesticide residue detection based on SRES technology, which needs to be portable, flexible, transparent and easy to detect irregular object surfaces. RESULTS A novel SERS sensor was designed to detect single and multi-component pesticide residues on irregular fruit and vegetable surfaces by in-situ growth of silver nanoparticles on a flexible and transparent fluorinated polyimide (FPI) substrate. Among them, Ag NPs were synthesized by liquid phase reduction method (AgNO3-PVP and NaBH4). The results showed that the detection limit of 1-4 BDT was down to 10-10 mol L-1, the enhancement factor (EF) was up to 1.57 × 107, and relative standard deviation (RSD) was 7.49 %. By this method, tricyclazole solution at a concentration of 0.01 mg L-1 was still detectable by the FPI@Ag SERS substrate. The linear quantification was achieved in the range from 100 mg L-1 to 0.01 mg L-1. Two mixed pesticides, tricyclazole and imazalil, were also successfully distinguished. SIGNIFICANCE This represents the formation of a flexible, foldable and transparent substrate for rapid on-site detection. Results can be obtained in <5 min by attaching the substrate to the substance to be tested. And the SERS substrate prepared with high sensitivity, stability, portable and convenient analysis, which provided new ideas for efficient and rapid household food safety detection.
Collapse
Affiliation(s)
- Siyu Wei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Xinfang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, PR China
| | - Xinyu Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Ke Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Linzhe Xu
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
5
|
Sun Y, Zheng X, Wang H, Yan M, Chen Z, Yang Q, Shao Y. Research advances of SERS analysis method based on silent region molecules for food safety detection. Mikrochim Acta 2023; 190:387. [PMID: 37700165 DOI: 10.1007/s00604-023-05968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Food safety is a critical issue that is closely related to people's health and safety. As a simple, rapid, and sensitive detection technique, surface-enhanced Raman scattering (SERS) technology has significant potential for food safety detection. Recently, researchers have shown a growing interest in utilizing silent region molecules for SERS analysis. These molecules exhibit significant Raman scattering peaks in the cellular Raman silent region between 1800 and 2800 cm-1 avoiding overlapping with the SERS spectrum of biological matrices in the range 600-1800 cm-1, which could effectively circumvent matrix effects and improve the SERS accuracy. In this review, the application of silent region molecules-based SERS analytical technique for food safety detection is introduced, detection strategies including label-free detection and labeled detection are discussed, and recent applications of SERS analysis technology based on molecules containing alkyne and nitrile groups, as well as Prussian blue (PB) in the detection of pesticides, mycotoxins, metal ions, and foodborne pathogens are highlighted. This review aims to draw the attention to the silent region molecules-based SERS analytical technique and to provide theoretical support for its further applications in food safety detection.
Collapse
Affiliation(s)
- Yuhang Sun
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinxin Zheng
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Hao Wang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mengmeng Yan
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zilei Chen
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qinzheng Yang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China.
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
6
|
Jiang Z, Zhuang Y, Guo S, Sohan ASMMF, Yin B. Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food. Foods 2023; 12:2868. [PMID: 37569137 PMCID: PMC10417549 DOI: 10.3390/foods12152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such as being time-consuming and costly and requiring specialist staff, limit their application. Therefore, there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its outstanding strengths. This paper summarizes the application of microfluidic techniques to pyrethroid, carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products. Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing technology and nanomaterials for detecting pesticide residues in food.
Collapse
Affiliation(s)
- Zhuoao Jiang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - Yu Zhuang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - Shentian Guo
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| |
Collapse
|
7
|
Xu Q, Xiao F, Xu H. Green-derived carbon dots: A potent tool for biosensing in food safety. Crit Rev Food Sci Nutr 2023; 64:9095-9112. [PMID: 37165486 DOI: 10.1080/10408398.2023.2208209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The impact of food contaminants on ecosystems and human health has attracted widespread global attention, and there is an urgent need to develop reliable food safety detection methods. Recently, carbon dots (CDs) have been considered as a powerful material to construct sensors for chemical analysis. Based on the concept of resource conversion and sustainable development, the use of natural, harmless, and renewable materials for the preparation of CDs without the involvement of chemical hazards is a current hot topic. This paper reviews the research progress of green-derived CDs and their application in food safety biosensing. The fabrications of green-derived CDs using various biomasses are described in detail, and the application of CDs especially the sensing mechanisms of photoluminescence, colorimetric, electrochemiluminescence and other sensors are provided. Finally, existing shortcomings and current challenges as well as prospects for food safety monitoring are discussed. We believe that this work provides strong insight into the application of CDs in the sensing of various contaminants.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| |
Collapse
|