1
|
Yin Y, Xu J, Shi Z, Pan D, Wu Z, Zeng X, Tu M. Research on the preparation of soy protein isolate and whey protein isolate composite nanoparticles and their characteristics in high internal phase Pickering emulsions. Food Chem 2025; 477:143476. [PMID: 40023950 DOI: 10.1016/j.foodchem.2025.143476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
This study investigated the role of thermal drive in the formation of soy protein isolate and whey protein isolate (SPI-WPI) complexes, as well as the stability effect of SPI-WPI complexes on high internal phase Pickering emulsions (HIPPEs). The shift in the peaks in the infrared spectrum and the change in fluorescence intensity indicated the interaction between these two proteins, which implies that SPI-WPI is not two dispersed groups of particles. Maximum emulsification activity (10.65 m2/g) and the absolute value of potential (37.87 mV) were achieved at an SPI to WPI mass ratio of 7:3. As the concentration and pH of the SPI-WPI complex increased, the droplets become evenly uniform and compact. It is predicted that the high concentration conditions are more favorable for the formation of a gel network structure. This research provides an effective strategy for HIPPEs stabilization using complex proteins.
Collapse
Affiliation(s)
- Yaxin Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
2
|
Zhang J, Wang Z, Wu X, Piao S, Zhang Q, Zhou D. Covalent modulation of zein surface potential by gallic acid to enhance the formation of electrostatic-driven ternary antioxidant complex coacervates with chitosan. Food Chem 2025; 475:143233. [PMID: 39938273 DOI: 10.1016/j.foodchem.2025.143233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Despite existing research on the interaction between zein (Z) and chitosan (CS), the formation and mechanisms of ternary electrostatic coacervates incorporating polyphenols remain unclear. Herein, we covalently and non-covalently modified zein with gallic acid (GA). Comparisons revealed that the covalent coupling of Z with GA (forming Z(GA)) reduced zein's surface potential, enabling them to form tightly bound coacervates with cationic polysaccharide chitosan through electrostatic attraction. Turbidity, ζ-potential, and appearance experiments indicated that the maximum yield of insoluble coacervates was achieved at a Z(GA)/CS mass ratio of 7:1 and pH 6.5. Furthermore, the coacervate properties were evaluated using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and microscopic structure analysis. Electrostatic attraction between the -COO- groups of Z(GA) and the -NH3+ groups of CS triggered complex coacervation, which induced structural modifications and enhanced thermal stability. This study fosters the efficient encapsulation and controlled release of nutraceuticals, enhancing human absorption.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Zhiheng Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Xinling Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Shengyi Piao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Qiang Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Deyi Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| |
Collapse
|
3
|
Wang R, Chen Y, Zhu H, Chen S, Cai W, Wang X, Xiao Z, Luo Y. Tannic acid-mediated covalent effects on the structural and antioxidant properties of dual zein/casein protein complex nanoparticles. Food Chem 2025; 484:144293. [PMID: 40253731 DOI: 10.1016/j.foodchem.2025.144293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Protein-polyphenol conjugates with enhanced antioxidant properties offer significant benefits to multiple food systems, including emulsions, gels, and food packaging systems. In this study, tannic acid (TA)-covalently mediated ternary zein/casein-tannic acid nanoparticles (ZCTPs) were effectively fabricated using a pH-driven method. Results showed that the addition of TA reduced the particle size of ZCTPs (from 93 to 74 nm), with improved uniformities (PDI of 0.25) and greater stabilities (zeta potential of -48 mV) compared to zein/casein nanoparticles (ZCPs). Further, SDS-PAGE confirmed the successful establishment of covalent binding between TA and dual proteins. In ZCTPs, TA exhibited a high affinity (66-93 %) to proteins, obviously inducing rearrangements in the protein secondary and tertiary structures. Afterward, the antioxidant activities of ZCTPs were significantly enhanced to 57 and 79 % against DPPH· and ABTS+·, respectively. This novel protein-polyphenol conjugate holds promising potential as a functional ingredient and delivery system in the food industry.
Collapse
Affiliation(s)
- Ruiqi Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yang Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sunni Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Wudan Cai
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States; College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinhao Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Zhenlei Xiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
4
|
Wang F, Zeng J, Lin L, Wang X, Zhang L, Tao N. Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation. Food Chem 2025; 470:142731. [PMID: 39755039 DOI: 10.1016/j.foodchem.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems. Understanding the relationship between structure and function aids in tailoring applications to specific needs. This review outlines the challenges associated with delivering AST and reviews the mechanisms involved in creating delivery systems, specifically focusing on the structure-function relationship of biomaterials. It comprehensively introduces the positive synergistic effect of biomaterials with enhancing the functional properties of AST, and analyzes the impact of designed structures on function regulation and the application prospects of the delivery system in the food industry. The future demand for efficient delivery of AST will increasingly depend on the positive synergistic effect between biomaterials.
Collapse
Affiliation(s)
- Fengqiujie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Zhang M, Chen L, Liu X, Yu Z, Zhou Y, Wang Y. Influence pathways of covalent and non-covalent interactions on the stability of deamidated gliadin-tannic acid-based Pickering emulsions. Int J Biol Macromol 2025; 299:140078. [PMID: 39832589 DOI: 10.1016/j.ijbiomac.2025.140078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This study aimed to elucidate the pathways through which covalent and non-covalent interactions between deamidated gliadin (DG) and tannic acid (TA) on influence the stability of Pickering emulsions. The interactions induced protein unfolding, as evidenced by increased ultraviolet absorption and a red shift in fluorescence emission. DG-TA composite nanoparticles effectively stabilized high internal phase emulsions, whereas DG nanoparticles alone did not. Covalent DG-TA nanoparticle stabilized Pickering emulsions (C-DGTAE) retained a consistent mean droplet size after 30 d of storage. Lipid hydroperoxide and malondialdehyde levels in C-DGTAE and N-DGTAE were reduced by 59.1 %-69.5 % and 38.9 %-44.4 %, respectively. Furthermore, the retention of β-carotene in the emulsions was significantly enhanced. All emulsions exhibited elastic behavior, characterized by higher G' than G″. Notably, N-DGTAE demonstrated the highest apparent viscosity, G' and G″, attributed to the connected nanoparticles around the droplets. Confocal laser scanning microscopy revealed that C-DGTAE droplets possessed the thickest layer, corroborated by the highest interfacial nanoparticle content of 76 % and an interfacial thickness of 441 nm. These findings suggest that covalent interactions enhance the interfacial nanoparticle layer, while non-covalent interactions promote nanoparticle networking, providing valuable insights for optimizing the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Luzhen Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongquan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
6
|
Wang D, Li J, Yang H, Zhang Y, Zhu M, Xiao Z. Production, characterization, and application of zein-polyphenol complexes and conjugates: A comprehensive review. Food Chem 2025; 467:142309. [PMID: 39644665 DOI: 10.1016/j.foodchem.2024.142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The corn protein zein has several advantages, such as low production cost, excellent biodegradability, good biocompatibility, and low allergenicity. However, the application of zein in the food industry is limited by its high hydrophobicity. To increase the functionality of zein and meet the diverse requirements of food systems, researchers have explored several methods to form complexes or conjugates through noncovalent or covalent interactions, respectively, with polyphenols. This paper comprehensively reviews the formation mechanisms, preparation methods, and influencing factors of zein-polyphenol complexes and conjugates. In addition, the paper presents the techniques used to characterize zein-polyphenol complexes and conjugates and their various new functional properties and bioactivities including water solubility, emulsification activity, in vitro antioxidant activity and antibacterial activity, as well as factors that affect these properties. Furthermore, the potential uses of these compounds in the food sector and future research areas are discussed.
Collapse
Affiliation(s)
- Dexiong Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Jianan Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Hongli Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China.
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
7
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Chen X, Nie K, Huang X, Li H, Wu Y, Huang Y, Chen X. The effect of pH on structural properties and interaction mechanisms of zein/epicatechin gallate complexes. Food Chem X 2024; 24:102028. [PMID: 39655216 PMCID: PMC11626738 DOI: 10.1016/j.fochx.2024.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to investigate the effects of pH on the structural properties and interaction mechanisms of zein/epicatechin gallate (ECG) complexes. QCM-D data demonstrated that the binding capacity of ECG to zein was significantly higher under alkaline condition (pH 9) compared to neutral and acidic conditions (p < 0.05). Molecular docking analysis revealed that the formation of zein/ECG complexes was primarily driven by hydrogen bonds, van der Waals forces, and hydrophobic interactions. Fourier transform infrared spectroscopy indicated changes in secondary structure of zein. Additionally, these structural changes resulted in a decrease in content of free sulfhydryl groups while increasing solubility and antioxidant activity. Furthermore, melting temperature of zein/ECG complexes decreased after treatments at pH 3, 5, and 9, while it increased at pH 1 and 7. These findings underscore the significance of pH in ECG and zein interaction, offering valuable insights for the development of zein/ECG complexes as food additives.
Collapse
Affiliation(s)
- Xiujuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Kaili Nie
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xuejun Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Hao Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yexu Wu
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang 443000, China
| | - Yi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Xiao M, Li S, Xiong L, Duan J, Chen X, Luo X, Wang D, Zou L, Li J, Hu Y, Zhang J. Pickering emulsion gel of polyunsaturated fatty acid-rich oils stabilized by zein-tannic acid green nanoparticles for storage and oxidation stability enhancement. J Colloid Interface Sci 2024; 675:646-659. [PMID: 38991279 DOI: 10.1016/j.jcis.2024.06.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
HYPOTHESIS Poor storage stability and oxidative deterioration are the common drawbacks of edible oils rich in polyunsaturated fatty acids (PUFAs). We hypothesized that the natural zein/tannic acid self-assembly nanoparticles (ZT NPs) could be employed as stabilizers to anchor at the oil-water interface, thus constructing Pickering emulsion gel (PKEG) system for three types of PUFA-rich oils, soybean oil (SO), fish oil (FO) and cod liver oil (CLO), to improve the storage and oxidation stability. EXPERIMENTS ZT NPs were prepared by the anti-solvent coprecipitation method, and the three-phase contact angle, FT-IR, and XRD were mainly characterized. To observe the shell-core structure and oil-water interface details of SO/FO/CLO PKEGs by confocal laser scanning microscope and cryo-scanning electron microscope. Accelerated oxidation of FO was performed to assess the protective effect of PKEG on lipids. FINDINGS The SO, FO, and CLO PKEGs stabilized by 2 % ZT NPs, with oil fraction (φ = 0.5-0.6), were obtained. PKEGs show high viscoelasticity, clear shell-core structure spatial network structure, and ideal storage stability. Under accelerated oxidation, the degree of oxidative rancidity of FO PKEG was obviously lower than that of free FO. Overall, this work opens up new possibilities for using natural PKEG to prevent oxidative deterioration and prolong the shelf-life of PUFA-rich oils.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaozhuo Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Luo
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong S.A.R., China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
12
|
Chen Y, Wei Q, Chen Y, Jiang L, Wang J, Zhang W. Atmospheric cold plasma pretreatment for effective enhancement of covalent crosslinking between coconut globulin and tannic acid: Improving interfacial activity and emulsifying properties. Int J Biol Macromol 2024; 281:136524. [PMID: 39414189 DOI: 10.1016/j.ijbiomac.2024.136524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Atmospheric cold plasma (ACP) represents a promising approach for enhancing covalent interactions between proteins and polyphenols, circumventing the drawbacks associated with traditional methods. This study aims to investigate the enhancement of covalent interactions between coconut globulin (CG) and tannic acid (TA) facilitated by ACP at varying pH levels. At acidic pH, ACP treatment was found to promote free radical-induced covalent cross-linking between CG and TA, whereas at pH 7.0 and 9.0, ACP treatment enhanced quinone-induced covalent cross-linking. In contrast, the covalent crosslinking induced by quinone significantly disrupted the protein structure, leading to greater exposure of hydrophobic groups. At pH 9.0, the CG-TA complex treated with ACP exhibited the highest interfacial activity, with an interfacial adsorption mass of 5292 ng/cm2. This was accompanied by improvements in droplet size, viscosity, and stability of the CG-TA-stabilized emulsion. These findings offer novel insights into the covalent modification of proteins and polyphenols, thereby broadening the potential applications of food protein.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Hu Z, Wei X, Liu X, Bai W, Zeng X. Effect of starch categories and mass ratio of TA/starch on the emulsifying performance and stability of emulsions stabilized by tannic acid-starch complexes. Int J Biol Macromol 2024; 280:136345. [PMID: 39374717 DOI: 10.1016/j.ijbiomac.2024.136345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
This study compounded natural corn starch (CS), mung bean starch (MBS) and potato starch (PS) with tannic acid (TA) to stabilize O/W Pickering emulsion. The effect of TA/starch mass ratio (0-0.25) and three starch categories on particle properties, emulsifying properties, lipid oxidation, freeze-thaw stability, emulsion powder and digestive properties were comprehensibly investigated. In detail, the TA/starch complexes size increased gradually (91.14 nm-200.87 nm) and the hydrophobicity first increased and then decreased (TA/CS > TA/MBS > TA/PS) with increasing TA/starch mass ratio. In addition, the emulsifying ability of TA/starch complexes also increased first and then decreased with increasing mass ratio, especially TA/CS system was the best, which was the same as the hydrophobicity conclusion (θow = 80.46°). Moreover, four starch-based emulsion application characteristics were further evaluated to reveal interface structure. Compared to CS and PS system, TA/MBS emulsion had stronger ability to resist the oil oxidation (TBA = 2.54 μg/mL), destruction of ice crystal (whiter emulsion powder) and digestive enzymes (FFAs = 75.33 %). It mainly attributed to the crosslinking network structure and the highest surface load of TA/MBS complexes. This study would provide new ideas for the design and application of emulsifying properties and emulsion stability.
Collapse
Affiliation(s)
- Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China.
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
14
|
Wang X, Fan C, Wang X, Feng T, Xia S, Yu J. Formation mechanism of off-flavor and the inhibition regulatory strategies in the algal oil-loaded emulsions-a review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39216015 DOI: 10.1080/10408398.2024.2397451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Algal oil rich in docosahexaenoic acid is easily oxidized and degraded to produce volatile short-chain compounds, leading to the deterioration of product flavor. Currently, the emulsion delivery of algal oil provides a promising approach to minimize oxidative deterioration and conceal its off-flavor. However, algal oil emulsions would also experience unanticipated oxidation as a result of the large specific surface area between the aqueous phase and the oil phase. The current paper offers a mechanism overview behind off-flavor formation in algal oil emulsions and explores corresponding strategies for the inhibition regulation. Additionally, the paper delves into the factors influencing lipid oxidation and the perception of off-flavors in such emulsions. To mitigate the development of off-flavors in algal oil emulsions resulting from oxidation, it is crucial to decline the likelihood of lipid oxidation and proactively prevent the creation of off-flavors whenever possible. Minimizing the release of volatile off-flavor compounds that are inevitably generated is also considered effective for weakening off-flavor. Moreover, co-encapsulation with particular desirable aroma substances could improve the overall flavor characteristics of emulsions.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunli Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xingwei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Feng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Sun Y, Wei Z. Modification of hordein by gallic acid in ethanol-free environments: Impact of covalent and non-covalent interactions on structure, physicochemical properties and self-assembly. Food Chem 2024; 449:139273. [PMID: 38599110 DOI: 10.1016/j.foodchem.2024.139273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The objectives of this study were to modify hordein with gallic acid (GA) in alcohol-free media and to compare the impact of covalent and non-covalent binding on the properties of hordein. Covalent hordein-GA complexes (H-GA) and non-covalent hordein/GA complexes (H/GA) were distinguished by molecular weight, free sulfhydryl groups and free amino groups. Isothermal titration calorimetry (ITC) demonstrated that physical mixing induced non-covalent binding of GA to hordein via hydrogen bonding and hydrophobic interactions, with a lower binding efficiency than covalent ones. Both complexation types led to a structural shift of hordein toward disorder, while grafting of oligomeric GA and alkaline treatment resulted in lower surface hydrophobicity and higher antioxidant activity of H-GA compared to H/GA. The nanoparticles assembled from H-GA had smaller particle sizes and higher physical stability than those formed from H/GA. The results of this study may provide new insights into the modification of hordein by polyphenols.
Collapse
Affiliation(s)
- Yuanjing Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
16
|
Fan S, Yang Q, Wang D, Zhu C, Wen X, Li X, Richel A, Fauconnier ML, Yang W, Hou C, Zhang D. Zein and tannic acid hybrid particles improving physical stability, controlled release properties, and antimicrobial activity of cinnamon essential oil loaded Pickering emulsions. Food Chem 2024; 446:138512. [PMID: 38428085 DOI: 10.1016/j.foodchem.2024.138512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Pickering emulsion loading essential oil has demonstrated a promising strategy as delivery system in food preservation, but localization in stability and antimicrobial activity limits application. In this study, Pickering emulsions co-loaded with tannic acid and cinnamon essential oil (ZTC) have been developed based on zein and tannic acid complexes (ZT) mediated interfacial engineering. Fourier transform infrared, fluorescence spectroscopy, and molecular docking results indicated tannic acid altered the structural of zein. Interfacial tension results indicated that tannic acid accelerated the adsorbed speed of zein particles by decreased interfacial tension (11.99-9.96 mN/m). ZT5 formed a viscoelastic and dense layer in oil-water interface than that for other ZTs, which improved stability and control release performance of ZTC. Furthermore, the ZTC showed an effective antimicrobial activity against spoilage organisms Pseudomonad paralactis MN10 and Lactobacillus sakei VMR17. These findings provide new insight for developing co-loaded multiple antimicrobial agents within Pickering emulsion as a delivery system.
Collapse
Affiliation(s)
- Simin Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Qingfeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Debao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chaoqiao Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiangyuan Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Wei Yang
- Sunrise Material Co. LTD., Jiangyin 214411, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
17
|
Wang C, Wei M, Zhu H, Wang L, Ni S, Li X, Gao D. Development of porous materials via protein/polysaccharides/polyphenols nanoparticles stabilized Pickering high internal phase emulsions for adsorption of Pb 2+ and Cu 2+ ions. Food Chem 2024; 445:138796. [PMID: 38471345 DOI: 10.1016/j.foodchem.2024.138796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The porous materials (PM) were prepared by the Pickering high internal phase emulsion (PHIPE) template. Firstly, the nanoparticles named as ZHMNPs or MZHMNPs were fabricated based on zein, Hohenbuehelia serotina polysaccharides and Malus baccata (Linn.) Borkh polyphenols without or with Maillard reaction, the average particle sizes and zeta potentials of which were distributed in a range of 718.1-979.4 nm and -21.6-25.2 mV. ZHMNPs possessed the relatively uniform spherical morphology, while MZHMNPs were irregular in shape. With ZHMNPs or MZHMNPs serving as the stabilizers, the PHIPEs were prepared, and exhibited the good viscoelasticity and excellent storage and freeze-thaw stabilities. Based on above PHIPEs template, the constructed PM possessed the large specific surface area and uniform pore structure. Through the investigations of adsorption performances, PM showed the outstanding adsorption capacities on Pb2+ and Cu2+ ions regardless of dissolving in deionized water or simulated gastrointestinal digestive fluid. Furthermore, the results also showed that the pH, temperature and adsorbent dosage had certain impacts on the adsorption performances of PM on Pb2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Cheng Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mian Wei
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Huipeng Zhu
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lu Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xiaoyu Li
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
18
|
Jiang J, Qian S, Song T, Lu X, Zhan D, Zhang H, Liu J. Food-packaging applications and mechanism of polysaccharides and polyphenols in multicomponent protein complex system: A review. Int J Biol Macromol 2024; 270:132513. [PMID: 38777018 DOI: 10.1016/j.ijbiomac.2024.132513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
With the increasingly mature research on protein-based multi-component systems at home and abroad, the current research on protein-based functional systems has also become a hot spot and focus in recent years. In the functional system, the types of functional factors and their interactions with other components are usually considered to be the subjective factors of the functional strength of the system. Because this process is accompanied by the transfer of protons and electrons in the system, it has antioxidant, antibacterial and anti-inflammatory properties. Polyphenols and polysaccharides have the advantages of wide source, excellent functionality and good compatibility with proteins, and have become excellent and representative functional factors. However, polyphenols and polysaccharides are usually accompanied by poor stability, poor solubility and low bioavailability when used as functional factors. Therefore, the effect of separate release and delivery will inevitably lead to non-significant or direct degradation. After forming a multi-component composite system with the protein, the functional factor will form a stable system driven by hydrogen bonds, hydrophobic forces and electrostatic forces between the functional factor and the protein. When used as a delivery system, it will protect the functional factor, and when released, through the specific recognition of the cell membrane receptor signal, the effect of fixed-point delivery is achieved. In addition, this multi-component composite system can also form a functional composite film by other means, which has a long-term significance for prolonging the shelf life of food and carrying out specific antibacterial.
Collapse
Affiliation(s)
- Jing Jiang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xiangning Lu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Dongling Zhan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
19
|
Wang Z, Zhang M, Liang S, Li Y. Enhanced antioxidant and antibacterial activities of chitosan/zein nanoparticle Pickering emulsion-incorporated chitosan coatings in the presence of cinnamaldehyde and tea polyphenol. Int J Biol Macromol 2024; 266:131181. [PMID: 38552702 DOI: 10.1016/j.ijbiomac.2024.131181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Pickering emulsions were prepared by using zein/chitosan nanoparticles as stabilizer and then incorporated into chitosan coatings. To improve the stability and performances, tea polyphenol and cinnamaldehyde (CA) were used to modulate the formation and functionalities of Pickering emulsions. The oil phase in Pickering emulsions were set at 5 % and 20 % to alter the hydrophobicity of chitosan coatings. Physical, structural, antioxidant and antibacterial activities of chitosan coatings with Pickering emulsions were characterized. Tea polyphenol significantly enhanced antioxidant capacity of chitosan coatings from 2.09 % to 57.61 % of DPPH value and from 2.63 % to 38.85 % of ABTS value. CA effectively increased the antibacterial activity of chitosan coatings against S. aureus and E. coli. Under 20 % oil content, the inhibition zones on S. aureus and E. coli increased from 3.03 ± 0.23 mm to 18.39 ± 1.22 mm and 7.66 ± 1.61 mm to 15.70 ± 1.75 mm, respectively. The preservative effect of chitosan coatings on fresh pork was further confirmed that the shelf-life of fresh pork could be extended by >4 days. These results suggested a great potential application of Pickering emulsion-incorporated chitosan coatings in the preservation of fresh pork.
Collapse
Affiliation(s)
- Zinan Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Shan Liang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Zhang T, Li S, Yang M, Li Y, Liu X, Shang X, Liu J, Du Z, Yu T. Egg White Protein-Proanthocyanin Complexes Stabilized Emulsions: Investigation of Physical Stability, Digestion Kinetics, and Free Fatty Acid Release Dynamics. Molecules 2024; 29:743. [PMID: 38338486 PMCID: PMC10856577 DOI: 10.3390/molecules29030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Ting Yu
- Department of Nutrition, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
21
|
Zhang W, Huan Y, Ren P, Li J, Wei Z, Xu J, Tang Q. Zein/hyaluronic acid nanoparticle stabilized Pickering emulsion for astaxanthin encapsulation. Int J Biol Macromol 2024; 255:127992. [PMID: 37949267 DOI: 10.1016/j.ijbiomac.2023.127992] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Pickering emulsions have attracted considerable attention owing to the stability and functionality. In this study, zein/hyaluronic acid (ZH) nanoparticles were prepared and applied for stabilizing astaxanthin encapsulated Pickering emulsions. By non-covalent interaction between Zein and hyaluronic acid (HA), the conformation of zein changed and therefore improved the wettability of ZH nanoparticles. Unlike the spherical zein nanoparticles, ZH nanoparticles possessed a cross-linked structure with rough surface. Confocal laser scanning microscopy indicated that the nanoparticles accumulated at the oil-water interface. The Pickering emulsion stabilized by ZH nanoparticles exhibited high viscoelasticity and a solid-like behavior, as well as excellent stability during the storage. In vitro digestion results revealed that the presence of HA coating prevented the emulsion from pepsin hydrolysis and achieved efficient delivery of astaxanthin. This work confirmed that Pickering emulsion stabilized by ZH nanoparticles could be used as an effective deliver system for bioactive substances.
Collapse
Affiliation(s)
- Wenmei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Yuchen Huan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| |
Collapse
|
22
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
23
|
Hu Y, Zhou C, Du L, Zhan F, Sun Y, Wu Z, Pan D. Phenolic structure dependent interaction onto modified goose liver protein enhanced by pH shifting: Modulations on protein interfacial and emulsifying properties. Int J Biol Macromol 2023; 253:126810. [PMID: 37690654 DOI: 10.1016/j.ijbiomac.2023.126810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The appropriateness of animal by-product proteins as emulsifiers is barely explored compared to their meat counterparts. This paper focused on improving interfacial and emulsifying properties of modified goose liver protein using three structurally relevant polyphenols either enhanced by pH shifting (P-catechin, P-quercetin and P-rutin) or not (catechin, quercetin and rutin). Due to its high hydrophobicity and limited steric hindrance, quercetin was more sufficient to hydrophobically interact (ΔH > 0, ΔS > 0) with MGLP than catechin and rutin. Results showed that polyphenol interactive affinity was positively correlated to surface hydrophobicity but negatively to size and aggregation extent of MGLP. Interfacial pressure and dilatational elastic modulus implied that synergistic polyphenol interaction and pH shifting favored the interfacial adsorption and macromolecular association of MGLP, particularly for P-quercetin with the values reached to 19.9 ± 2.0 mN/m and 22.9 ± 1.2 mN/m, respectively. Emulsion stabilized by P-quercetin also maintained highest physical and oxidative stabilities regarding the lowest D [4,3] (3.78 ± 0.27 μm) and creaming index (8.38 ± 0.43 %), together with highest mono- (19.51 %) and polyunsaturated fatty acid content (29.39 %) during storage. Overall, chemical structure of polyphenols may be determining in fabricating MGLP-polyphenol complexes with improved emulsion stabilization efficiency.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Feili Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
24
|
Cai Y, Huang L, Zhou F, Zhao Q, Zhao M, Van der Meeren P. Characteristics of insoluble soybean fiber (ISF) concentrated emulsions: Effects of pretreatment on ISF and freeze-thaw stability of emulsions. Food Chem 2023; 427:136738. [PMID: 37392634 DOI: 10.1016/j.foodchem.2023.136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
The properties of emulsions could be affected by the interactions between the components and network stabilization effect, which are commonly adjusted by changes in pH, ionic strength and temperature. In this work, insoluble soybean fiber (ISF) obtained via homogenization after alkaline treatment was pretreated firstly and then resultant emulsions were freeze-thawed. Heating pretreatment reduced droplet size, enhanced viscosity and viscoelasticity as well as subsequent stability of ISF concentrated emulsions, while both acidic pretreatment and salinized pretreatment decreased the viscosity and weakened the stability. Furthermore, ISF emulsions exhibited a good freeze-thaw performance which was further improved by secondary emulsification. Heating promoted the swelling of ISF and strengthened the gel-like structure of emulsions while salinization and acidization weakened the electrostatic interactions and caused the destabilization. These results indicated that pretreatment of ISF significantly influenced the concentrated emulsion properties, providing guidance for the fabrication of concentrated emulsions and related food with designed characteristics.
Collapse
Affiliation(s)
- Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Particle & Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Paul Van der Meeren
- Particle & Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Wei Z, Dong Y, Li X, Wang M, Zhang K. Design of Novel Knot-like Structures Based on Ovotransferrin Fibril-Gum Arabic Complexes: Effective Strategies to Stabilize Pickering Emulsions. Foods 2023; 12:3767. [PMID: 37893660 PMCID: PMC10606543 DOI: 10.3390/foods12203767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This work aimed to clarify the effects of gum arabic (GA) on the morphology and properties of ovotransferrin fibrils (OVTFs). By constructing OVTF-GA complexes and exploring the dispersion stability, turbidity and the ζ-potential of the complexes, the optimum mass ratio of OVTFs to GA and pH for complex formation were confirmed as being 1:1 and pH 4.6, respectively. The interaction between OVTFs and GA was determined to be predominantly driven by electrostatic attraction. The OVTF-GA complexes exhibited a knot-like structure when observed using atomic force microscopy. Then, OVTFs and OVTF-GA complexes were compared in terms of contact angle, surface hydrophobicity and dynamic interfacial tension. The combination of OVTFs and GA decreased the contact angle of OVTFs from 80.85° to 70.36°. In comparison with OVTFs, OVTF-GA complexes reduced the oil-water interfacial tension to a lower level (8.14 mN/m). Furthermore, the capacities of OVTF-GA complexes in stabilizing emulsions were explored. OVTF-GA complex-stabilized oleogel-based Pickering emulsion (OGPE) was constructed, and OVTF-stabilized oleogel-based Pickering emulsion (OPE) was used as the control. OGPE had a higher emulsified phase volume fraction (EPVF) and stability index (SI). The EPVF of OGPE was 100.0% and 99.4% before and after one-month storage, respectively, compared with 98.3% and 95.7% of OPE. This work can provide some useful references for the design of biopolymers with novel structures composed of protein fibrils and polysaccharides, which may also help to construct and apply protein fibril-polysaccharide complexes under specific needs.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | | | | | | | | |
Collapse
|
26
|
Cao Y, Zang Z, Zhang L, Han G, Yu Q, Han L. Hydroxypropyl methyl cellulose/soybean protein isolate nanoparticles incorporated broccoli leaf polyphenol to effectively improve the stability of Pickering emulsions. Int J Biol Macromol 2023; 250:126269. [PMID: 37567542 DOI: 10.1016/j.ijbiomac.2023.126269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
This study prepared SPI-Pol-HPMC (SPH) nanoparticles from soybean protein isolate (SPI), hydroxypropyl methyl cellulose (HPMC), and broccoli leaf polyphenol (Pol) and used them as a stabilizer for the Pickering emulsion. The SPH (2:1) nanoparticles have the best ability to encapsulate broccoli leaf polyphenols, with uniform particle size distribution, and a more dense and stable structure. The chemical and hydrogen bonding forces between the SPH nanoparticle components were enhanced. Additionally, the 1.5 % SPH nanoparticle-stabilized emulsions exhibited good physical stability, manifesting as small particle droplets with good rheological properties and uniform dispersion. The volume fraction of the emulsified phase of the 1.5 % SPH nanoparticle-stabilized emulsions was the greatest after 21 days of storage. Interestingly, SPH nanoparticles also improved the oxidative stability of the emulsions, as evidenced through their lower peroxide values and thiobarbituric acid active substances. The aforementioned results suggest that SPH nanoparticles may be used as food-grade emulsifiers that stabilize emulsions and inhibit their lipid oxidation.
Collapse
Affiliation(s)
- Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhixuan Zang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Guangxing Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China; Shandong Lvrun Food Co. Ltd, Linyi, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
27
|
Chen W, Pan H, Wang F, Sheng Y, Jiang F, Bi Y, Kong F. Pickering emulsions prepared using zein-sugarcane leaves polyphenol covalent crosslinking nanoparticles via ultrasonication: Capacities in storage stability, lipid oxidation, in vitro digestion and safety evaluation. ULTRASONICS SONOCHEMISTRY 2023; 99:106549. [PMID: 37574641 PMCID: PMC10448328 DOI: 10.1016/j.ultsonch.2023.106549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
This study firstly used sugarcane leaf polyphenols (SGLp) to modify zein to form covalent nanoparticles (SGLpZ) and used SGLpZ as an emulsifier to stabilize pickering emulsions (SZP) via ultrasonic method. The results showed that the addition of SGLp could alter the physicochemical properties of zein, including improving increasing the hydrophilicity of zein and the antioxidant properties of zein (three basic antioxidant activities test in vitro). SGLpZ could be able to form a dense film on the surface of the pickering emulsions which inhibited lipid oxidation as the concentration of SGLp increased at 4 ℃ for 20 days, thus stabilizing pickering emulsions (SZP). Further assessment of storage stability of pickering emulsions stabilized by SGLp was evaluated via measuring the free fatty acids (FFA) release in vitro gastrointestinal digestion. The results showed that the FFA release of SZP decreased from 20.61 ± 0.10% to 16.14 ± 0.69%. In addition, SGLp gave SZP a yellow color, which inspired that SZP could be used in the food industry to make yellow-colored functional foods. Finally, the safety of SZP initially assessed by in-vitro hemocompatibility and cytotoxicity (MTT) assays. In conclusion, our fingdings were beneficial for the further design and development of SGLp in food fields and enabled the development a new type in functional protein-plant polyphenols food pickering emulsions.
Collapse
Affiliation(s)
- Weiming Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haihui Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feilin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanhao Sheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fengyu Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Xi X, Wei Z, Xu Y, Xue C. Clove Essential Oil Pickering Emulsions Stabilized with Lactoferrin/Fucoidan Complexes: Stability and Rheological Properties. Polymers (Basel) 2023; 15:polym15081820. [PMID: 37111967 PMCID: PMC10143265 DOI: 10.3390/polym15081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Although studies have shown that lactoferrin (LF) and fucoidan (FD) can be used to stabilize Pickering emulsions, there have been no studies on the stabilization of Pickering emulsions via the use of LF-FD complexes. In this study, different LF-FD complexes were obtained by adjusting the pH and heating the LF and FD mixture while using different mass ratios, and the properties of the LF-FD complexes were investigated. The results showed that the optimal conditions for preparing the LF-FD complexes were a mass ratio of 1:1 (LF to FD) and a pH of 3.2. Under these conditions, the LF-FD complexes not only had a uniform particle size of 133.27 ± 1.45 nm but also had good thermal stability (the thermal denaturation temperature was 110.3 °C) and wettability (the air-water contact angle was 63.9 ± 1.90°). The concentration of the LF-FD complexes and the ratio of the oil phase influenced the stability and rheological properties of the Pickering emulsion such that both can be adjusted to prepare a Pickering emulsion with good performance. This indicates that LF-FD complexes represent promising applications for Pickering emulsions with adjustable properties.
Collapse
Affiliation(s)
- Xiaohong Xi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|