1
|
Yu Q, Huang X, Fan L. Advanced stability prediction and mechanism study of goji berry beverage via ultrasound-assisted homogenization utilizing genetic algorithm-based backpropagation neural networks. Food Chem 2025; 482:144186. [PMID: 40209388 DOI: 10.1016/j.foodchem.2025.144186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/23/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Traditional cloudy goji berry beverages (CGBs) preparation methods often cause irreversible phase separation during sterilization and require high homogenization pressures. However, combined ultrasound and homogenization (US-HPH) technology achieves stability of CGBs at lower pressures with the combination of 200 W ultrasonic power and 40 MPa homogenizing pressure. US-HPH significantly reduces average particle size by 67.91 % and increases absolute zeta potential by 5.73 % compared to optimal ultrasound conditions. And it reduces particle size by 43.78 % and increases zeta potential by 20.63 % compared to optimal homogenization. Simultaneously, a variety of active components in CGBs, including proteins, polyphenols, and carotenoids, were preserved. Additionally, to comprehensively reveal the effects of US-HPH on CGBs stability, a predictive model based on genetic algorithm (GA) and back-propagation (BP) neural network accurately characterizes were developed, and the results predicts particle size and zeta potential of CGBs, with high accuracy (RMSE = 0.026, MAE < 2).
Collapse
Affiliation(s)
- Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xunyang Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ren G, He Y, Liu L, Wu Y, Jiao Q, Liu J, Cai X, Zhu Y, Huang Y, Huang M, Xie H. Effects of collagen hydrolysate on the stability of anthocyanins: Degradation kinetics, conformational change and interactional characteristics. Food Chem 2025; 464:141513. [PMID: 39395336 DOI: 10.1016/j.foodchem.2024.141513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Anthocyanins are desirable compounds in the food industry owing to their attractive color and high biological activity; however, their poor stability remains a substantial challenge. Here, we show that low-concentration (15 mg/mL) collagen hydrolysate (CH) exhibits a potent stabilization effect on red cabbage anthocyanins (RCAs). CH extended the half-life of RCA by 6.2-fold from 40.7 to 251.1 h. Dynamic light scattering and transmission electron microscopy confirmed the formation of CH-RCA complexes, which exhibited stronger antioxidant activity than RCA alone. Ultraviolet-vis and infrared spectra demonstrated that RCA binding resulted in a more open and disordered CH structure. Centaureidin-3-O-glucoside (C3G) exhibited high affinity for CH, with a binding ratio close to 1.5:1. 1H nuclear magnetic resonance confirmed that the main interaction sites with CH were at the C3G A- and C-rings. This study clarifies how protein hydrolysates protect against anthocyanin degradation from experimental and theoretical aspects.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Lei Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yingjie Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Qingbo Jiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jiacheng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xinpei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
3
|
Showkat S, Rafiq A, Richa R, Sidique Q, Hussain A, Lohani UC, Bhat O, Kumar S. Stability enhancement of betalain pigment extracted from Celosia cristata L. flower through copigmentation and degradation kinetics during storage. Food Chem X 2025; 26:102312. [PMID: 40123868 PMCID: PMC11929098 DOI: 10.1016/j.fochx.2025.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Celosia cristata Linn., an underutilized flower, contains betalains. The stability of betalain pigments in complex food systems is a significant challenge. In this study, we investigated the potential of copigmentation using gum arabic (0.33 % to 1 %), pectin (0.33 % to 1 %), whey protein (0.33 % to 1 %), ascorbic acid (0.05 %), and calcium carbonate (0.01 %) on betalain content, color stability, and microbial counts in betalains pigments extracted from Celosia Cristata L. flowers during a 90-day of storage period. A total of seven copigmentation treatments (T1 to T7) and a control (T0) without copigmentation were applied to the betalain pigments. The degradation kinetics of betalain pigments at different temperatures were also investigated. The findings revealed that among all copigmentation treatments, T7 (0.33 % gum Arabic, 0.33 % pectin, 0.33 % whey protein, 0.05 % ascorbic acid, and 0.01 % Ca2+) exhibited the highest stability in terms of betalain content and color degradation.
Collapse
Affiliation(s)
- Shabnum Showkat
- Division of Food Science and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology, 190025 Shalimar, Srinagar, India
| | - Aasima Rafiq
- Krishi Vigyan Kendra Srinagar, Sher-e- Kashmir University of Agricultural Sciences and Technology, 190025 Shalimar, Srinagar, India
| | - Rishi Richa
- College of Agricultural Engineering and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology, 190025 Shalimar, Srinagar, India
| | - Qayoom Sidique
- Department of Post-harvest Process & Food Engineering, G.B.P.U.A. &T., Pantnagar, Udham Singh Nagar, 263145, Uttarakhand, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Umesh Chandra Lohani
- Advanced Post Harvest Technology Center, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College- ABT1K1L6, Alberta, Canada
| | - Oroofa Bhat
- Division of Food Science and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology, 190025 Shalimar, Srinagar, India
| | - Sanjay Kumar
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| |
Collapse
|
4
|
Zhang H, Ju M, Hamid N, Ma Q, Shang D, Jia C, Xiao Y, Jiang S, Qiu H, Luan W, Sun A. Exploring the effects of whey protein components on the interaction and stability of cyanidin-3-O-glucoside. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:294-304. [PMID: 39179519 DOI: 10.1002/jsfa.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Anthocyanins are susceptible to degradation due to external factors. Despite the potential for improved anthocyanin stability with whey protein isolate (WPI), the specific effects of individual components within WPI on the stability of anthocyanins have yet to be studied extensively. This study investigated the interaction of WPI, β-lactoglobulin (β-Lg), bovine serum albumin (BSA), and lactoferrin (LF) with cyanidin-3-O-glucoside (C3G), and also considered their effects on stability. RESULTS Fluorescence analysis revealed static quenching effects between C3G and WPI, β-Lg, BSA, and LF. The binding constants were 1.923 × 103 L · mol⁻¹ for WPI, 24.55 × 103 L · mol⁻¹ for β-Lg, 57.25 × 103 L · mol⁻¹ for BSA, and 1.280 × 103 L · mol⁻¹ for LF. Hydrogen bonds, van der Waals forces, and electrostatic attraction were the predominant forces in the interactions between C3G and WPI and between C3G and BSA. Hydrophobic interaction was the main binding force in the interaction between C3G and β-Lg and between C3G and LF. The binding of C3G with WPI, β-Lg, BSA, and LF was driven by different thermodynamic parameters. Enthalpy changes (∆H) were -38.76 kJ · mol⁻¹ for WPI, -17.59 kJ · mol⁻¹ for β-Lg, -16.09 kJ · mol⁻¹ for BSA, and 39.50 kJ · mol⁻¹ for LF. Entropy changes (∆S) were -67.21 J · mol⁻¹·K⁻¹ for WPI, 3.72 J · mol⁻¹·K⁻¹ for β-Lg, 37.09 J · mol⁻¹·K⁻¹ for BSA, and 192.04 J · mol⁻¹·K⁻¹ for LF. The addition of C3G influenced the secondary structure of the proteins. The decrease in the α-helix content suggested a disruption and loosening of the hydrogen bond network structure. The presence of proteins enhanced the light stability and thermal stability (stability in the presence of light and heat) of C3G. In vitro simulated digestion experiments demonstrated that the addition of proteins led to a delayed degradation of C3G and to improved antioxidant capacity. CONCLUSION The presence of WPI and its components enhanced the thermal stability, light stability, and oxidation stability of C3G. Preheated proteins exhibited a more pronounced effect than unheated proteins. These findings highlight the potential of preheating protein at appropriate temperatures to preserve C3G stability and bioactivity during food processing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Mengmeng Ju
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Qianli Ma
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Dansen Shang
- SINOPEC (Beijing) Research Institute of Chemical Industry, Beijing, China
| | - Chengli Jia
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yuhang Xiao
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Shijing Jiang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Haoqin Qiu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Wenli Luan
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Aidong Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Vicente FA, Tkalec N, Likozar B. Responsive deep eutectic solvents: mechanisms, applications and their role in sustainable chemistry. Chem Commun (Camb) 2025; 61:1002-1013. [PMID: 39661071 DOI: 10.1039/d4cc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In an era so focused on sustainability, it is important to improve chemical processes by developing and using more environmentally friendly solvents and technologies. Deep eutectic solvents (DES) have proven to be a promising replacement for conventional solvents. In recent years, a new type of DES has emerged that responds to various stimuli. These responsive DES (RDES) may offer all the advantages of DES while allowing the recycling and reuse of solvents. As such, RDES can further contribute to a greener future. This review provides an overview of the diverse types of RDES, their switching mechanisms and their application in several fields. Lastly, it offers a critical perspective on current shortcomings and prospects.
Collapse
Affiliation(s)
- Filipa A Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Nuša Tkalec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Çoklar H, Akbulut M, Aygun A, Akbulut MT. Valorization of Dairy By-Products, Sweet Whey, and Acid Whey, in the Production of Fermented Black Carrot Juice: A Comparative Study of the Phytochemical, Physicochemical, Microbiological, and Sensorial Aspects. Foods 2025; 14:218. [PMID: 39856885 PMCID: PMC11765452 DOI: 10.3390/foods14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The aims of this study were to improve the functional and nutritional properties of fermented black carrot juice by using sweet and acid whey in the production of fermented black carrot juice, to transform whey into a value-added product and to determine the effect of whey addition on the fermentation process. Whey was utilized as a water substitute in the formulation of the beverage prior to fermentation, and five distinct formulations were developed based on the type and proportion of whey (0% whey (control sample), 25% acid whey, 100% acid whey, 25% sweet whey, 100% sweet whey). Microbiological, sensorial, phytochemical, and physicochemical analyses were performed on samples taken during fermentation and on samples fermented and then resting. The addition of whey into the formulation resulted in an increase in acidity and turbidity of the beverage, with lower anthocyanin content observed in samples containing whey compared to the control throughout the fermentation process. The samples containing 100% whey exhibited lower a*, b*, h, and C* values and lower amounts of individual anthocyanins. The microbial load in these samples was high in the early stages of fermentation and reached a minimum towards the end of fermentation. The incorporation of whey led to an acceleration in the fermentation process, an enhancement in the microbiological characteristics of the beverage, and a substantial variation in phenolic compounds through the formation of a reversible protein complex. The resting process provided significant increases in color, anthocyanins, and gentisic and chlorogenic acids of whey-containing samples. The results showed that it is possible to produce whey-based functional fermented black carrot juice that is close to the control sample in terms of sensory and phytochemical properties and better than the control sample in terms of lactic acid bacteria count. It is recommended that both sweet and acid whey be utilized at a ratio of 25% in the production of fermented black carrot juice and to rest at 4 °C before consumption.
Collapse
Affiliation(s)
- Hacer Çoklar
- Department of Food Engineering, Agriculture Faculty, Selcuk University, Konya 42130, Türkiye;
| | - Mehmet Akbulut
- Department of Food Engineering, Agriculture Faculty, Selcuk University, Konya 42130, Türkiye;
| | - Ali Aygun
- Department of Animal Science, Agriculture Faculty, Selcuk University, Konya 42130, Türkiye;
| | - Muhammed Talha Akbulut
- Department of Food Engineering, Agriculture Faculty, Tekirdağ Namık Kemal University, Tekirdağ 59030, Türkiye;
| |
Collapse
|
7
|
Wang Y, Xiao Y, Zhang L, Zhang H, Li C. Study on stability of rose anthocyanin extracts and physicochemical properties of complex with whey protein isolate after spray drying. J Food Sci 2024; 89:7464-7476. [PMID: 39323284 DOI: 10.1111/1750-3841.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Pingyin rose is an edible flower rich in anthocyanins. In this study, antioxidant capacity and color were used as the main evaluation indexes to investigate the effects of common physical and chemical factors on the stability of rose anthocyanin extracts (RAEs). In addition, the physicochemical properties of the whey protein isolate (WPI)-RAEs complex after spray drying were studied. Vitamin C, temperature, and some metal ions can cause different degrees of discoloration of RAEs solution. More importantly, heat treatment, as well as most metal ions and sugars, had no significant effect on the antioxidant capacity of RAEs solution (p > 0.05). Moreover, compared to spray-dried pure WPI, the WPI-RAEs powder was delicate and uniform, and had higher particle size, bulk density, moisture activity, and better gel properties. The release rate of all WPI-RAEs sol/gel to RAEs reached about 89% in the intestinal digestion stage, but the WPI-RAEs interaction reduced the digestibility of protein in the intestinal digestion stage. We hope that this study can provide a theoretical basis for the development and utilization of WPI-RAEs as food ingredients.
Collapse
Affiliation(s)
- Yun Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Zhang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Cui H, Li X, Ji Y, Zhao S, Yang J. Effects of L-Proline on the Stability of Mulberry Anthocyanins and the Mechanism of Interaction between L-Proline and Cyanidin-3- O-Glycoside. Molecules 2024; 29:4544. [PMID: 39407474 PMCID: PMC11477991 DOI: 10.3390/molecules29194544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
The protective effects of L-aspartic acid, L-valine, and L-proline on the stability of mulberry anthocyanins were investigated. Results showed that L-aspartic acid, L-valine, and L-proline significantly enhanced (p < 0.05) the stability of mulberry anthocyanins under constant light or ascorbic acid (AA). L-Proline had the best protective effect against anthocyanin degradation. The interaction between L-proline and cyanidin-3-O-glucoside (C3G) through hydrogen bonding and van der Waals forces, which improved the stability of C3G, was confirmed using FT-IR, 1H NMR, XRD, and molecular docking analyses, as well as molecular dynamics modes. In vitro digestion experiments yielded that both 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging capacities of the C3G/Pro group were increased in the intestinal fluid (p < 0.05). The above findings suggest that L-proline effectively slowed down the degradation of mulberry anthocyanins, and that it could be used as an auxiliary pigment and food additive to extend the optimal flavor period of products containing mulberry anthocyanins, and can improve the bioavailability of mulberry anthocyanins.
Collapse
Affiliation(s)
- Haipeng Cui
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| | - Xianbao Li
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China;
| | - Yuan Ji
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| | - Shengxu Zhao
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| | - Jianting Yang
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| |
Collapse
|
9
|
Yang P, Wang W, Hu Y, Wang Y, Xu Z, Liao X. Exploring high hydrostatic pressure effects on anthocyanin binding to serum albumin and food-derived transferrins. Food Chem 2024; 452:139544. [PMID: 38723571 DOI: 10.1016/j.foodchem.2024.139544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 μM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.
Collapse
Affiliation(s)
- Peiqing Yang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenxin Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yongtao Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaojun Liao
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Wang D, Cui H, Zong K, Hu H, Li Y, Yang J. The effects of the interaction between cyanidin-3-O-glucoside (C3G) and walnut protein isolate (WPI) on the thermal and oxidative stability of C3G. Food Sci Nutr 2024; 12:6711-6719. [PMID: 39554342 PMCID: PMC11561789 DOI: 10.1002/fsn3.4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 11/19/2024] Open
Abstract
This study explores the interaction between cyanidin-3-O-glucoside (C3G), a water-soluble pigment known for its diverse functional activities, and walnut protein isolate (WPI) as a potential stabilizing agent. Given the inherent instability of C3G, particularly its limited application in the food industry due to sensitivity to thermal and oxidative conditions, this research study aims to enhance its stability. According to the results of the fluorescence quenching experiment, C3G can efficiently quench WPI's intrinsic fluorescence through static quenching. Structural exploration revealed that C3G bound WPI via hydrophobic interaction force, with the number of bound C3G molecules (n) almost equivalent to 1. The ΔG value denoting change in Gibbs free energy for C3G binding with WPI was -8.05 kJ/mol, which indicated that the interaction between C3G and WPI is spontaneous. Moreover, the conformational structures of WPI were altered by C3G binding with a decrease in α-helix contents and an increase in β-turn, β-sheet, and random coil contents. The thermal degradation kinetics indicate that after interacting with WPI, the half-life of C3G increased by 1.62 times and 1.05 times at 80 and 95°C, respectively. The results of the oxidation stability test showed that the presence of WPI effectively reduced the discoloration and degradation of C3G caused by oxidation, and improved the oxidation stability of C3G. This study's findings will help to clarify the interaction mechanism between C3G and WPI, and broaden C3G's application scope in the food processing field.
Collapse
Affiliation(s)
- Daquan Wang
- Anhui Science and Technology UniversityChuzhouChina
| | - Haipeng Cui
- Anhui Science and Technology UniversityChuzhouChina
| | - Kaili Zong
- Anhui Science and Technology UniversityChuzhouChina
| | - Hongchao Hu
- Anhui Science and Technology UniversityChuzhouChina
| | - Yali Li
- Anhui Science and Technology UniversityChuzhouChina
| | | |
Collapse
|
11
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
12
|
Miao Q, He Y, Sun H, Olajide TM, Yang M, Han B, Liao X, Huang J. Effects of preheat treatment and syringic acid modification on the structure, functional properties, and stability of black soybean protein isolate. J Food Sci 2024; 89:3577-3590. [PMID: 38720591 DOI: 10.1111/1750-3841.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024]
Abstract
This study investigated preheated (25-100°C) black soybean protein isolate (BSPI) conjugated with syringic acid (SA) (25 and 50 µmol/g protein) under alkaline conditions, focusing on the structure, functional properties, and storage stability. The results revealed that the SA binding equivalent and binding rate on BSPI increased continuously as the preheat temperature increased. Additionally, preheating positively impacted the surface hydrophobicity (H0) of BSPI, with further enhancement observed upon SA binding. Preheating and SA binding altered the secondary and tertiary structure of BSPI, resulting in protein unfolding and increased molecular flexibility. The improvement in BSPI functional properties was closely associated with both preheating temperature and SA binding. Specifically, preheating decreased the solubility of BSPI but enhanced the emulsifying activity index (EAI) and foaming capacity (FC) of BSPI. Conversely, SA binding increased the solubility of BSPI with an accompanying increase in EAI, FC, foaming stability, and antioxidant activity. Notably, the BSPI100-SA50 exhibited the most significant improvement in functional properties, particularly in solubility, emulsifying, and foaming attributes. Moreover, the BSPI-SA conjugates demonstrated good stability of SA during storage, which positively correlated with the preheating temperature. This study proposes a novel BSPI-SA conjugate with enhanced essential functional properties, underscoring the potential of preheated BSPI-SA conjugates to improve SA storage stability. PRACTICAL APPLICATION: Preheated BSPI-SA conjugates can be used as functional ingredients in food or health products. In addition, preheated BSPI shows potential as a candidate for encapsulating and delivering hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Qianqian Miao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Bingyao Han
- Residential College, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Qiu L, Zhang M, Ghazal AF, Chu Z, Luo Z. Development of 3D printed k-carrageenan-based gummy candies modified by fenugreek gum: Correlating 3D printing performance with sol-gel transition. Int J Biol Macromol 2024; 265:130865. [PMID: 38490387 DOI: 10.1016/j.ijbiomac.2024.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Temperature-responsive inks were formulated using k-carrageenan, fenugreek gum (FG), rose extracts, and sugar, of which the first two were used as the gelling agents. The interactions among components in these mixed ink formulations were investigated. Sol-gel transition and rheological properties of these inks were also correlated with extrusion, shape formation, and self (shape)-supporting aspects of 3D printing. Results indicated that incorporating FG increased inks' gelation temperature from 39.7 °C to 44.7-49.6 °C, affecting the selection of printing temperature (e.g., 0 % FG: 40 °C, 0.15 % FG: 45 °C, 0.3 % FG-0.6 % FG: 50 °C). Inks in solution states with lower viscosity (<5 Pa·s) were amenable to ensure their smooth extrusion through the tip of the printing nozzle. A shorter sol-gel transition time (approximately 100 s) during the shape formation stage facilitated the solidification of inks after extrusion. The addition of FG significantly (p<0.05) improved the mechanical properties (elastic modulus, hardness, etc.) of the printed models, which facilitated their self-supporting behavior. Low field nuclear magnetic resonance indicated that the inclusion of FG progressively restricted water mobility, consequently reducing the water syneresis rate of the mixed inks by 0.86 %-3.6 %. FG enhanced hydrogen bonding interactions among the components of these mixed inks, and helped to form a denser network.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhaoyang Chu
- Golden Monkey Food Co., 466300 Shenqiu County, Henan Province, China
| | - Zhenjiang Luo
- Haitong Foods Ninghai Co., Ltd., 315000 Ninghai, Zhejiang, China
| |
Collapse
|