1
|
Qiao J, Guo L, Yang J, Gao R, Ni Y, Huo J, Huang D, Sui X, Zhang Y. Unveiling the polyphenol profile and bioactive potential of kiwi berry (Actinidia arguta): Antioxidant capacity and enzyme inhibition activities. Food Chem 2025; 471:142839. [PMID: 39808985 DOI: 10.1016/j.foodchem.2025.142839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Kiwi berry (Actinidia arguta (Sieb & Zucc) Planch. ex Miq. cv 'Longcheng No.2') is rich in polyphenols and has gained popularity in recent years. However, there is a lack of information on the specific polyphenol composition and antioxidant and enzyme inhibition activities of kiwi berries. This study aimed to analyze the anthocyanin and non-anthocyanin polyphenol profiles of kiwi berry using HPLC-HR TOF MS2, compare their antioxidant capacity, and assess inhibition activity of digestive enzymes. Molecular docking was employed to investigate the interaction between cyanidin 3-O-sambubioside and digestive enzymes. The results revealed twenty non-anthocyanin polyphenols and ten anthocyanins, with seven anthocyanins and eight non-anthocyanins newly identified in kiwi berry. Kiwi berry exhibited potent antioxidant capacity and excellent α-glucosidase inhibition activity, suggesting its potential as a functional ingredient for managing early type-II diabetes through dietary interventions.
Collapse
Affiliation(s)
- Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingxu Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Runzhou Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yana Ni
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Xiaonan Sui
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Costa D, Rupasinghe HV. Development of a Scalable Extraction Process for Anthocyanins of Haskap Berry ( Lonicera caerulea). Molecules 2025; 30:1071. [PMID: 40076296 PMCID: PMC11902241 DOI: 10.3390/molecules30051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Haskap (Lonicera caerulea) berry is rich in anthocyanins, particularly cyanidin-3-O-glucoside (C3G). In this investigation, a response surface methodology was applied to optimize the anhydrous ethanol-based extraction parameters to obtain the maximum yield of anthocyanins from haskap berry and to compare the recovery of anthocyanins from different extraction methods. The central composite design was employed to study the effect of three independent variables (XA = ultrasonic bath power, XB = extraction temperature, and XC = extraction time) which were found to significantly affect the response variable total anthocyanin content (TAC) and fit to the second-order polynomial model. The optimum process parameters of XA = 536 W, XB = 62.3 °C, and XC = 63.5 min provided a predicted TAC of 16.5 mg C3G equivalence (C3GE)/g dry weight (DW), which was experimentally validated with 16.1 mg of C3GE/g DW. The optimized ultrasonication-assisted extraction process using anhydrous ethanol was also effective in recovering quercetin glycosides, catechin, procyanidin B2, and iridoids, as determined by ultra-pressure liquid chromatography-mass spectrometry. Though the anthocyanin recovery was the highest (17.6 mg of C3GE/g DW) when a deep eutectic solvent consisting of citric acid and D-(+)-maltose was used, this solvent system has limitations when preparing dehydrated extracts for industrial applications. This study concludes that the effective extraction of anthocyanins and other phytochemicals from haskap berries can be performed using food-grade anhydrous ethanol.
Collapse
Affiliation(s)
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
3
|
Banaś J, Michalczyk M, Banaś M. Application of Spectrofluorimetry to Evaluate Quality Changes in Stored Blue Honeysuckle Berry ( Lonicera kamtschatica) Preserves. Molecules 2025; 30:1012. [PMID: 40076237 PMCID: PMC11901830 DOI: 10.3390/molecules30051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this study was to use a rapid and non-invasive spectrofluorimetric method to evaluate the qualitative changes occurring in stored Kamchatka berry preserves. Honeysuckle berries were preserved by freezing (-24 °C) and pasteurisation with and without sugar addition. Pasteurised samples were stored at 6 ± 1 °C and 22 ± 1 °C for 9 months. During storage, spectrofluorimetric spectra in the bioactive compounds' fluorescence range were registered. The obtained synchronous spectra were used in a statistical analysis involving principal component analysis (PCA) and linear discriminant analysis (LDA). The analysis of both types of registered spectra indicated that sugar addition could stabilise some phenolic compounds, like gallic acid, p-coumaric acid, and phloridzin. Moreover, some differences in the degradation rate of each analysed compound were observed depending on the preservation method used. Besides the phenolic compounds, other fluorescent compounds like B-vitamins and chlorophyll forms were also observed. Pasteurisation caused the distinct degradation of protochlorophyll forms, whereas practically no changes in the amounts of vitamins B3 and B9 were observed. Based on the results of statistical analyses of PCA and LDA, the effect on the products' composition was moderate for the storage time and relatively low in the case of the storage temperature. The obtained results indicated that spectrofluorimetry would be a useful method for the detailed characterisation of fruit products.
Collapse
Affiliation(s)
- Joanna Banaś
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| | - Magdalena Michalczyk
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| | - Marian Banaś
- Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Kraków, A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
4
|
Peng Z, Chen H, Niu B, Wu W, Chen H, Farag MA, Ding Y, Liu R, Gao H. Composition and micromorphological determination of blue honeysuckle fruit (Lonicera caerulea L.) cuticular wax and its effects on fruit post-harvest quality. Food Chem 2025; 463:141330. [PMID: 39332358 DOI: 10.1016/j.foodchem.2024.141330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
The chemical composition and structure of the cuticular wax in blue honeysuckle fruit were investigated using gas chromatography-mass spectrometry (GC-MS) and scanning electron microscopy (SEM). The results revealed that the cuticular wax was dense and uniform, taking on a tubular form. A total of 158 wax components were identified, including alkanes, terpenes, ketones, alcohols, fatty acids, and esters. The wax was found to be particularly rich in alkanes. After storage, the wax content decreased, whereas an increase in 1-undecanol. The destruction or reduction of cuticular wax resulted in a more rapid decline in storage quality, loss of nutrients, and a decrease in antioxidant phytochemicals. Meanwhile, wax metabolizing enzyme activity and gene expression increased. This study presents a deeper understanding of blue honeysuckle fruit cuticular wax composition and aids to developing effective measures to delay its postharvest fruit quality deterioration.
Collapse
Affiliation(s)
- Ze Peng
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St, Cairo P.O. 11562, Egypt
| | - Yifan Ding
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Fu C, Bian C, Chen J, Zhang Q, Qin D, Li J, Zhang P, Huo J, Gang H. LcMYB5, an R2R3-MYB family gene from Lonicera caerulea L., enhances drought and salt tolerance in transgenic tobacco and blue honeysuckle. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154409. [PMID: 39708440 DOI: 10.1016/j.jplph.2024.154409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene LcMYB5 from blue honeysuckle (Lonicera caerulea L.) was successfully cloned and identified, and confirmed its nuclear localization. LcMYB5 overexpression was vastly enhanced drought and salt tolerance in both blue honeysuckle and tobacco seedlings. After drought stress, transgenic tobacco exhibited an average survival rate of 70.30%, while most wild-type (WT) plants perished, resulting in a survival rate of only 15.33%. Following salt stress, the average survival rate for transgenic tobacco reached 77.24%, compared to just 22.47% for WT plants. Measurements indicated, that transgenic tobacco had higher proline content than WT, as well as higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity. Transgenic tobacco decreased chlorophyll content less dramatically than WT tobacco, despite both tobaccos having decreased chlorophyll content. Furthermore, the level of malondialdehyde (MDA) and relative conductivity were lower in transgenic tobacco compared to WT. Furthermore, LcMYB5 overexpression significantly increased the expression levels of key genes related to drought stress (NCED1, NCED2, PYL4, PYL8, and CBL1) and salt stress (NHX1, SOD, CAT1, SOS1, and HSP17.8), thus improving transgenic tobacco's stress tolerance. Compared to WT blue honeysuckle, transiently transformed LcMYB5-expressing blue honeysuckle exhibited milder damage under stress conditions, a significant increase in chlorophyll and proline content was observed, the activities of SOD, POD and CAT were also significantly increased, the increase in MDA content and relative conductivity is relatively small. Additionally, In addition, transient expression of LcMYB5 can also positively regulate the expression of these five key genes of drought stress and five key genes of salt stress, so as to improve the resistance of transgenic blue honeysuckle to drought and salt stress. In summary, our study reveals the important regulatory role of LcMYB5 in plant resistance to drought and salt stress, providing theoretical support and potential application value for further improving crop stress resistance.
Collapse
Affiliation(s)
- Chunlin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyang Bian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Qian Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, 300384, China
| | - Peng Zhang
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, 300384, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Wu W, Ma X, Wang Y, Yu Y, Huo J, Huang D, Sui X, Zhang Y. Amplifying Bioactivity of blue honeysuckle (Lonicera caerulea L.) fruit puree through Ultrasonication: Antioxidant and antiproliferative activity. ULTRASONICS SONOCHEMISTRY 2025; 112:107179. [PMID: 39626565 PMCID: PMC11647649 DOI: 10.1016/j.ultsonch.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Blue honeysuckle (Lonicera caerulea L.) serves as a significant reservoir of polyphenol compounds. This impact of ultrasonication processing on the bioaccessibility of blue honeysuckle fruit puree during in vitro digestion was evaluated. The polyphenol compounds, antioxidant capacity and antiproliferative activity were measured, with a particular focus on determining the total proanthocyanidin content of the puree during digestion. The results revealed that the U300 W treatment significantly increased antioxidant content and enhanced the stability of antioxidant capacity, leading to stronger antiproliferative activity. A total of 33 compounds, including 14 phenolic acids, 5 flavanols, 1 flavanol-3-ol, 1 flavanone alcohol, 3 flavanones, 1 flavanone, and 8 non- polyphenols were found in both untreated and ultrasonicated puree during in vitro digestion. The untreated puree contained 22 compounds, while the ultrasonicated puree contained 33. Compared to untreated samples, ultrasonicated samples contained significantly higher levels of loganic acid, dihydrokaempferol, kaempferol derivatives, and plantagoside. Except for vanillic acid, citric acid, protocatechuic acid, and luteolin-4'-O-glucoside, the polyphenols showed a decreasing trend during oral-gastric-small intestinal-colon digestion. The U500 W ultrasonicated fruit puree exhibited the strongest antiproliferative activity. Overall, the results demonstrated that ultrasonication has the potential to enhance the bioaccessibility of antioxidant compounds and the antiproliferative activity of blue honeysuckle fruit puree.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiumei Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingqi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yating Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Xiaonan Sui
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Geng Y, Cui K, Ding N, Liu H, Huo J, Sui X, Zhang Y. Polyphenol co-pigments enhanced the antioxidant capacity and color stability of blue honeysuckle juice during storage. Food Chem X 2024; 24:101848. [PMID: 39498247 PMCID: PMC11533655 DOI: 10.1016/j.fochx.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
The study aimed to assess the impact of incorporating five co-pigments (gallic acid, quercetin, rutin, catechin, and epigallocatechin gallate (EGCG)) on the color stability of blue honeysuckle juice (BHJ). Additionally, it sought to determine the influence of varying proportions of anthocyanins in an accelerated test (light at 40 °C for 24 d). Results indicated that the addition of polyphenol co-pigments effectively mitigated the thermal degradation of anthocyanins, enhancing color saturation and antioxidant capacity of BHJ. Notably, quercetin, rutin, catechin, and EGCG exhibited superior efficacy compared to gallic acid. FTIR analysis revealed non-covalent complex formation between co-pigments and anthocyanins, including hydrogen bonds and van der Waals forces, thereby shielding them from degradation. HPLC-ESI-QTOF-MS2 identified 15 anthocyanins and 39 non-anthocyanin polyphenols. Addition of co-pigments effectively curbed anthocyanin degradation, thus stabilizing juice system. Consequently, judicious incorporation of co-pigments holds promise as a technology for enhancing the color quality and stability of BHJ during processing.
Collapse
Affiliation(s)
- Yifan Geng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kaojia Cui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Na Ding
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Houping Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
An FK, Li MY, Luo HL, Liu XL, Fu Z, Ren MH. Structural properties and antioxidant capacity of different aminated starch-phenolic acid conjugates. Food Chem 2024; 460:140592. [PMID: 39067431 DOI: 10.1016/j.foodchem.2024.140592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Different aminated starch (AS) [EEAS (introducing ethylenediamine into starch using cross-linking-etherification-amination method (CEA)), EPAS (introducing o-phenylenediamine using CEA), OEAS (introducing ethylenediamine using cross-linking-oxidation-amination method (COA)), and OPAS (introducing o-phenylenediamine using COA)] were synthesized. The AS-phenolic acids [gallic acid (GA), syringic acid (SA), and vanillic acid (VA)] conjugates were prepared by laccase-catalyzed reaction. The grafting efficiency of EEAS on GA, SA, and VA was 36.59%, 69.71%, and 68.85%, respectively. SA reduced the maximum depolymerization rate of EEAS. The relative crystallinity of EEAS and EPAS grafted phenolic acid increased, and their particles showed severe breakage in appearance. OEAS-phenolic acid conjugates lost its granular structure and behaved as flakes and lumps, while the surface of OPAS-phenolic acid conjugates remained smooth after grafting phenolic acid. GA increased the DPPH· scavenging efficiency of EEAS from 16.12% to 79.92%. The increased antioxidant capacity of the conjugates suggested that AS-phenolic acids conjugates have high potential for applications.
Collapse
Affiliation(s)
- Feng-Kun An
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Meng-Yun Li
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Hai-Lu Luo
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Xing-Long Liu
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China.
| | - Min-Hong Ren
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, China
| |
Collapse
|
9
|
Li Y, Sun Y, Shi P, Liu C, Guo J, Liu S. Effects of dynamic high-pressure microfluidization treatment on the structural, physicochemical, and digestive properties of wheat starch-Lonicera caerulea berry polyphenol complex. Int J Biol Macromol 2024; 281:136150. [PMID: 39369493 DOI: 10.1016/j.ijbiomac.2024.136150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Polyphenol complexes can improve the physicochemical and functional properties of starch. In this study, a wheat starch-Lonicera caerulea berry polyphenol complex (WS-LCBP) was prepared using dynamic high-pressure microfluidization (DHPM). The effects of different DHPM pressures (150 and 250 MPa), number of cycles (1 and 3), and LCBP content (0 %, 6 %, 8 %, and 10 %) on the multiscale structure, physicochemical properties, and in vitro digestibility of WS-LCBP were examined. After a single 250 MPa DHPM cycle, Average particle size and water separation rate of WS were reduced by 42.40 % and 16.67 %, the freeze-thaw stability was significantly improved (P < 0.05), and the resistant starch (RS) content 68.67 % was significantly increased (P < 0.05). WS-LCBP has a V-shaped starch structure, which hinders gelatinization and increases enthalpy. The RS content of the WS-LCBP ranged from 72.46 % to 89.09 %, which was significantly higher (P < 0.05) than that of wheat starch subjected to a single 150 MPa DHPM cycle (36.31 %). Three 250 MPa DHPM cycles were beneficial for the formation of WS-LCBP. However, excessive DHPM treatment pressure and frequency reduced the recombination rate of LCBP and wheat starch. This study provides reference data for the industrial production of nutritionally functional wheat-resistant starch using green technologies.
Collapse
Affiliation(s)
- Yue Li
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Yifan Sun
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Pengbao Shi
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China
| | - Chang Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Jing Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Cao J, Zhang J, Cao R, Zhang B, Miao M, Liu X, Sun L. Enzymolysis Modes Trigger Diversity in Inhibitor-α-Amylase Aggregating Behaviors and Activity Inhibition: A New Insight Into Enzyme Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404127. [PMID: 39234852 PMCID: PMC11538681 DOI: 10.1002/advs.202404127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Indexed: 09/06/2024]
Abstract
Inhibitors of α-amylase have been developed to regulate postprandial blood glucose fluctuation. The enzyme inhibition arises from direct or indirect inhibitor-enzyme interactions, depending on inhibitor structures. However, an ignored factor, substrate, may also influence or even decide the enzyme inhibition. In this work, it is innovatively found that the difference in substrate enzymolysis modes, i.e., structural composition and concentration of α-1,4-glucosidic bonds, triggers the diversity in inhibitor-enzyme aggregating behaviors and α-amylase inhibition. For competitive inhibition, there exists an equilibrium between α-amylase-substrate catalytic affinity and inhibitor-α-amylase binding affinity; therefore, a higher enzymolysis affinity and concentration of α-1,4-glucosidic structures interferes the balance, unfavoring inhibitor-enzyme aggregate formation and thus weakening α-amylase inhibition. For uncompetitive inhibition, the presence of macromolecular starch is necessary instead of micromolecular GalG2CNP, which not only binds with active site but with an assistant flexible loop (involving Gly304-Gly309) near the site. Hence, the refined enzyme structure due to the molecular flexibility more likely favors the inhibitor binding with the non-active loop, forming an inhibitor-enzyme-starch ternary aggregate. Conclusively, this study provides a novel insight into the evaluation of α-amylase inhibition regarding the participating role of substrate in inhibitor-enzyme aggregating interactions, emphasizing the selection of appropriate substrates in the development and screening of α-amylase inhibitors.
Collapse
Affiliation(s)
- Junwei Cao
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jifan Zhang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ruibo Cao
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Bin Zhang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Ming Miao
- State Key Laboratory of Food Science and ResourcesJiangnan University1800 Lihu AvenueWuxiJiangsu214122China
| | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Lijun Sun
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
11
|
Liang S, Yu S, Qin Y, Yu H, Zhao Z, Xu Y, Zhang G, Li C, Liu L, Du P, Huo J. Blue honeysuckle fermentation with Lacticaseibacillus rhamnosus L08 improves its biological activity, sensory and flavor characteristics, and storage stability. Food Chem X 2024; 23:101659. [PMID: 39157659 PMCID: PMC11328023 DOI: 10.1016/j.fochx.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
The objective of this study was to investigate the potential of Lacticaseibacillus rhamnosus L08 (L. rhamnosus L08) to enhance the functionality, improve the taste, and explore efficient storage methods of blue honeysuckle juice (BHJ). The fermentation process resulted in an increase in the levels of polyphenols, flavonoids, and anthocyanins in blue honeysuckle juice, which was attributed to the action of β-glucosidase on specific phenolic compounds, namely Cyanidin-3-Glucoside and Quinic acid. The increase in phenolic content resulted in an enhancement of the antioxidant capacity of BHJ. The fermentation processed, utilizing L. rhamnosus L08, not only enhanced the flavor and taste of BHJ, but also mitigated its bitter aftertaste while minimizing the loss of bioactive components during storage. In conclusion, this study demonstrated a potential avenue for enhancing the commercial value and dietary significance of this lesser-known superfruit, with fermented BHJ emerging as a promising innovation in the field of functional foods.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Siyang Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yishu Qin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Honglin Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zifu Zhao
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Yunhui Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Xie B, Wang M, Yang D. Identification of anthocyanins in deep colored berries and grains in China. Food Chem X 2024; 23:101602. [PMID: 39071921 PMCID: PMC11283079 DOI: 10.1016/j.fochx.2024.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Identification of anthocyanin relies heavily on authentic anthocyanin standards and the detection instruments employed, and both of these made tremendous improvement in the past decades. Here, with 118 authentic anthocyanin standards and state-of-the-art detection method, we comprehensively analyze the anthocyanin composition of the most commonly seen, deep-colored berries and grains in China. Cyanidin-3-O-glucoside is the overwhelmingly major anthocyanin in all the berries and grains examined, including blue honeysuckle, blueberry, cranberry, elderberry, mulberry, black rice, and black soybean, which accounts for an average of 82% of the total anthocyanins with a little variation between them. Peonidin-3-O-glucoside is the second most abundant anthocyanin ranging from 2.6%-14.9% of the total anthocyanins. Pelargonidin-3,5-O-diglucoside is only found in blue honeysuckle, and besides that, berries and grains share a dominant portion of common anthocyanins among them. This study primes the survey of anthocyanin in common Chinese foods for the establishment of a nutrition database.
Collapse
Affiliation(s)
- Boyu Xie
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaoshu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dong Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Guo L, Qiao J, Mikhailovich MS, Wang L, Chen Y, Ji X, She H, Zhang L, Zhang Y, Huo J. Comprehensive structural analysis of anthocyanins in blue honeysuckle ( Lonicera caerulea L.), bilberry ( Vaccinium uliginosum L.), cranberry ( Vaccinium macrocarpon Ait.), and antioxidant capacity comparison. Food Chem X 2024; 23:101734. [PMID: 39246693 PMCID: PMC11377142 DOI: 10.1016/j.fochx.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
The objectives of this research were to analyze anthocyanins in blue honeysuckle (Lonicera caerulea L.), bilberry (Vaccinium vitis-idaea L), and cranberry (Vaccinium macrocarpon Ait.), using HPLC-ESI-QTOF-MS2, Fourteen, fifteen, and eight anthocyanins were identified in blue honeysuckle, bilberry, and cranberry, respectively. Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside were detected in all three types of berries, with blue honeysuckle showing the highest C3G content at 5686.28 mg/100 g DW. Total phenolic content (TPC) and total flavonoid content (TFC), along with ABTS, DPPH, and FRAP assays, were measured. Blue honeysuckle exhibited the highest levels of TPC and TFC. The SOD, POD, and CAT activities in blue honeysuckle were 1761.17 U/g, 45,525.65 U/g, and 1043.24 U/g, respectively, which were significantly superior to those in bilberry and cranberry. The antioxidant mechanisms of these enzymes were investigated by molecular docking, C3G showed a higher affinity for POD, confirming the effectiveness of C3G as an antioxidant.
Collapse
Affiliation(s)
- Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | | | - Limei Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuxi Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xuefei Ji
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Haihui She
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Zhang
- Heilongjiang Green Food Science Research Institute, 150023, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
- Heilongjiang Green Food Science Research Institute, 150023, China
| |
Collapse
|
14
|
Łata B, Latocha P, Łaźny R, Gutfeld A. Comparison in Antioxidant Potential and Concentrations of Selected Bioactive Ingredients in Fruits of Lesser-Known Species. Foods 2024; 13:2926. [PMID: 39335855 PMCID: PMC11431385 DOI: 10.3390/foods13182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Fruits with a high content of biologically active compounds are essential in preventing many diseases. Therefore, the interest in searching for and testing new plant sources for bioactive constituents remains strong. Although many publications on individual species exist, their results are difficult to compare directly due to varying methods and conditions of analysis. Only a few studies have investigated many different species in a single analysis. Therefore, we examined and compared 21 different genotypes, using various measurement methods for total phenolic content (TPC) (Folin-Ciocalteu, FBBB), total antioxidant capacity (ABTS, FRAP, DPPH), and the HPLC technique for the total ascorbate concentration in freshly harvested fruits. One-way ANOVA, Principal Component Analysis, and Pearson Correlation were used to analyse and compare the results. The tested samples showed significant differences in TPC, ascorbate content, and antioxidant capacity. The correlation between the content of bioactive compounds and antioxidant capacity depended on the analytical methods, with results obtained using the FRAP test being the most strongly correlated. Due to higher levels of polyphenols, ascorbate, and antioxidant potential, the most promising species for further evaluation appear to be Chaenomeles × californica, Actinidia kolomikta, Mespilus germanica, and ×Sorboaronia fallax.
Collapse
Affiliation(s)
- Barbara Łata
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Piotr Latocha
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Radosław Łaźny
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Gutfeld
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
15
|
Bora L, Lombrea A, Batrina SL, Buda VO, Esanu OM, Pasca O, Dehelean CA, Dinu S, Diaconeasa Z, Danciu C. A Systematic Review of Cardio-Metabolic Properties of Lonicera caerulea L. Antioxidants (Basel) 2024; 13:694. [PMID: 38929133 PMCID: PMC11201247 DOI: 10.3390/antiox13060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the light of growing concerns faced by Western societies due to aging, natality decline, and epidemic of cardio-metabolic diseases, both preventable and treatable, new and effective strategical interventions are urgently needed in order to decrease their socio-economical encumbrance. The recent focus of research has been redirected towards investigating the potential of haskap (Lonicera caerulea L.) as a novel functional food or superfruit. Therefore, our present review aims to highlight the latest scientific proofs regarding the potential of Lonicera caerulea L. (LC), a perennial fruit-bearing plant rich in polyphenols, in reversing cardio-metabolic dysfunctions. In this regard, a systematic search on two databases (PubMed and Google Scholar) from 1 January 2016 to 1 December 2023 was performed, the keyword combination being Lonicera caerulea L. AND the searched pharmacological action, with the inclusion criteria consisting of in extenso original articles, written in English. The health-enhancing characteristics of haskap berries have been examined through in vitro and in vivo studies from the 35 included original papers. Positive effects regarding cardiovascular diseases and metabolic syndrome have been assigned to the antioxidant activity, hypolipidemic and hypoglycemic effects, as well as to the hepatoprotective and vasoprotective potential. Latest advances regarding LCF mechanisms of action are detailed within this review as well. All these cutting-edge data suggest that this vegetal product would be a good candidate for further clinical studies.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Stefan Laurentiu Batrina
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Valentina Oana Buda
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Discipline of Clinical Pharmacy, Communication in Pharmacy, Pharmaceutical Care, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Oana-Maria Esanu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (O.-M.E.); (O.P.)
| | - Oana Pasca
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (O.-M.E.); (O.P.)
| | - Cristina Adriana Dehelean
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
16
|
Keivani N, Piccolo V, Marzocchi A, Maisto M, Tenore GC, Summa V. Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest. Antioxidants (Basel) 2024; 13:586. [PMID: 38790691 PMCID: PMC11117784 DOI: 10.3390/antiox13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Several medicinal herbal plants are extensively used as sources of bioactive compounds with beneficial effects on human health. This study assessed the procyanidin and polyphenol profiles together with the antioxidant potential of seven herbal medical matrices. To achieve this aim, procyanidin extraction from grape pomace was optimized and validated by monitoring monomeric-trimeric procyanidins. The proposed quantification method was applied to the seven medical herbs, and it proved to be a very efficient protocol for procyanidin-rich extracts analysis. In addition, the Paullinia cupana Kunth. seed was identified as a very rich source of procyanidins (about 5 mg/g dry matrix of each dimeric and about 3 mg/g dry matrix trimeric) with high antioxidant properties. The polyphenolic profile was assessed by HPLC-HESI-MS/MS analysis. The in vitro antioxidant activity was evaluated by DPPH assay to explore the antioxidant properties of the extracts, which were substantially higher in Peumus boldus Molina leaves extracts (935.23 ± 169 μmol of Trolox equivalent/g of dry weight) concerning the other matrices. Moreover, a high Pearson coefficient value was observed between the total flavonoid content (TFC) and DPPH in comparison with the total polyphenol content (TPC) and DPPH, indicating flavonoids as the principal bioactive with antioxidant activity in the extracts.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenzo Summa
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (N.K.); (V.P.); (A.M.); (M.M.); (G.C.T.)
| |
Collapse
|
17
|
Liu S, Meng F, Guo S, Yuan M, Wang H, Chang X. Inhibition of α-amylase digestion by a Lonicera caerulea berry polyphenol starch complex revealed via multi-spectroscopic and molecular dynamics analyses. Int J Biol Macromol 2024; 260:129573. [PMID: 38266829 DOI: 10.1016/j.ijbiomac.2024.129573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Polyphenol-starch complexes exhibit synergistic and beneficial effects on both polyphenols and resistant starches. This study evaluates the inhibitory effects and mechanisms of α-amylase on a Lonicera caerulea berry polyphenol-wheat starch (LPWS) complex following high hydrostatic pressure treatments of 400 MPa for 30 min and 600 MPa for 30 min. The IC50 values for α-amylase inhibition by the complex were 3.61 ± 0.10 mg/mL and 3.42 ± 0.08 mg/mL at a 10 % (w/w) polyphenol content. This interaction was further supported by Fourier-transform infrared spectroscopy and circular dichroism, which confirmed that the alpha helix component of the secondary structure of α-amylase was reduced due to the complex. Multifluorescence spectroscopy revealed that the complex induces changes in the microenvironment of fluorophores surrounding the α-amylase active site. Molecular dynamics simulations and molecular docking revealed that the active site of amylose within the complex becomes enveloped in polyphenol clusters. This wrapping effect reduced the hydrogen bonds between amylose and α-amylase, decreasing from 16 groups to just one group. In summary, the LPWS complex represents a low-digestible carbohydrate food source, thus laying the groundwork for the research and development of functional foods aimed at postprandial hypoglycemic effects.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China.
| | - Fanna Meng
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Meng Yuan
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China
| |
Collapse
|
18
|
Qiao J, Li D, Guo L, Hong X, He S, Huo J, Sui X, Zhang Y. Enhancing Postharvest Quality and Antioxidant Capacity of Blue Honeysuckle cv. 'Lanjingling' with Chitosan and Aloe vera Gel Edible Coatings during Storage. Foods 2024; 13:630. [PMID: 38397607 PMCID: PMC10888047 DOI: 10.3390/foods13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the impact of chitosan (CH, 1%) and aloe vera gel (AL, 30%) edible coatings on the preservation of blue honeysuckle quality during a 28-day storage at -1 °C. Coating with CH, AL, and CH+AL led to notable enhancements in several key attributes. These included increased firmness, total soluble solids, acidity, pH, and antioxidant capacity (measured through DPPH, ABTS, and FRAP assays), as well as the preservation of primary (ascorbic acid) and secondary metabolites (TPC, TAC, and TFC). The TAC and TFC levels were approximately increased by 280% and 17%, respectively, in coated blue honeysuckle after 28 d compared to uncoated blue honeysuckle. These coatings also resulted in reduced weight loss, respiration rate, color, abscisic acid, ethylene production, and malondialdehyde content. Notably, the CH+AL treatment excelled in preserving secondary metabolites and elevating FRAP-reducing power, demonstrating a remarkable 1.43-fold increase compared to the control after 28 days. Overall, CH+AL exhibited superior effects compared to CH or AL treatment alone, offering a promising strategy for extending the shelf life and preserving the quality of blue honeysuckle during storage.
Collapse
Affiliation(s)
- Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dalong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqi Hong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuman He
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Chen M, Chen X, Guo Y, Liu N, Wang K, Gong P, Zhao Y, Cai L. Effect of in vitro digestion and fermentation of kiwifruit pomace polysaccharides on structural characteristics and human gut microbiota. Int J Biol Macromol 2023; 253:127141. [PMID: 37776924 DOI: 10.1016/j.ijbiomac.2023.127141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Kiwifruit pomace is abundant in polysaccharides that exhibit diverse biological activities and prebiotic potential. This study delves into the digestive behavior and fermentation characteristics of kiwifruit pomace polysaccharides (KFP) through an in vitro simulated saliva-gastrointestinal digestion and fecal fermentation. The results reveal that following simulated digestion of KFP, its molecular weight reduced by 4.7%, and the reducing sugar (CR) increased by 9.5%. However, the monosaccharide composition and Fourier transform infrared spectroscopy characteristics showed no significant changes, suggesting that KFP remained undigested. Furthermore, even after saliva-gastrointestinal digestion, KFP retained in vitro hypolipidemic and hypoglycemic activities. Subsequently, fecal fermentation significantly altered the physicochemical properties of indigestible KFP (KFPI), particularly leading to an 89.71% reduction in CR. This indicates that gut microbiota could decompose KFPI and metabolize it into SCFAs. Moreover, after 48 h of KFPI fecal fermentation, it was observed that KFPI contributed to maintaining the balance of gut microbiota by promoting the proliferation of beneficial bacteria like Bacteroides, Lactobacillus, and Bifidobacterium, while inhibiting the unfavorable bacteria like Bilophila. In summary, this study offers a comprehensive exploration of in vitro digestion and fecal fermentation characteristics of KFP, providing valuable insights for potential development of KFP as a prebiotic for promoting intestinal health.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714000, China
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| |
Collapse
|
20
|
Xiao Z, Li D, Huang D, Huo J, Wu H, Sui X, Zhang Y. Non-extractable polyphenols from blue honeysuckle fruit pomace with strong antioxidant capacity: Extraction, characterization, and their antioxidant capacity. Food Res Int 2023; 174:113495. [PMID: 37986497 DOI: 10.1016/j.foodres.2023.113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
The aim of this study was to investigate a more practical method for obtaining non-extractable polyphenols (NEPPs) from blue honeysuckle fruit pomace. Three methods, namely acid, alkaline, and enzymatic hydrolysis, were utilized to extract NEPPs. The findings indicated that alkaline hydrolysis was the most effective method for releasing NEPPs, which demonstrated higher levels of total flavonoid content (TFC) and total phenolic content (TPC) from blue honeysuckle fruit pomace. Additionally, higher TPC and TFC levels were related to a stronger antioxidant capacity. Qualitative and quantitative analysis using HPLC-HR-TOF-MS/MS revealed that acid hydrolysis resulted in a greater concentration of certain phenolic acids, while alkaline hydrolysis yielded a higher concentration of flavonoids, and enzymatic hydrolysis produced a wider range of phenolic compositions. Despite the fact that enzymatic hydrolysis is considered a gentler method, the researchers concluded that alkaline hydrolysis was the most appropriate method for obtaining NEPPs from blue honeysuckle fruit pomace.
Collapse
Affiliation(s)
- Zhen Xiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dalong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaonan Sui
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Csuti A, Zheng B, Zhou H. Post pH-driven encapsulation of polyphenols in next-generation foods: principles, formation and applications. Crit Rev Food Sci Nutr 2023; 64:12892-12906. [PMID: 37722872 DOI: 10.1080/10408398.2023.2258214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To meet the needs of a growing global population (∼10 billion by 2050), there is an urgent demand for sustainable, healthy, delicious, and affordable next-generation foods. Natural polyphenols, which are abundant in edible plants, have emerged as promising food additives due to their potential health benefits. However, incorporating polyphenols into food products presents various challenges, including issues related to crystallization, low water-solubility, limited bioavailability, and chemical instability. pH-driven or pH-shifting approaches have been proposed to incorporate polyphenols into the delivery systems. Nevertheless, it is unclear whether they can be generally used for the encapsulation of polyphenols into next-generation foods. Here, we highlight a post pH-driven (PPD) approach as a viable solution. The PPD approach inherits several advantages, such as simplicity, speed, and environmental friendliness, as it eliminates the need for heat, organic solvents, and complex equipment. Moreover, the PPD approach can be widely applied to different polyphenols and food systems, enhancing its versatility while also potentially contributing to reducing food waste. This review article aims to accelerate the implementation of the PPD approach in the development of polyphenol-fortified next-generation foods by providing a comprehensive understanding of its fundamental principles, encapsulation techniques, and potential applications in plant-based foods.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Bingjing Zheng
- Research and Development, GNT Group, Dallas, North Carolina, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|