1
|
Zhang Y, Wang Y, Bai B, Jing X, Yu L, Zhang J, Bo T, Liu H, Gu Y, Yang Y. Bimetallic lanthanide metal-organic framework supported ratiometric molecularly imprinted fluorescence sensor: An innovation for selective and visual detection of dimethyl phthalate. Food Chem 2025; 476:143373. [PMID: 39983473 DOI: 10.1016/j.foodchem.2025.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Dimethyl phthalate (DMP) is a prototypical member of the phthalic acid ester class of plasticizers that may remain in food, posing a considerable risk to both food safety and human health. An innovative ratiometric fluorescence sensor (MIPs@BL-MOF) was constructed by incorporating bimetallic lanthanide terbium/europium metal-organic framework (BL-MOF) into molecularly imprinted polymers (MIPs) for the rapid selective and visual detection of DMP. In this work, BL-MOF prepared by the 'post-mixing' strategy was intelligently incorporated in the MIPs layer, giving the sensor the ability of rapid mass transfer, efficient binding, excellent anti-interference, and high selectivity. Based on the photoelectron transfer mechanism, high-affinity detection of DMP was realized by MIPs@BL-MOF with a good linear fitting (R2 = 0.9944) and theoretical detection limit of 3.29 nmol L-1 in the range of 1.0 × 10-8-1.0 × 10-3 mol L-1. More importantly, a portable visual sensing platform integrated by the MIPs@BL-MOF sensor and smartphone was successfully applied to DMP detection. Accordingly, the MIPs@BL-MOF-based ratiometric fluorescence sensing platform with desirable specificity, sensitivity, and portability holds great potential for the rapid and visual detection of plasticizers for ensuring environmental and food safety.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Yidan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Jiang X, Jiang H, Tang Y, Wang R, Wang W, Yang L, Zhao B. A novel g-C 3N 4/TiO 2 heterojunction for ultrasensitive detection of bisphenol A residues. Food Chem 2025; 465:142123. [PMID: 39571448 DOI: 10.1016/j.foodchem.2024.142123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Semiconductor heterojunction with functional integration can be used as an excellent matrix for the ultrasensitive detection of bisphenol A (BPA) with low molecular affinity. Here, a simple, low-cost and sensitive surface-enhanced Raman scattering (SERS) strategy using g-C3N4/TiO2 heterojunction as substrate was presented for detection of BPA residues in foods. The g-C3N4/TiO2 achieved specific chemisorption for target analyte by the formation of intermolecular H-bond between g-C3N4 and BPA. And, a high-efficiency carrier separation in TiO2 induced by heterostructure could be achieved for charge transfer between the substrate and molecule by a "donor-bridge-acceptor" charge-transfer mode. Due to the synergistic/collaborative contributions of two monomers in heterojunction, the SERS enhancement factor was as high as 3.77 × 107. The detection limit of BPA residues in foods (milk, juice and drinking water) was as low as 10-9 mol·L-1, far below the EU standard. The developed substrate also exhibited excellent stability and anti-interference capability.
Collapse
Affiliation(s)
- Xin Jiang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Han Jiang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yimin Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Wenxue Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Libin Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Zhang G, Ju P, Lu W, Li A, Zhang Q, Jiang L, Zhang E. Rationally design a novel Zn-MOF for fluorescent detection of nitrofuran antibiotics: The synthesis, structure and sensing applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124836. [PMID: 39032236 DOI: 10.1016/j.saa.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Nitrofuran antibiotics (NFAs) residues in waterare a persistent concern for the public due to the potential threats they pose to human health and the environment. Therefore, efficient probes that are capable of detecting trace amounts of antibiotics in real water environments have become a top priority. Herein, a novel fluorescent Zn-MOF probe (MOF-1) was revealed for the highly selective and sensitive sensing of NFAs. MOF-1 was rationally constructed with Zn(NO3)2·6H2O, 5,5'-(anthracene-9,10-diyl) diisophthalic acid (H4ADIP) and 1,3-bis(imidazol-1-ylmethyl)-benzene (mbib) by using the solvothermal method. Fluorescence sensing experiments demonstrate that MOF-1 can function as a fluorescent sensor for selective, sensitive, and rapid detection of NFAs among 15 antibiotics including ciprofloxacin (CPFX), chloramphenicol (CAP), sulfonamides and NFAs. Fluorescence titration experiments indicated that MOF-1 exhibited remarkably low detection limits of 0.19 μM, 0.26 μM, and 0.34 μM for furazolidone (FZD), furaltadone (FDH) and nitrofurazone (NFZ), respectively. Meanwhile, MOF-1 was successfully employed for NFAs detection in real samples with the recoveries of 98.7 % - 104.1 %, and a relative standard deviation below 5.1 %. Moreover, the sensing mechanism could be ascribed to the synergistic effect between the internal filtering effect and photoinduced electron transfer according to the experiment results and DFT calculations. Additionally, test strips were prepared based on MOF-1 for point of care testing of NFAs.
Collapse
Affiliation(s)
- Guixue Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Wenhui Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Anzhang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Qingxiang Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
4
|
Liu J, Zhou J, Xi Q, Yang S, Du W, Xiao F. β-cyclodextrin/spiropyran-functionalized optical-driven hydrogel film for bisphenol A detection in food packaging. Food Chem 2024; 455:139875. [PMID: 38823145 DOI: 10.1016/j.foodchem.2024.139875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is widely used in food packaging materials, including drink containers. Sensitive detection of BPA is crucial to food safety. Herein, we have developed a novel optical-driven hydrogel film sensor for sensitive BPA detection based on the displacement of spiropyran (SP) from β-cyclodextrin (β-CD) cavity by BPA followed by the photochromism of the released SP. The released SP converts to the ring-opened merocyanine form which shows an enhanced red fluorescence in the dark. The sensor demonstrates a linear detection range from 0.1 to 20 μg mL-1 with a limit of detection at 0.027 μg mL-1 and a limit of quantification at 0.089 μg mL-1. Notably, the proposed β-CD/SP hydrogel can be reused due to the reversible isomerization of SP and the reversible host-guest interaction. This sensor also shows good performance for BPA determination in real samples, indicating its great potential for food safety monitoring.
Collapse
Affiliation(s)
- Jie Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Zhuzhou Prevention and Treatment Center for Occupational Diseases, Zhuzhou 412000, China
| | - Jiang Zhou
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qiang Xi
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenfang Du
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Liao S, Gui L, Yang Y, Liu Y, Hu X. Fluorescence/visual aptasensor based on Au/MOF nanocomposite for accurate and convenient aflatoxin B1 detection. Mikrochim Acta 2024; 191:497. [PMID: 39085726 DOI: 10.1007/s00604-024-06579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
A dual-mode fluorescence/visual aptasensor was developed for straightforward and accurate determination of aflatoxin B1 (AFB1) based on an Au/metal-organic framework (Au/MOF) composite. Aptamer-modified Au/Fe3O4 (Apt/Au/Fe3O4) served as the recognition element, and Au/MOF modified with complementary chains and 3,3',5,5'-tetramethylbenzidine (cDNA/TMB/Au/MOF) acted as the fluorescence and visual probes. These components are integrated to form conjugates (Apt/Au/Fe3O4-cDNA/TMB/Au/MOF). Upon the introduction of AFB1, some cDNA/TMB/Au/MOF dissociated from Apt/Au/Fe3O4, enabling the use of detached probes for visual detection. The undecomposed conjugates were isolated magnetically for use in fluorescence detection. As the AFB1 concentration increases, the visual signal intensifies and fluorescence intensity diminishes. Thus, the proposed aptasensor achieves the simultaneous fluorescence and visual determination of AFB1, obviating the need for material and reagent substitutions. The detection limits were established at 0.07 ng mL-1 for the fluorescence mode and 0.08 ng mL-1 for the visual mode. The effectiveness of the aptasensor was further validated by quantifying AFB1 in real samples.
Collapse
Affiliation(s)
| | | | - Yufan Yang
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei Province, People's Republic of China
| | - Yiwei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xiaopeng Hu
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
Li X, Li T, Zhang J, Zhang Q, Deng K, Ma R, Wang J, Kong W. Establishment of a Dual-Signal Enhanced Fluorescent Aptasensor for Highly Sensitive Detection of Ochratoxin A. ACS OMEGA 2024; 9:21035-21041. [PMID: 38764623 PMCID: PMC11097185 DOI: 10.1021/acsomega.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
A robust and versatile dual-signal enhanced fluorescent aptasensor was developed for ochratoxin A (OTA) detection based on fluorescence resonance energy transfer between 5-carboxyfluorescein (FAM) and Super Green I (SG) fluorophores as the donor and graphene oxide (GO) nanosheet as the acceptor. Abundant SG probes were adsorbed into the FAM-complementary DNA (cDNA)-aptamer double-stranded structure to achieve remarkably enhanced fluorescence responses. Without OTA, the FAM-cDNA-SG conjugates coexisted with GO nanosheets, exhibiting strong fluorescence signals. In the presence of OTA, it was captured by the aptamers to release cDNA-FAM and SG probes, which were adsorbed by GO, leading to OTA-dependent fluorescence quenching. The changed fluorescence intensity was measured for accurate quantitation of OTA. Under optimum conditions, the dual-signal enhanced fluorescent aptasensor realized fascinating sensitivity with a limit of detection of 0.005 ng/mL and a wide concentration range of 0.02-20 ng/mL, as well as high selectivity for OTA over other interfering substances, excellent accuracy with average recoveries of 91.37-116.83% in the fortified malt matrices, and superior reliability and practicability in actual samples. This FAM-cDNA-aptamer-SG/GO nanosheet-based aptasensing platform could be extended to monitor other contaminants or trace molecules in food, environmental, and diagnostic fields by altering the corresponding aptamers.
Collapse
Affiliation(s)
- Xueying Li
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Te Li
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Jiahuai Zhang
- Center
for Clinical Laboratory, Capital Medical
University, Beijing 100069, China
| | - Qing Zhang
- Key
Laboratory of Modern Preparation of TCM, Ministry of Education, Pharmacy
College, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Kai Deng
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Runran Ma
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Jiabo Wang
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Weijun Kong
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Wang L, Li J, Lei L, Li Y, Huang H. Modulation of the enzyme-like activity of CuAsp nanozyme by gallic acid and the selective detection of bisphenol A in infant food packaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:751-758. [PMID: 38226610 DOI: 10.1039/d3ay01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The activity modulation of nanozymes with multi-enzymatic activities has both opportunities and challenges in practical applications. In this study, we found firstly that gallic acid erosion had a significant inhibitory effect on the peroxidase-catalyzed colorimetric reaction process of copper aspartate nanozyme prepared based on aspartic acid and copper (CuAsp), and the laccase-like catalytic activity remained almost unchanged. A sensing strategy for bisphenol A was then developed based on the laccase-like activity of GA-CuAsp synthesized by gallic acid (GA) acid erosion of CuAsp, which may have less interference due to the peroxidase-like activity. The developed sensing strategy had good selectivity and interference resistant ability, with a detection limit of 0.75 μmol L-1. In addition, the method was successfully applied to detecting BPA in plastic bottled drinking water samples and infant food packaging.
Collapse
Affiliation(s)
- Luwei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Lulu Lei
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
8
|
Liu SG, Wu T, Liang Z, Zhao Q, Gao W, Shi X. A fluorescent method for bisphenol A detection based on enzymatic oxidation-mediated emission quenching of silicon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123123. [PMID: 37441956 DOI: 10.1016/j.saa.2023.123123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
As a common raw material of industrial products, bisphenol A (BPA) is widely used in the production of food contact materials, and there is a high risk of exposure in food. However, BPA is a well-known endocrine disruptor and poses a serious threat to human health. Herein, a fluorescent sensing platform of BPA based on enzymatic oxidation-mediated fluorescence quenching of silicon nanoparticles (SiNPs) is established and used to the detection of BPA in food species. The SiNPs are prepared with a facile one-step synthesis and emit bright green fluorescence. BPA can be oxidized by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) to form a product which can quench the fluorescence of SiNPs through electron transfer. There is a good linear relationship between the fluorescence intensity and BPA concentration in the range of 1-100 μM. Therefore, a fluorometry of BPA is established with a low limit of detection (LOD) of 0.69 μM. This method has been applied to the determination of BPA in mineral drinking water, orange juice, and milk with satisfactory results. The fluorescent sensor of BPA based on SiNPs has favorable application foreground in the field of food safety analysis.
Collapse
Affiliation(s)
- Shi Gang Liu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Tiankang Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhixin Liang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenli Gao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Dong G, Lv Q, Hao L, Zhang W, Zhang Z, Chai DF, Zhu M, Zhao M, Li J. Integration of N, P-doped carbon quantum dots with hydrogel as a solid-phase fluorescent probe for adsorption and detection of Fe 3. NANOTECHNOLOGY 2023; 34:465702. [PMID: 37567166 DOI: 10.1088/1361-6528/acef30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
In this work, a novel nitrogen-phosphorus co-doped carbon quantum dots (N, P-CQDs) hydrogel was developed utilizing the as-synthesized N, P-CQDs and acrylamide (AM) with the existence of ammonium persulfate and N, N'-methylene bisacrylamide (N-MBA). In consistent with pure N, P-CQDs, the N, P-CQDs hydrogel also shows a dramatic fluorescence property with maximum emission wavelength of 440 nm, which can also be quenched after adsorbing iron ions (Fe3+). When the concentration of Fe3+is 0-6 mmol l-1, a better linear relationship between Fe3+concentration and the fluorescence intensities can be easily obtained. Additionally, the N, P-CQDs hydrogel exhibits better recyclability. This confirms that the N, P-CQDs hydrogel can be used for adsorbing and detecting Fe3+in aqueous with on-off-on mode. The fluorescence quenching mainly involves three procedures including the adsorption of Fe3+by hydrogel, integration of Fe3+with N, P-CQDs and the transportation of conjugate electrons in N, P-CQDs to the vacant orbits of Fe3+and the adsorption process follows a pseudo-second-order kinetic model confirmed in the Freundlich isotherm model. In conclusion, this work provides a novel route for synchronously removing and detecting the metal ions in aqueous by integrating N, P-CQDs with hydrogel with better recyclability.
Collapse
Affiliation(s)
- Guohua Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Qihang Lv
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Lijuan Hao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Zhuanfang Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, People's Republic of China
| |
Collapse
|