1
|
Naseri M, Niazi A, Yazdanipour A, Bagherzadeh K. Recent Advances in Electrochemical Aptasensors for Detection of Clinical and Veterinary Drugs. Crit Rev Anal Chem 2025:1-15. [PMID: 40099928 DOI: 10.1080/10408347.2025.2469781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nowadays, aptamer-based biosensors and electrochemical measurements represent one of the efficient tools for the detection of drugs in both medical and veterinary. Precise trace values analysis of chemicals, especially drugs, plays a crucial role in food and therapeutic safety evaluations that are often time-consuming and costly. Ultimately, accurate determination of therapeutic medications like antibiotics in food, environmental resources, and biological matrices is very important for protecting public health and drug monitoring (TDM) for effective treatment. This review highlights recent advancements in electrochemical aptasensors as an innovative approach offering high sensitivity, specificity, and rapid detection of clinical and veterinary drugs at lower costs. We provide a comprehensive overview of the advancements and discuss the challenges and prospects of electrochemical aptasensing in drug residue detection across various samples.
Collapse
Affiliation(s)
- Masoomeh Naseri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Atisa Yazdanipour
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Madej M, Knihnicki P, Porada R, Kochana J. (Bio)Electroanalysis of Tetracyclines: Recent Developments. BIOSENSORS 2025; 15:101. [PMID: 39997003 PMCID: PMC11853472 DOI: 10.3390/bios15020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Tetracyclines (TCs) are antibiotics used extensively in medicine, veterinary science, and animal husbandry. Their overuse and the widespread presence of their residues in the environment contribute to intensifying the phenomenon of antibiotic resistance (ABR). The efforts are being made to reduce the spread of antibiotics and control the phenomenon of ABR, and one of the key methods is monitoring the presence of antibiotic residues in the environment and food of animal origin. Herein, we provide the overview of the recent developments in electrochemical (bio)sensing of tetracyclines in different types of samples. The review presents a comprehensive view of such aspects of the practical (bio)sensor application as sample preparation, the reusability of (bio)sensors, and the possibility of determining antibiotics at levels required by regulations. Advances, existing challenges, and future trends in the development of novel (bio)electrochemical methods of tetracycline quantification were discussed.
Collapse
Affiliation(s)
| | | | | | - Jolanta Kochana
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.M.); (P.K.); (R.P.)
| |
Collapse
|
3
|
Cui Y, Li Q, Qian J, Chen F. Simultaneous detection and removal of tetracycline antibiotics in water using silver-based metal-organic frameworks. Mikrochim Acta 2025; 192:140. [PMID: 39930154 DOI: 10.1007/s00604-025-07000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Tetracyclines (TCs), a class of broad-spectrum antibiotics, are major contaminants in water, have adverse effects on the ecosystem, and are toxic non-target organisms. A straightforward and efficient strategy for both the detection and removal of TCs from water remains highly desirable but is challenging to develop. In this study, a dual-functional platform for detecting and removing TCs was developed using highly stable silver-based metal-organic frameworks (Ag-MOFs). This platform enabled the specific detection of TCs over a broad concentration range (from 1 × 10⁻10 to 1 × 10⁻3 mol/L), with a low detection limit of 8.4 nM. By leveraging its high surface area, the Ag-MOFs exhibited exceptional adsorption capacities, reaching 276 mg/g for chlortetracycline. To elucidate the potential response mechanism and electronic transfer pathway, density functional theory calculations and charge density difference analyses were performed. This Ag-MOFs-based platform achieved both rapid detection and efficient removal of TCs from the environment. The design principles proposed herein are expected to inspire the development of novel platforms for the simultaneous sensing and removal of specific pollutants.
Collapse
Affiliation(s)
- Yajing Cui
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, PR China
| | - Qiulin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, PR China.
| | - Junchao Qian
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, PR China
| | - Feng Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, PR China.
| |
Collapse
|
4
|
Guo M, Bi M, Zhang F, Ye X, Ma P, Gao D, Song D. A dual-response ratiometric fluorescent sensor for oxytetracycline determination in milk and mutton samples. Talanta 2024; 277:126382. [PMID: 38852347 DOI: 10.1016/j.talanta.2024.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Owing to the adverse effects of oxytetracycline (OTC) residues on human health, it is of great importance to construct a rapid and effective strategy for OTC detection. Herein, we developed a dual-response fluorescence sensing platform based on molybdenum sulfide quantum dots (MoS2 QDs) and europium ions (Eu3+) for ratiometric detection of OTC. The MoS2 QDs, synthesized through an uncomplicated one-step hydrothermal approach, upon OTC integration into the MoS2 QDs/Eu3+ sensing system, exhibit a significant quenching of blue fluorescence due to the inner filter effect (IFE), simultaneously enhancing the distinct red emission of Eu3+ at 624 nm, a phenomenon attributed to the antenna effect (AE). This sensor demonstrates exceptional selectivity and sensitivity towards OTC, characterized by a linear detection range of 0.2-10 μM and a notably low detection limit of 2.21 nM. Furthermore, we achieved a visual semi-quantitative assessment of OTC through the discernible fluorescence color transition from blue to red under a 365 nm ultraviolet lamp. The practical applicability of this sensor was validated through the successful detection of OTC in milk and mutton samples, underscoring its potential as a robust tool for OTC monitoring in foodstuffs to safeguard food safety.
Collapse
Affiliation(s)
- Mengjia Guo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ming Bi
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130012, China
| | - Fangmei Zhang
- XNA Platform, Institute of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiwen Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
5
|
Jamalizadeh Bahaabadi Z, Tavakoly Sany SB, Gheybi F, Gholoobi A, Meshkat Z, Rezayi M, Hatamluyi B. Electrochemical biosensor for rapid and sensitive monitoring of sulfadimethoxine based on nanoporous carbon and aptamer system. Food Chem 2024; 445:138787. [PMID: 38382254 DOI: 10.1016/j.foodchem.2024.138787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
In this study, a straightforward electrochemical aptasensor was developed to detect sulfadimethoxine (SDM). It included a glassy carbon electrode decorated by boron nitride quantum dots (BNQDs) and aptamer-functionalized nanoporous carbon (APT/CZ). CZ was first synthesized by calcinating a zeolitic imidazolate framework (ZIF-8). Then, the electroactive dye methylene blue (MB) was entrapped inside its pores. By attaching aptamer to the CZ surface, APT/CZ acted as a bioguard, which prevented the MB release. Therefore, the electrochemical signal of the entrapped MB was high in the absence of SDM. Introducing SDM caused the conformation of aptamers to change, and a large number of MB was released, which was removed by washing. Therefore, the detection strategy was done based on the change in the electrochemical signal intensity of MB. The aptasensor was applied to detect SDM at a concentration range of 10-17 to 10-7 M with a detection limit of 3.6 × 10-18 M.
Collapse
Affiliation(s)
- Zahra Jamalizadeh Bahaabadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety, and Environment Management, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Higuera‐Llantén S, Alcalde‐Rico M, Vasquez‐Ponce F, Ibacache‐Quiroga C, Blazquez J, Olivares‐Pacheco J. A whole-cell hypersensitive biosensor for beta-lactams based on the AmpR-AmpC regulatory circuit from the Antarctic Pseudomonas sp. IB20. Microb Biotechnol 2024; 17:e14385. [PMID: 38197486 PMCID: PMC10832568 DOI: 10.1111/1751-7915.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024] Open
Abstract
Detecting antibiotic residues is vital to minimize their impact. Yet, existing methods are complex and costly. Biosensors offer an alternative. While many biosensors detect various antibiotics, specific ones for beta-lactams are lacking. To address this gap, a biosensor based on the AmpC beta-lactamase regulation system (ampR-ampC) from Pseudomonas sp. IB20, an Antarctic isolate, was developed in this study. The AmpR-AmpC system is well-conserved in the genus Pseudomonas and has been extensively studied for its involvement in peptidoglycan recycling and beta-lactam resistance. To create the biosensor, the ampC coding sequence was replaced with the mCherry fluorescent protein as a reporter, resulting in a transcriptional fusion. This construct was then inserted into Escherichia coli SN0301, a beta-lactam hypersensitive strain, generating a whole-cell biosensor. The biosensor demonstrated dose-dependent detection of penicillins, cephalosporins and carbapenems. However, the most interesting aspect of this work is the high sensitivity presented by the biosensor in the detection of carbapenems, as it was able to detect 8 pg/mL of meropenem and 40 pg/mL of imipenem and reach levels of 1-10 ng/mL for penicillins and cephalosporins. This makes the biosensor a powerful tool for the detection of beta-lactam antibiotics, specifically carbapenems, in different matrices.
Collapse
Affiliation(s)
- Sebastián Higuera‐Llantén
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
| | - Manuel Alcalde‐Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena, CSIC, Universidad de SevillaSevillaSpain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Felipe Vasquez‐Ponce
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
- Department of Microbiology, Institute of Biomedical SciencesUniversidade de São PauloSão PauloBrazil
| | - Claudia Ibacache‐Quiroga
- Escuela de Nutrición y Dietética, Facultad de FarmaciaUniversidad de ValparaísoValparaísoChile
- Centro de Micro‐BioinnovaciónUniversidad de ValparaísoValparaísoChile
| | - Jesús Blazquez
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Jorge Olivares‐Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
| |
Collapse
|
7
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|