1
|
Tian L, Ma L, Tian Y, Zhou T, Zhang C, Pan H, Dai Y, Pu J, Fu C, Zhang P, Wang X. Antibacterial mechanism of lysine against Escherichia coli O157:H7, its action on lettuce and in reducing the severity of murine colitis. Food Microbiol 2025; 129:104742. [PMID: 40086995 DOI: 10.1016/j.fm.2025.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
The aim of the present study was to evaluate the mechanism of antimicrobial action of Lysine (Lys) against Escherichia coli (E. coli) O157:H7. Lys alters the permeability and morphology of bacterial cell membranes, leading to leakage of intracellular material. Using agarose gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE), it was found that high concentrations of Lys disrupted the DNA and protein primary structure of E. coli O157:H7. Lys also inhibited the ability of E. coli biofilm formation in a concentration-dependent manner. Subinhibitory concentration of Lys reduces the swimming and swarming ability of E. coli O157:H7 and its ability to adhere and to invade Caco-2 cells. The use of Lys on lettuce inoculated with E. coli O157:H7 showed good disinfection efficiency. Further studies revealed that Lys had both preventive and therapeutic effects on the severity of colitis induced by E. coli O157:H7 infected mice, and that the preventive effect was greater than the therapeutic effect.
Collapse
Affiliation(s)
- Lei Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Luyao Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yudong Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Hu Pan
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850032, Tibet, China
| | - Yanna Dai
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850032, Tibet, China
| | - Jifeng Pu
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850032, Tibet, China
| | - Chengyu Fu
- School of Textile Science and Engineering, Xi'an Polytechnic University, 19 Jinhua Road, Xi'an, 710048, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, 19 Jinhua Road, Xi'an, 710048, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Liu S, Ren H, Chen L, Wu T, Hao J. Combined Effect of Low-Temperature Stress and Slightly Acidic Electrolyzed Water (SAEW) on the Microbial Control of Oat Sprout Production. Foods 2025; 14:1083. [PMID: 40238236 PMCID: PMC11988572 DOI: 10.3390/foods14071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Sprouts have many advantages, such as high nutritional value and simple cultivation conditions. In recent years, the loss rate of sprouts due to microbial contamination has been as high as 40%, and it is necessary to strengthen microbial control technology to reduce such losses. Current microbial control methods have issues such as a narrow bactericidal spectrum and high cost and contamination, whereas slightly acidic electrolyzed water (SAEW), as a new type of disinfectant, can solve these problems. In the present study, the efficacy of SAEW treatments in the disinfection of oat sprouts during germination and washing was evaluated at 25 °C and 4 °C compared to a TW control group. The results showed that compared to the TW control group, the Escherichia coli detection rates were significantly decreased by 2.32, 4.44 and 5.55 log10 CFU/g after soaking, undergoing germination for 60 h and washing with SAEW at 4 °C. This indicated that the 4 °C + SAEW treatment had a favorable bactericidal effect on the whole process of oat sprout washing. This result was demonstrated by scanning electron microscopy (SEM). In addition, for natural colony counts in oat sprouts, the 4 °C + SAEW treatment also showed strong bactericidal ability. Therefore, the application of SAEW combined with low temperature stress treatment in sprout production and processing has high potential.
Collapse
Affiliation(s)
| | | | | | - Tongjiao Wu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (S.L.); (H.R.); (L.C.)
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (S.L.); (H.R.); (L.C.)
| |
Collapse
|
3
|
Xuan X, Zhang Z, Shang H, Sheng Z, Cui Y, Lin X, Chen S, Zhu L. Microbial diversity and antibacterial mechanism of slightly acidic electrolyzed water against Pseudomonas fluorescens in razor clam during storage. Food Res Int 2025; 204:115929. [PMID: 39986776 DOI: 10.1016/j.foodres.2025.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
The microbial diversity of razor clam in refrigerator temperature was investigated to identify the spoilage bacteria. The bactericidal efficiency and mechanism of SAEW on the P. fluorescens based on the cell-level detection indexes, and motion characteristics were investigated. The bacterial community structure of razor clam during storage as determined by high-throughput sequencing technology demonstrated that Vibrio corresponding to the phylum Proteobacteria were the dominant genera at D0 group; Through dynamic changes in the microbial community during refrigerated storage, Pseudomonas gradually becomes the dominant species, demonstrating strong adaptability. Furthermore, a significant antibacterial effect of SAEW on P. fluorescens has been observed (P < 0.05), with a 30 ppm SAEW treatment for 60 s reducing P. fluorescens by 3.85 log CFU/ml. Under these treatment conditions, the inhibition rate of cellular viability of P. fluorescens was 56.66 %, the inhibition rate of biofilm formation was 84.59 %, the increase rate of AKP activity was 48 %, the nucleic acid leakage increased by 49.00 %, the protein leakage increased by 1.64 times, and the inhibition rates of swarming, swimming and twitching motility reached 76.05 %, 70.97 % and 93.57 % respectively. The results indicated that SAEW significantly damaged the cell surface structure of P. fluorescens and had a significant inhibitory effect on bacterial motility. Therefore, the cell wall and membrane were the direct targets of SAEW, and their damage was the direct cause of inactivation of P. fluorescens. In summary, this study provides a theoretical foundation for the development and application of novel preservation technologies based on SAEW technology.
Collapse
Affiliation(s)
- Xiaoting Xuan
- Institute of Agricultural Products Processing, Key Laboratory of Preservation engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315100, China
| | - Ziyi Zhang
- College of Food Science and Technology, Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315500, China
| | - Haitao Shang
- Institute of Agricultural Products Processing, Key Laboratory of Preservation engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315100, China
| | - Zheliang Sheng
- College of Food Science and Technology, Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315500, China
| | - Yan Cui
- Institute of Agricultural Products Processing, Key Laboratory of Preservation engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315100, China
| | - Xudong Lin
- Institute of Agricultural Products Processing, Key Laboratory of Preservation engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315100, China
| | - Shanqiao Chen
- Institute of Agricultural Products Processing, Key Laboratory of Preservation engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315100, China
| | - Lin Zhu
- Institute of Agricultural Products Processing, Key Laboratory of Preservation engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
4
|
Alwazeer D. Acidic electrolyzed water: Food additive or sanitizer? Food Chem X 2024; 24:101973. [PMID: 39634528 PMCID: PMC11615911 DOI: 10.1016/j.fochx.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000 Iğdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000 Iğdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000 Iğdır, Turkey
| |
Collapse
|
5
|
Keatsirirote S, Chuajedton A, Uthaibutra J, Whangchai K. Biorefinery-driven approach to managing Fusarium sp. causing agent rhizome rot in turmeric using electrolyzed water. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:22805-22813. [DOI: 10.1007/s13399-023-04243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 01/06/2025]
|
6
|
Wang C, Liu H, Liu C, Wei Y, Wang J, Zhang Y, Wang X, Chen B, Yan W, Qiao Y. Effects of slightly acidic electrolyzed water on the quality and antioxidant capacity of fresh red waxy corn during postharvest cold storage. FRONTIERS IN PLANT SCIENCE 2024; 15:1428394. [PMID: 38938639 PMCID: PMC11208686 DOI: 10.3389/fpls.2024.1428394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Fresh red waxy corn is consumed worldwide because of its unique flavor and rich nutrients, but it is susceptible to deterioration with a short shelf life. This study explored the effect of slightly acidic electrolyzed water (SAEW) treatment on the quality and antioxidant capacity of fresh red waxy corn during postharvest cold storage up to 40 d. The SAEW treatment exhibited lower weight loss, softer firmness, and higher total soluble solids (TSS) and moisture content than the control group. Correspondingly, the SAEW maintained the microstructure of endosperm cell wall and starch granules of fresh red waxy corn kernels well, contributing to good sensory quality. Furthermore, SAEW effectively reduced the accumulation of H2O2 content, elevated the O2 -· scavenging ability, maintained higher CAT and APX activities, and decreased the decline of the flavonoids and anthocyanin during the storage. These results revealed that the SAEW treatment could be a promising preservation method to maintain higher-quality attributes and the antioxidant capacity of fresh red waxy corn during postharvest cold storage.
Collapse
Affiliation(s)
- Chunfang Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongru Liu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenxia Liu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| | - Juanzi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yi Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bingjie Chen
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiqiang Yan
- Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongjin Qiao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
7
|
Zhao W, Gao Q, Cao Y, Meng Y, He J. Kinetics of sterilization of atomized slightly acidic electrolyzed water on tableware. Heliyon 2024; 10:e24721. [PMID: 38312634 PMCID: PMC10835237 DOI: 10.1016/j.heliyon.2024.e24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
The aim of this study was to elucidate the kinetics of atomization of slightly acidic electrolyzed water (SAEW) for use in sterilization of secondary contaminated tableware surfaces. The sterilization efficacy of SAEW was assessed on the basis of the change in the total number of colonies with different contamination levels (101 CFU/mL and 102 CFU/mL), atomization time (10, 20, 30, 40, and 50 s), atomizing distance (5, 10, 15, 20, 25, and 30 cm), and available chlorine concentration (ACC; 25.2, 30.2, 34.9, 40.5, 44.8, and 53.3 mg/L) as the main influencing factors. According to the relationship among flux, atomization area, and time, a kinetic model of SAEW atomization for the sterilization of tableware surfaces was established. The results indicated that the sterilization efficacy of SAEW gradually improved with decreased contamination levels (12.69 %-15.74 %), extended atomization time (13.68 %-46.58 %), and increased ACC (36.89 %-95.14 %). Based on the kinetics analysis, the change law of the kinetic model of SAEW atomization and sterilization of tableware surfaces with secondary pollution was found to be consistent with the change law of sterilization (r2 > 0.8). The results of this study provide a theoretical basis for SAEW atomization for sterilization of secondary contaminated tableware surfaces and also contributes to the improvement of technological theory of SAEW sterilization.
Collapse
Affiliation(s)
| | | | - Yu Cao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuanyan Meng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
8
|
Xia Q, Zheng Y, Wang L, Chen X. Proposing Signaling Molecules as Key Optimization Targets for Intensifying the Phytochemical Biosynthesis Induced by Emerging Nonthermal Stress Pretreatments of Plant-Based Foods: A Focus on γ-Aminobutyric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12622-12644. [PMID: 37599447 DOI: 10.1021/acs.jafc.3c04413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Emerging evidence has confirmed the role of emerging nonthermal stressors (e.g., electromagnetic fields, ultrasonication, plasma) in accumulating bioactive metabolites in plant-based food. However, the signal decoding mechanisms behind NonTt-driven phytochemical production remain unclear, hindering postharvest bioactive component intensification. This study aims to summarize the association between signaling molecules and bioactive secondary metabolite production under nonthermal conditions, demonstrating the feasibility of enhancing phytochemical accumulation through signaling molecule crosstalk manipulation. Nonthermal elicitors were found to be capable of inducing stress metabolisms and activating various signaling molecules, similar to conventional abiotic stress. A simplified pathway model for nonthermally induced γ-aminobutyric acid accumulation was proposed with reactive oxygen species and calcium signaling being versatile pathways responsive to nonthermal elicitors. Manipulating signal molecules/pathways under nonthermal conditions can intensify phytochemical biosynthesis. Further research is needed to integrate signaling molecule responses and metabolic network shifts in nonthermally stressed plant-based matrices, balancing quality modifications and intensification of food functionality potential.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
9
|
Lan W, Zhang B, Liu L, Pu T, Zhou Y, Xie J. Slightly acidic electrolyzed water-slurry ice: shelf-life extension and quality maintenance of mackerel (Pneumatophorus japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3787-3798. [PMID: 36224103 DOI: 10.1002/jsfa.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Different ice treatments were applied for the preservation of mackerel (Pneumatophorus japonicus). The quality changes of samples treated with flake ice (Control), slurry ice (SI) and slightly acidic electrolyzed water-slurry ice (SAEW-SI) in microbiological, physicochemical, protein characteristic, and sensory evaluation were investigated during chilled storage. RESULTS SAEW-SI showed a significant advantage for the inhibition of microbial growth, which could extend the shelf-life for another 144 h at least, compared with Control group. SAEW-SI treatment also showed a strong inhibition for the increase in pH, total volatile basic nitrogen (TVB-N), K-value, histamine and metmyoglobin (MetMb) content. Results of texture profile analysis (TPA) and water holding capacity (WHC) indicated that SAEW-SI can obviously suppress the decrease of hardness value, and have a better protective effect on muscle structure compared to flake ice and SI (P < 0.05). During the whole experiment, the highest sensory scores and a* were obtained in the SAEW-SI group, which indicated that SAEW-SI treatment could maintain better sensory characteristics. According to the results of thiobarbituric acid reactive substances (TBARS) and fluorescence spectroscopy analysis, SAEW-SI treatment could effectively retard protein degradation and lipid oxidation compared with Control and SI group. In maintaining the quality of mackerel, SAEW-SI shows a better effect than SI due to the synergistic effect of fence factors. CONCLUSION The results demonstrated that the shelf-life of mackerel could be extended and the quality of mackerel could be maintained effectively with SAEW-SI treatment during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianting Pu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuxiao Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
10
|
Shang H, Huang L, Stanley R, Deaker R, Bowman JP. The efficacy of preharvest application of electrolyzed water and chemical sanitizers against foodborne pathogen surrogates on leafy green vegetables. J Food Saf 2023. [DOI: 10.1111/jfs.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Hongshan Shang
- Centre for Food Safety and Innovation Tasmanian Institute of Agriculture, University of Tasmania Sandy Bay Tasmania Australia
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Camperdown New South Wales Australia
| | - Linxi Huang
- Centre for Food Safety and Innovation Tasmanian Institute of Agriculture, University of Tasmania Sandy Bay Tasmania Australia
| | - Roger Stanley
- Centre for Food Innovation Tasmanian Institute of Agriculture, University of Tasmania Launceston Tasmania Australia
| | - Rosalind Deaker
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Camperdown New South Wales Australia
| | - John P. Bowman
- Centre for Food Safety and Innovation Tasmanian Institute of Agriculture, University of Tasmania Sandy Bay Tasmania Australia
| |
Collapse
|
11
|
Potential of electrolyzed water to inactivate bread and cheese spoilage fungi. Food Res Int 2022; 162:111931. [DOI: 10.1016/j.foodres.2022.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
|
12
|
Electrolyzed water and gaseous ozone application for the control of microbiological and insect contamination in dried lemon balm: Hygienic and quality aspects. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang H, Zhang Y, Jiang H, Cao J, Jiang W. A comprehensive review of effects of electrolyzed water and plasma-activated water on growth, chemical compositions, microbiological safety and postharvest quality of sprouts. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Liu X, Sun X, Chen X, Zheng K, Li J, Li X. Effect of slightly acidic electrolyzed water(SAEW) combined with ultrasound sterilization on quality of Bigeye tuna (Thunnus obesus) during cryogenic storage. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Kim Y, Shin M, Kang J, Kang D. Effect of sub‐lethal treatment of carvacrol and thymol on virulence potential and resistance to several bactericidal treatments of
Staphylococcus aureus
. J Food Saf 2022. [DOI: 10.1111/jfs.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu‐Min Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Jun‐Won Kang
- Department of Food Science and Biotechnology Dongguk University‐Seoul Goyang‐si Gyeonggi‐do Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
16
|
Isolation and characterization culturable microbes on the surface of ‘Granny Smith’ apples treated with electrolyzed water during cold storage. Food Sci Biotechnol 2022; 31:1603-1614. [PMID: 36278131 PMCID: PMC9582106 DOI: 10.1007/s10068-022-01148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/04/2022] Open
Abstract
Response of culturable microbes on the surface of apples treated with slightly alkaline electrolyzed water (SAIEW) is largely unexplored. Thus, the aim of this study was to characterize culturable microbes on the surface of SAIEW treated 'Granny Smith' apples using conventional and molecular approach. Results showed that SAIEW treatments and storage duration influenced culturable microbes isolated from the surface of 'Granny Smith' apples stored at 5 °C for 21 days. Enterobacterial repetitive intergenic consensus (ERIC-PCR) analysis distinctively identified 27 groups of bacteria from 56 plate isolates. Using random amplified polymorphic DNA (RAPD-PCR) typing and RAPD1283 primers, 10 distinct band patterns were identified from 30 fungal isolates. Sequencing of 16S rRNA and intergenic spacer (ITS1 and ITS4) region, identified eight bacteria and four fungi, respectively, to species level. Study showed that SAIEW treatment inhibited growth of Staphylococcus epidermidis, S. capitis, Ochrobactrum soli, and Aspergillus inuii on the surface apples during storage. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01148-2.
Collapse
|
17
|
Unraveling the mechanism of the synergistic antimicrobial effect of cineole and carvacrol on Escherichia coli O157:H7 inhibition and its application on fresh-cut cucumbers. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Lu L, Guo H, Kang N, He X, Liu G, Li J, He X, Yan X, Yu H. Application of electrolysed water in the quality and safety control of fruits and vegetables: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hongyan Guo
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoguang He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Guishan Liu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Juan Li
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
19
|
Ahmed S, Akther S, Alam SMS, Ahiduzzaman M, Islam MN, Azam MS. Individual and combined effects of electrolyzed water and ultrasound treatment on microbial decontamination and shelf life extension of fruits and vegetables: A review of potential mechanisms. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shafi Ahmed
- Department of Agro Product Processing Technology Jashore University of Science and Technology Jasho re Bangladesh
| | - Sharmin Akther
- Department of Agro Product Processing Technology Jashore University of Science and Technology Jasho re Bangladesh
| | - S. M. Shamiul Alam
- Department of Agro Product Processing Technology Jashore University of Science and Technology Jasho re Bangladesh
| | - Md Ahiduzzaman
- Department of Agro‐Processing Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur Bangladesh
| | - Md. Nahidul Islam
- Department of Agro‐Processing Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur Bangladesh
| | - Md. Shofiul Azam
- Department of Chemical and Food Engineering Dhaka University of Engineering & Technology Gazipur Bangladesh
| |
Collapse
|
20
|
Tao H, Liao Q, Xu YI, Wang HL. Efficacy of Slightly Acidic Electrolyzed Water for Inactivation of Cronobacter sakazakii and Biofilm Cells. J Food Prot 2022; 85:511-517. [PMID: 34882220 DOI: 10.4315/jfp-21-263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The disinfection efficacy and mechanism of activity of slightly acidic electrolyzed water (SAEW) were investigated against Cronobacter sakazakii. Treatment with three concentrations of SAEW decreased C. sakazakii by 23 to 55% after 2 min. Propidium iodide uptake and scanning electron micrographs indicated that SAEW treatment damaged cell integrity and changed membrane permeability resulting in leakage of nucleic acids (109.7%), intercellular proteins (692.3%), and potassium ions (53.6%). The ability to form biofilms was also reduced. SAEW treatment reduced the activity of superoxide dismutase and catalase from 100.73 and 114.18 U/mg protein to 50.03 and 50.13 U/mg protein, respectively. Expression of C. sakazakii response regulator genes (katG, rpoS, phoP, glpK, dacC, and CSK29544_RS05515) was reduced, which blocked repair of osmotic stress-induced damage and inhibited biofilm formation. These findings provide insight into the effects of SAEW on bacterial genotype and phenotype. HIGHLIGHTS
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Qiaoming Liao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Y I Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
21
|
Chinchkar AV, Singh A, Singh SV, Acharya AM, Kamble MG. Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ajay V. Chinchkar
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat Haryana‐131028 India
| | - Anurag Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat Haryana‐131028 India
| | - Sukh Veer Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat Haryana‐131028 India
| | | | - Meenatai G. Kamble
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat Haryana‐131028 India
| |
Collapse
|
22
|
Zhao C, Chen Y, Gao L, Huang J, Yang X, Pei L, Ye Z, Zhu L. Acidic Electrolyzed Water Inhibits the Viability of Gardnerella spp. via Oxidative Stress Response. Front Med (Lausanne) 2022; 9:817957. [PMID: 35280911 PMCID: PMC8916223 DOI: 10.3389/fmed.2022.817957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The vaginal microbiota, dominated by Lactobacilli, plays an important role in maintaining women's health. Disturbance of the vaginal microbiota allows infection by various pathogens such as Gardnerella spp. (GS) and related anaerobic bacteria resulting in bacterial vaginosis (BV). At present, the treatment options for BV are extremely limited. Treatment of antibacterial drugs and vaginal acidification are the two primary therapeutic methods. Acid electrolyzed water (AEW) is known to inactivate microorganisms and is considered a medical application in recent years. Studies have found that Lactobacillus acidophilus (LA) probiotics helps to inhibit GS-induced BV. Our study took GS and LA as the research object, which aims to explore AEW as a potential alternative therapy for BV and its underlying mechanisms. We first obtained the pH of AEW (3.71–4.22) close to normal vaginal pH (3.8–4.5) to maintain normal vaginal acidification conditions. Plate counting experiments showed that AEW (pH: 4.07, ORP: 890.67, ACC: 20 ppm) (20 ppm) could better inhibit the viability of GS but had a more negligible effect on LA. Then, we preliminarily explored the possible mechanism of AEW anti-GS using cell biology experiments and transmission electron microscopy. Results showed that the membrane permeability was significantly increased and the integrity of cell membrane was destroyed by AEW in GS than those in LA. AEW also caused protein leakage and cell lysis in GS without affecting LA. Meanwhile, AEW induced a number of reactive oxygen species (ROS) production in GS, with no obvious LA changes. Finally, we found that 20 ppm AEW exhibited excellent antibacterial effect on the vaginal secretions of women diagnosed with BV by Amsel criteria and sialic acid plum method. Taken together, our findings manifest that 20 ppm AEW has an excellent antibacterial effect in GS with less effect on LA, which might be expected to become a potential therapy for BV.
Collapse
Affiliation(s)
- Chongyu Zhao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jue Huang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiurou Yang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Luowei Pei
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhangying Ye
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Zhangying Ye
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Linyan Zhu
| |
Collapse
|
23
|
PLESOIANU AM, NOUR V, TUTULESCU F, IONICA ME. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Violeta NOUR
- “Dunarea de Jos” University of Galati, Romania; University of Craiova, Romania
| | | | | |
Collapse
|
24
|
Physicochemical stability and virucidal effect of diluted, slightly acidic electrolyzed water against human norovirus. Food Sci Biotechnol 2021; 31:131-138. [DOI: 10.1007/s10068-021-01011-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
|
25
|
Effect of hydrogen-rich water and slightly acidic electrolyzed water treatments on storage and preservation of fresh-cut kiwifruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Lan W, Lang A, Zhou D, Xie J. Combined effects of ultrasound and slightly acidic electrolyzed water on quality of sea bass (Lateolabrax Japonicus) fillets during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2021; 81:105854. [PMID: 34861558 PMCID: PMC8640540 DOI: 10.1016/j.ultsonch.2021.105854] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 05/04/2023]
Abstract
A novel technique for sea bass (Lateolabrax Japonicus) fillets by combining ultrasound (US) and slightly acidic electrolyzed water (SAEW) to inactivate bacteria and maintain quality was developed. Samples were treated with distilled water (DW), US, SAEW and ultrasound combined with slightly acidic electrolyzed water (US + SAEW) for 10 min, respectively. The results suggested that US + SAEW treatment could retard the increase of total viable counts (TVC), Pseudomonas bacteria counts and H2S-producing bacteria counts, which also inhibit the rise of total volatile basis nitrogen (TVB-N), thiobarbituric acid (TBA), pH and K value. In addition, compared with SAEW or US treatment alone, US + SAEW treatment had distinctly effects on inhibiting protein degradation and maintaining better sensory scores. Compared with DW group, the shelf life of sea bass treated with US + SAEW was increased for another 4 days. It indicated that the combined treatment of US and SAEW could be used to the preservation of sea bass.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Dapeng Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
27
|
Yoon SR, Lee JY, Yang JS, Ha JH. Bactericidal effects of diluted slightly acidic electrolyzed water in quantitative suspension and cabbage tests. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Zhang X, Zhou D, Cao Y, Zhang Y, Xiao X, Liu F, Yu Y. Synergistic inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by gallic acid and thymol and its potential application on fresh-cut tomatoes. Food Microbiol 2021; 102:103925. [PMID: 34809951 DOI: 10.1016/j.fm.2021.103925] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Antibacterial activity against Escherichia coli O157:H7 and Staphylococcus aureus of five typical plant-derived compounds [gallic acid (G.A), citral (Cit), thymol (Thy), salicylic acid (S.A), lauric acid (L.A)] were investigated by determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI). The results showed that only a combination of Thy and G.A (TGA), with a concentration of 0.1 and 1.25 mg/mL, respectively, had a synergistic effect (FICI = 0.5) on both E. coli O157:H7 and S. aureus. The amount of Thy and G.A in mixture were four-fold lower than the MICs of the individuals shown to cause the equivalent antimicrobial activity in trypticase soy broth (TSB). The microbial reduction obtained in TSB with addition of TGA were significantly higher (P < 0.05) than the reduction shown for the broth supplemented with the separated phenolics. TGA caused the changes of morphology and membrane integrity of bacteria. Additionally, the application of TGA on fresh-cut tomatoes are investigated. Fresh-cut tomatoes inoculated with E. coli O157:H7and S. aureus were washed for 2min, 5min, 10min at 4 °C, 25 °C, 40 °C in 0.3% NaOCl, or water containing TGA at various concentrations. Overall, the reduction of TGA achieved against S. aureus is higher than E. coli O157:H7. Same concentrations of combined antimicrobials at a temperature of 40 °C further increased the degree of microbial inactivation, with an additional 0.89-1.51 log CFU/g reduction compared to that at 25 °C. Moreover, 1/2MICThy+1/2MICG.A at 25 °C for 10min or 40 °C for 5min were generally acceptable with sensorial scores higher than 7. Our results showed that TGA could work synergistically on the inactivation of the tested bacteria and may be used as an alternative disinfectant of fresh produce.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, No.336 Liuting Street, Haishu District, Ningbo City, Zhejiang province, 315012, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China.
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China.
| |
Collapse
|
29
|
Belay ZA, Botes WJ, Caleb OJ. Effects of alkaline electrolyzed water pretreatment on the physicochemical quality attributes of fresh nectarine during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zinash A. Belay
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
| | - W. J. Botes
- Post‐harvest iQ Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
| | - Oluwafemi J. Caleb
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
- Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
| |
Collapse
|
30
|
Roy PK, Mizan MFR, Hossain MI, Han N, Nahar S, Ashrafudoulla M, Toushik SH, Shim WB, Kim YM, Ha SD. Elimination of Vibrio parahaemolyticus biofilms on crab and shrimp surfaces using ultraviolet C irradiation coupled with sodium hypochlorite and slightly acidic electrolyzed water. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Zhang J, Yang H, Fang C. Comparative study on the stability of selected Neutral electrolyzed waters and their sanitizing effect on organic fresh‐cut lettuce (
Lactuca sativa
Var.
crispa
L). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jufang Zhang
- Faculty of Printing, Packing Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
- Food Science and Technology Programme, c/o Department of Chemistry National University of Singapore Singapore Singapore
- National University of Singapore (Suzhou) Research Institute Suzhou P. R. China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry National University of Singapore Singapore Singapore
- National University of Singapore (Suzhou) Research Institute Suzhou P. R. China
| | - Changqing Fang
- Faculty of Printing, Packing Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| |
Collapse
|
32
|
Bing S, Zang Y, Li Y, Zhang B, Mo Q, Zhao X, Yang C. A combined approach using slightly acidic electrolyzed water and tea polyphenols to inhibit lipid oxidation and ensure microbiological safety during beef preservation. Meat Sci 2021; 183:108643. [PMID: 34390897 DOI: 10.1016/j.meatsci.2021.108643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
Slightly acidic electrolyzed water (SAEW) is often used as a disinfectant in beef preservation to ensure microbiological safety. However, it ineffectively inhibit lipid oxidation. Therefore, the combination of SAEW and tea polyphenols (TPs) was tested to inhibit lipid oxidation and microbial growth in beef preservation. SAEW and TPs were selected as the optimum sanitizer and antioxidant, respectively. Then, the inactivation efficacies of different combination treatments of SAEW and TPs of Salmonella enteritidis in beef were compared and treatment of SAEW-TPs (SAEW immersion at an available chlorine concentration of 30 mg/L for 2.5 min, followed by the TPs immersion at a 0.1% concentration for 2.5 min) was selected. Finally, the effectiveness of SAEW-TPs on the microbiological and physicochemical properties of beef during storage was evaluated. The results revealed that the required quality standard of beef treated with SAEW-TPs was prolonged by approximately 9 d at 4 °C, and this treatment had greater antimicrobial and antioxidant effects than did the single treatment.
Collapse
Affiliation(s)
- Shan Bing
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Yitian Zang
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China.
| | - Yanjiao Li
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Beibei Zhang
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Qingnan Mo
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xianghui Zhao
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Chen Yang
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| |
Collapse
|
33
|
Kang M, Park B, Ha JH. Kinetic Modeling of Slightly Acidic Electrolyzed Water Decay Characteristics in Fresh Cabbage Disinfection Against Human Norovirus. Front Microbiol 2021; 12:616297. [PMID: 34295310 PMCID: PMC8290341 DOI: 10.3389/fmicb.2021.616297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
To consistently disinfect fresh vegetables efficiently, the decay of disinfectants such as chlorine, electrolyzed oxidizing water (EOW), ozonated water, and plasma-activated water during the disinfection maintenance stage needs to be understood. The aim of our study was to evaluate the changes in the inactivation kinetics of slightly acidic electrolyzed water (SAEW) against human norovirus (HuNoV), based on the cabbage-to-SAEW ratio. After disinfection of fresh cabbage with disinfected SAEW solution, SAEW samples were collected and analyzed for physicochemical properties such as pH, available chlorine concentrations (ACCs), and oxidation-reduction potential (ORP). SAEW virucidal effects were evaluated. We confirmed the decay of post-disinfection SAEW solution and demonstrated the different patterns of the decay kinetic model for HuNoV GI.6 and GII.4. In addition, the goodness of fit of the tested models based on a lower Akaike information criterion, root-mean-square error (RMSE), and residual sum of squares (RSS) was close to zero. In particular, the change in both the HuNoV GI.6 and GII.4 inactivation exhibited a strong correlation with the changes in the ACC of post-disinfection SAEW. These findings demonstrate that physicochemical parameters of SAEW play a key role in influencing the kinetic behavior of changes in the disinfection efficiency of SAEW during the disinfection process. Therefore, to optimize the efficiency of SAEW, it is necessary to optimize the produce-to-SAEW ratio in future studies.
Collapse
Affiliation(s)
- Miran Kang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| | - Boyeon Park
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| |
Collapse
|
34
|
Curcumin loaded iron functionalized biopolymeric nanofibre reinforced edible nanocoatings for improved shelf life of cut pineapples. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Han R, Liao X, Ai C, Ding T, Wang J. Sequential treatment with slightly acidic electrolyzed water (SAEW) and UVC light-emitting diodes (UVC-LEDs) for decontamination of Salmonella Typhimurium on lettuce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Zhang J, Wang J, Zhao D, Hao J. Efficacy of the two-step disinfection with slightly acidic electrolyzed water for reduction of Listeria monocytogenes contamination on food raw materials. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Mir SA, Farooq S, Shah MA, Sofi SA, Dar B, Hamdani AM, Mousavi Khaneghah A. An overview of sprouts nutritional properties, pathogens and decontamination technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Dilarri G, Zamuner CF, Mendes CR, Junior JR, Morão LG, Montagnolli RN, Bidoia ED, Ferreira H. Evaluating the potential of electrolysed water for the disinfection of citrus fruit in packinghouses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2584-2591. [PMID: 33063337 DOI: 10.1002/jsfa.10888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/20/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The largest and most profitable market for citrus is the production of fresh fruit. Xanthomonas citri subsp. citri is a Gram-negative plant pathogen and the etiological agent of citrus canker, one of the major threats to citrus production worldwide. In the early stages of infection, X. citri can attach to plant surfaces by means of biofilms. Biofilm is considered an essential virulence factor, which helps tissue colonization in plants. Thus, sanitization of citrus fruit is mandatory in packinghouses before any logistic operation as packing and shipment to the market. The aim of this study was to evaluate electrolysed water (EW) as a sanitizer for the disinfection of citrus fruit in packinghouses. RESULTS Using a protocol to monitor cell respiration we show that EW, obtained after 8 and 9 min of electrolysis, sufficed to kill X. citri when applied at a concentration of 500 μL mL-1 . Furthermore, microscopy analysis, combined with time-response growth curves, confirmed that EW affects the bacterial cytoplasmatic membrane and it leads to cell death in the first few minutes of contact. Pathogenicity tests using limes to simulate packinghouse treatment showed that EW, produced with 9 min of electrolysis, was a very effective sanitizer capable of eliminating X. citri from contaminated fruit. CONCLUSION It was possible to conclude that EW is significantly effective as sodium hypochlorite (NaClO) at 200 ppm. Therefore, EW could be an alternative for citrus sanitization in packinghouses. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guilherme Dilarri
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - Caio Fc Zamuner
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - Carolina R Mendes
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - José Rm Junior
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - Luana G Morão
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - Renato N Montagnolli
- Department of Natural Sciences, Mathematics and Education, Agricultural Sciences Centre, Federal University of Sao Carlos (UFSCar), Araras, Brazil
| | - Ederio D Bidoia
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Sao Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
39
|
Abstract
Electrolyzed oxidizing water (EOW) is one of the promising novel antimicrobial agents that have recently been proposed as the alternative to conventional decontamination methods such as heat and chemical sanitizers. Acidic EOW with pH ranging from 2 to 5 is regarded most applicable in the antimicrobial treatment of vegetables and meats. Neutral and alkaline electrolyzed water have also been explored in few studies for their applications in the food industry. Neutral electrolyzed water is proposed to solve the problems related to the storage and corrosion effect of acidic EOW. Recently, the research focus has been shifted toward the application of slightly acidic EOW as more effective with some supplemental physical and chemical treatment methods such as ultrasound and UV radiations. The different applications of electrolyzed water range from drinking water and wastewater to food, utensil, and hard surfaces. The recent studies also conclude that electrolyzed water is more effective in suspensions as compared with the food surfaces where longer retention times are required. The commercialization of EOW instruments is not adopted frequently in many countries due to the potential corrosion problems associated with acidic electrolyzed water. This review article summarizes the EOW types and possible mechanism of action as well as highlights the most recent research studies in the field of antimicrobial applications and cleaning. Electrolyzed water can replace conventional chemical decontamination methods in the industry and household. However, more research is needed to know its actual mechanism of antimicrobial action along with the primary concerns related to EOW in the processing of different food products.
Collapse
|
40
|
Quantifying and modelling the inactivation of Listeria monocytogenes by electrolyzed water on food contact surfaces. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Mohammad Z, Kalbasi-Ashtari A, Riskowski G, Juneja V, Castillo A. Inactivation of Salmonella and Shiga toxin-producing Escherichia coli (STEC) from the surface of alfalfa seeds and sprouts by combined antimicrobial treatments using ozone and electrolyzed water. Food Res Int 2020; 136:109488. [PMID: 32846570 DOI: 10.1016/j.foodres.2020.109488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
Abstract
Individual chemical and non-chemical treatments have failed to disinfect alfalfa seeds and sprouts from pathogens thoroughly. This study investigated the disinfection of alfalfa seeds and sprouts using a procedure combining ozone with acidic (pH 3.0) electrolyzed water (AEW). Inoculated alfalfa seeds with a cocktail of 3 strains Salmonella and 3 strains of STEC were treated sequentially with aqueous ozone followed by AEW. Treatment started by immersing the samples into ozonated water (5 mg/L ozone) for 15 or 20 min with persistent oxygen feeding pressurized with 10 psi. The samples then were immersed in 1 L of AEW for 15 min. Salmonella and STEC were significantly (P < 0.05) reduced by 3.6 and 2.9 log CFU/g on seeds respectively, and by 3.1 and 3.0 log CFU/g reduction on sprouts. Significant differences (P < 0.05) were found in the magnitude of the log reduction between Salmonella and STEC on seeds and between seeds and sprouts. Using combined treatments showed no significant changes in the quality, including shelf life, weight, and color in sprouts as compared to controls. The findings suggest that the combination of ozone and AEW is effective in inactivation of Salmonella and STEC on alfalfa seeds and sprouts with no adverse effects on sprouts quality.
Collapse
Affiliation(s)
- Zahra Mohammad
- Department of Nutrition and Food Science, Texas A&M University, 373 Olsen Blvd, College Station, TX 77843, United States
| | - Ahmed Kalbasi-Ashtari
- Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843, United States
| | - Gerald Riskowski
- Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843, United States
| | - Vijay Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, United States
| | - Alejandro Castillo
- Department of Animal Sciences, Texas A&M University, 474 Olsen Blvd., College Station, TX 77845, United States.
| |
Collapse
|
42
|
Gao J, Jang H, Huang L, Matthews KR. Influence of product volume on water antimicrobial efficacy and cross-contamination during retail batch washing of lettuce. Int J Food Microbiol 2020; 323:108593. [PMID: 32224348 DOI: 10.1016/j.ijfoodmicro.2020.108593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 11/15/2022]
Abstract
Fresh produce shall be thoroughly washed at the retail level prior to serving to the consumer with potable water. Foodborne pathogens if present on a product may transfer to the wash water and cross-contaminate other products immersed in the water. Typically, an entire carton of lettuce (24 heads) is washed together increasing the likelihood of cross-contamination due to the close contact between each head. This study aimed to compare the effects of two wash batch volumes - "low" (8 heads) and "high" (24 heads) on the efficacy of two commercial water antimicrobials and cross-contamination. Red leaf lettuce was spot-inoculated (~5.0 log CFU/g) with Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes. In the first batch of washing, inoculated lettuce was washed with non-inoculated lettuce, followed by reuse of the water/antimicrobials twice washing only non-inoculated lettuce. Samples of inoculated and non-inoculated lettuce were collected to determine aerobic plate count (APC) as well as the populations of STEC and L. monocytogenes. Microbiological analysis of the wash water was also conducted. Wash volume (8 versus 24 lettuce heads) had limited effects on the antimicrobial activities of the interventions evaluated. Instead, high-volume wash increased the rate of cross-contamination between non-inoculated and inoculated lettuce, and cross-contamination of non-inoculated lettuce through wash water reuse. Retailers should consider volume of product processed per batch, reuse of wash water, and use of an appropriate water antimicrobial in consideration of mitigating potential product cross-contamination.
Collapse
Affiliation(s)
- Jingwen Gao
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Hyein Jang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Licheng Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Karl R Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
43
|
Naka A, Yakubo M, Nakamura K, Kurahashi M. Effectiveness of slightly acidic electrolyzed water on bacteria reduction: in vitro and spray evaluation. PeerJ 2020; 8:e8593. [PMID: 32110494 PMCID: PMC7034383 DOI: 10.7717/peerj.8593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/18/2020] [Indexed: 11/21/2022] Open
Abstract
Bacterial inactivation is a crucial aspect of sanitation and hygiene. The effectiveness of slightly acidic electrolyzed water (SAEW) for reduction or removal of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis was evaluated. The bactericidal activity of SAEW and sodium hypochlorite (NaOCl) against E. coli and P. aeruginosa were compared through in vitro experiments. The effectiveness of SAEW spray was tested against S. epidermidis. Results showed that SAEW had a more powerful bactericidal activity than NaOCl at the same available chlorine concentrations. For E. coli, SAEW decreased the bacterial counts from 8.4 log10 CFU/mL to less than 3.9 log10 CFU/mL; NaOCl with the same available chlorine of 0.5 mg/L, caused a decrease from 8.4 log10 CFU/mL to 7.1 log10 CFU/mL. For P. aeruginosa, SAEW caused bacterial counts to decrease from 8.5 log10 CFU/mL to less than 4.1 log10 CFU/mL against 8.5 log10 CFU/mL to 6.2 log10 CFU/mL for NaOCl with the same available chlorine of 0.5 mg/L. Spray experiments showed that 10 mg/L of SAEW spray decreased the bacterial counts of S. epidermidis from 3.7 log10 CFU/m3 to 2.8 log10 CFU/m3, with 20 mg/L causing a reduction from 3.8 log10 CFU/m3 to 0 CFU/m3. The overall findings of this study indicate that SAEW may be a promising disinfectant agent either as a solution or spray.
Collapse
Affiliation(s)
- Angelica Naka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Yakubo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Midori Kurahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Li X, Zhi H, Li M, Liu Q, Xu J, Dong Y. Cooperative effects of slight acidic electrolyzed water combined with calcium sources on tissue calcium content, quality attributes, and bioactive compounds of 'Jiancui' jujube. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:184-192. [PMID: 31472017 DOI: 10.1002/jsfa.10014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Slight acidic electrolyzed water (SAEW) has been widely used in cleaning systems of fruit and vegetables. It strongly reduces microbial contamination. However, no information is available on whether SAEW offers the potential for fresh jujube cleaning. The purposes of this study were, first, to compare the effectiveness of SAEW with commercial sanitizers (i.e. sodium hypochlorite (NaClO) or calcium hypochlorite (Ca(ClO)2 )) on 'Jiancui' jujube; second, to determine the response of fruit decay, tissue calcium (Ca) content, and quality attributes to dip application of calcium nitrate (Ca(NO3 )2 ) by concentration; and third, to investigate the effects of SAEW combined with Ca(NO3 )2 or calcium acetate (Ca(OAc)2 )) on fruit Ca uptake, quality attributes, and bioactive compounds. RESULTS Fruits washed with NaClO, Ca(ClO)2 , or an SAEW solution showed no difference in reduction of decay incidence. In contrast to NaClO treatment, SAEW or Ca(ClO)2 significantly retarded losses in fruit firmness (FF), green color (hue angle), and skin lightness (L*), and maintained intact pericarp tissue structure during storage at 1 °C. Application of Ca(NO3 )2 at 5-10 g L-1 effectively promoted Ca2+ uptake and minimized declines in FF and L* value but had no effect on decay development. Adding 10 g L-1 Ca(NO3 )2 or Ca(OAc)2 to SAEW provided an additional benefit in increasing decay resistance, increasing Ca2+ into fruit and increasing levels of bioactive compounds in jujube fruit. CONCLUSION SAEW in combination with Ca(NO3 )2 or Ca(OAc)2 has commercial potential for fresh jujube disinfection and improving storage quality as a result of the cleaning processes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Huanhuan Zhi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Meng Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qiqi Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Juan Xu
- Haoxiangni Jujube Industry Co. Ltd, Xinzheng, China
| | - Yu Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Department of Horticulture, Oregon State University, Mid-Columbia Agricultural Research and Extension Center, Hood River, OR, USA
| |
Collapse
|
45
|
Chen YX, Guo XN, Xing JJ, Sun XH, Zhu KX. Effects of wheat tempering with slightly acidic electrolyzed water on the microbial, biological, and chemical characteristics of different flour streams. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Djukić-Vuković A, Lazović S, Mladenović D, Knežević-Jugović Z, Pejin J, Mojović L. Non-thermal plasma and ultrasound-assisted open lactic acid fermentation of distillery stillage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35543-35554. [PMID: 30949947 DOI: 10.1007/s11356-019-04894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Stillage is the main by-product of bioethanol production and the cost of its treatment significantly affects the economy of bioethanol production. A process of thermal sterilization before lactic acid fermentation (LAF) is energy demanding and is causing deterioration of valuable compounds in stillage. In this study, ultrasound (UT) and plasma (PT) treatments were used for microbial inactivation, and a significant reduction in the number of viable microorganisms in the stillage after PT and UT was observed. After application of treatment, LAF by Lactobacillus rhamnosus ATCC 7469 was initiated. The concentration of LA is used to quantify the efficiency of the stillage revalorization. The highest LA productivity of 1.21 g/Lh and yield of 0.82 g/g were obtained after PT, while UT of 10 min provided productivity of 1.02 g/Lh and LA yield of 0.69 g/g. The results were benchmarked against closed LAF. Around 20% better revalorization of stillage by PT was achieved when compared with conventional sterilization. In addition, an excellent L (+) LA stereoselectivity of 95.5% was attained after PT. From the aspect of energy efficiency, that of PT was three times lower than UT and almost ten times lower than thermal sterilization, but it is the most expensive due to the high consumption of gas which could reduce application of closed Ar atmosphere on larger scales. This way, a simpler and energy efficient process for LA production on stillage was accomplished by "open" fermentation.
Collapse
Affiliation(s)
- Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia.
| | - Saša Lazović
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Dragana Mladenović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| | - Zorica Knežević-Jugović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| | - Jelena Pejin
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Ljiljana Mojović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| |
Collapse
|
47
|
Zhang H, Dolan HL, Ding Q, Wang S, Tikekar RV. Antimicrobial action of octanoic acid against Escherichia coli O157:H7 during washing of baby spinach and grape tomatoes. Food Res Int 2019; 125:108523. [PMID: 31554067 DOI: 10.1016/j.foodres.2019.108523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/04/2023]
Abstract
We investigated the antimicrobial efficacy of octanoic acid (OA) against Escherichia coli O157:H7 inoculated on the surface of baby spinach and grape tomatoes during simulated washing processes. 3 mM OA at 45 °C achieved >6 log CFU/g reduction from the surface of tomatoes within 2 min. However, washing baby spinach with 6 mM OA at 5 °C resulted in <1 log CFU/g reduction, highlighting the role of surface properties in inactivation efficacy. OA significantly (p < 0.05) reduced the risk of cross-contamination during washing of spinach as well as tomatoes. Also, total mold and yeast population on surface of spinach was significantly reduced immediately after OA wash and inhibited during following 14 days. Baby spinach and grape tomatoes washed with OA did not cause significant (p > 0.05) difference in color compared to the control and no residual OA was detected in most cases following rinsing of produce in water. OA at the concentrations above 2 mM and temperature higher than 25 °C induced severe membrane damage along with release of ATP and other intracellular constituents resulting in bacterial death. OA can be an attractive natural decontamination agent for washing fresh produce.
Collapse
Affiliation(s)
- Hongchao Zhang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Heather Leigh Dolan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Siyuan Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States.
| |
Collapse
|
48
|
Deng LZ, Mujumdar AS, Pan Z, Vidyarthi SK, Xu J, Zielinska M, Xiao HW. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Crit Rev Food Sci Nutr 2019; 60:2481-2508. [PMID: 31389257 DOI: 10.1080/10408398.2019.1649633] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a growing demand for safe, nutritious, and fresh-like produce, a number of disinfection technologies have been developed. This review comprehensively examines the working principles and applications of several emerging disinfection technologies. The chemical treatments, including chlorine dioxide, ozone, electrolyzed water, essential oils, high-pressure carbon dioxide, and organic acids, have been improved as alternatives to traditional disinfection methods to meet current safety standards. Non-thermal physical treatments, such as UV-light, pulsed light, ionizing radiation, high hydrostatic pressure, cold plasma, and high-intensity ultrasound, have shown significant advantages in improving microbial safety and maintaining the desirable quality of produce. However, using these disinfection technologies alone may not meet the requirement of food safety and high product quality. Several hurdle technologies have been developed, which achieved synergistic effects to maximize lethality against microorganisms and minimize deterioration of produce quality. The review also identifies further research opportunities for the cost-effective commercialization of these technologies.
Collapse
Affiliation(s)
- Li-Zhen Deng
- College of Engineering, China Agricultural University, Beijing, China.,Engineering Research Center for Modern Agricultural Equipment & Facilities, Ministry of Education, Beijing, China.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | | | - Jinwen Xu
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China.,Engineering Research Center for Modern Agricultural Equipment & Facilities, Ministry of Education, Beijing, China
| |
Collapse
|
49
|
Choi HY, Bang IH, Kang JH, Min SC. Development of a Microbial Decontamination System Combining Washing with Highly Activated Calcium Oxide Solution and Antimicrobial Coating for Improvement of Mandarin Storability. J Food Sci 2019; 84:2190-2198. [PMID: 31313308 DOI: 10.1111/1750-3841.14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
A new microbial decontamination system combining washing with a natural antimicrobial solution and coating with a carnauba wax (CW)-based antimicrobial coating was developed and its effects on mandarin storability were investigated. Mandarins were washed with an antimicrobial solution and/or coated with grapefruit seed extract-CW (GSE/CW). Values for the disease incidence of Penicillium digitatum in untreated mandarins; mandarins coated with GSE/CW without washing; and mandarins coated with GSE/CW after washing with a fumaric acid (FA) solution of slightly acidic electrolyzed water, a highly activated calcium oxide (CaO) aqueous solution, or CaO solution followed by FA solution were 96.0, 70.0, 78.8, 50.0, and 72.2%, respectively. GSE/CW coating after CaO washing was most effective in inhibiting P. digitatum growth during storage at 25 °C. Compared to untreated samples, GSE/CW coating alone or after CaO washing retained CO2 generation, firmness, and total polyphenol content of mandarins at 25 °C. Such treatments also effectively maintained mandarin pH, ascorbic acid concentration, and antioxidant capacity at both 4 and 25 °C. Moreover, GSE/CW coating after CaO washing more effectively inhibited P. digitatum growth at 25 °C and maintained ascorbic acid concentration and antioxidant capacity at 4 and 25 °C than GSE/CW coating alone. The microbial decontamination system integrating CaO washing and GSE/CW coating demonstrates potential for improving mandarin storability by inhibiting P. digitatum growth and improving the preservation of quality properties and sensory characteristics. PRACTICAL APPLICATION: This is the first study to develop a microbial decontamination system involving both washing with a natural antimicrobial solution and carnauba wax coating containing grapefruit seed extract to improve the storability of fruits. This system demonstrated a primary effect of inhibiting fungi that cause mandarin surface decay at 25 °C via the highly activated calcium oxide wash and secondary effects of delaying quality degradation and inhibiting fungal growth by the action of the antimicrobial coating. These effects led to improvements in mandarin storability, along with enhanced visual appeal while not affecting taste, flavor, or texture.
Collapse
Affiliation(s)
- Ha Young Choi
- Dept. of Food Science and Technology, Seoul Women's Univ., 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| | - In Hee Bang
- Dept. of Food Science and Technology, Seoul Women's Univ., 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| | - Joo Hyun Kang
- Dept. of Food Science and Technology, Seoul Women's Univ., 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| | - Sea C Min
- Dept. of Food Science and Technology, Seoul Women's Univ., 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| |
Collapse
|
50
|
Setti L, Francia E, Pulvirenti A, Gigliano S, Zaccardelli M, Pane C, Caradonia F, Bortolini S, Maistrello L, Ronga D. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:278-288. [PMID: 31351613 DOI: 10.1016/j.wasman.2019.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The Black Soldier Fly (Hermetia illucens (L.), Diptera: Stratiomyidae) is an insect whose larvae thrive on agro-industrial by-products. This study reports the first use of black soldier fly larvae processing residue (BSPR) as an innovative ingredient for growing media. BSPR was characterized and evaluated to partially replace commercial peat (CP) in the production of potted plants. Chemical and microbiological analysis showed the suitability of BSPR for soilless production. Hence, six growing media mixtures (CP 100% + slow acting synthetic solid fertilizer, CP 90% + BSPR 10%, CP 80% + BSPR 20%, CP 70% + BSPR 30%, CP 60% + BSPR 40% and CP 100% without fertilizer) were assessed for the production of baby leaf lettuce, basil and tomato potted plants. Using BSPR in a proportion up to 20%, all investigated crops showed values significantly greater than or comparable to those obtained using CP 100% + slow acting synthetic solid fertilizer. In general, BSPR used in a proportion up to 20% increased the crop growth of baby leaf lettuce, basil and tomato, recording a high total dry weight (+31%, compared to the total average) and the measured leaf parameters (+39% of leaf area, +14% of leaf number), without showing abiotic stresses. This study indicates that BSPR used in a proportion up to 20% might be a valid approach for soilless production of potted baby leaf lettuce, basil and tomato plants.
Collapse
Affiliation(s)
- Leonardo Setti
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy
| | - Enrico Francia
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy; Department of Life Science, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia (RE), Italy
| | - Andrea Pulvirenti
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy; Department of Life Science, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia (RE), Italy
| | - Silvia Gigliano
- Department of Life Science, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia (RE), Italy
| | - Massimo Zaccardelli
- CREA Council for Agricultural Research and Economics - Research Center for Vegetable and Ornamental Crops, Via Cavalleggeri, 25, 84098 Pontecagnano Faiano, SA, Italy
| | - Catello Pane
- CREA Council for Agricultural Research and Economics - Research Center for Vegetable and Ornamental Crops, Via Cavalleggeri, 25, 84098 Pontecagnano Faiano, SA, Italy
| | - Federica Caradonia
- Department of Life Science, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia (RE), Italy
| | - Sara Bortolini
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy; Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Lara Maistrello
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy; Department of Life Science, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia (RE), Italy
| | - Domenico Ronga
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy; Department of Life Science, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia (RE), Italy.
| |
Collapse
|