1
|
Maojin T, Zheng Z, Ying H, Yanyan H, Liang Z. Bacterial Spore Inactivation Technology in Solid Foods: A Review. J Food Prot 2025; 88:100479. [PMID: 40081811 DOI: 10.1016/j.jfp.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In response to physiological stress, some bacterial strains have the ability to produce spores that are able to resist conventional food heating processes and even more extreme environmental factors. Dormant spores can germinate and return to their vegetative state during food preservation, leading to food spoilage, or safety issues that pose a risk to human health. Thus, spore inactivation technology is gaining more and more attention. Several techniques have been used in liquid foods to efficiently inactivate spores, including novel thermal and nonthermal treatments. However, solid foods have unique characteristics that make it challenging to achieve the same spore inactivation effect as in previous liquid food studies. Therefore, exploring the effectiveness of spore inactivation techniques in solid foods is of great significance, and clarifying the mechanism for deactivating spore through related techniques is informative in enhancing the effectiveness of spore deactivation in solid foods. This article reviews the practical applications of spore inactivation technology in solid foods.
Collapse
Affiliation(s)
- Tian Maojin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhou Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Hu Ying
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Han Yanyan
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Zhou Liang
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China.
| |
Collapse
|
2
|
Munir MT, Mtimet N, Guillier L, Meurens F, Fravalo P, Federighi M, Kooh P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023; 12:foods12081580. [PMID: 37107375 PMCID: PMC10137509 DOI: 10.3390/foods12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Clostridium botulinum produces Botulinum neurotoxins (BoNTs), causing a rare but potentially deadly type of food poisoning called foodborne botulism. This review aims to provide information on the bacterium, spores, toxins, and botulisms, and describe the use of physical treatments (e.g., heating, pressure, irradiation, and other emerging technologies) to control this biological hazard in food. As the spores of this bacterium can resist various harsh environmental conditions, such as high temperatures, the thermal inactivation of 12-log of C. botulinum type A spores remains the standard for the commercial sterilization of food products. However, recent advancements in non-thermal physical treatments present an alternative to thermal sterilization with some limitations. Low- (<2 kGy) and medium (3-5 kGy)-dose ionizing irradiations are effective for a log reduction of vegetative cells and spores, respectively; however, very high doses (>10 kGy) are required to inactivate BoNTs. High-pressure processing (HPP), even at 1.5 GPa, does not inactivate the spores and requires heat combination to achieve its goal. Other emerging technologies have also shown some promise against vegetative cells and spores; however, their application to C. botulinum is very limited. Various factors related to bacteria (e.g., vegetative stage, growth conditions, injury status, type of bacteria, etc.) food matrix (e.g., compositions, state, pH, temperature, aw, etc.), and the method (e.g., power, energy, frequency, distance from the source to target, etc.) influence the efficacy of these treatments against C. botulinum. Moreover, the mode of action of different physical technologies is different, which provides an opportunity to combine different physical treatment methods in order to achieve additive and/or synergistic effects. This review is intended to guide the decision-makers, researchers, and educators in using physical treatments to control C. botulinum hazards.
Collapse
Affiliation(s)
- Muhammad Tanveer Munir
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Narjes Mtimet
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | | | - François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Phillipe Fravalo
- Chaire Agroalimentaire du Cnam, Conservatoire des Arts et Métiers, EPN7, 22440 Ploufragan, France
| | - Michel Federighi
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Pauline Kooh
- Anses, Unit UERALIM, 94700 Maisons-Alfort, France
| |
Collapse
|
3
|
Inanoglu S, Barbosa-Cánovas GV, Sablani SS, Zhu MJ, Keener L, Tang J. High-pressure pasteurization of low-acid chilled ready-to-eat food. Compr Rev Food Sci Food Saf 2022; 21:4939-4970. [PMID: 36329575 DOI: 10.1111/1541-4337.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/31/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
The working population growth have created greater consumer demand for ready-to-eat (RTE) foods. Pasteurization is one of the most common preservation methods for commercial production of low-acid RTE cold-chain products. Proper selection of a pasteurization method plays an important role not only in ensuring microbial safety but also in maintaining food quality during storage. Better retention of flavor, color, appearance, and nutritional value of RTE products is one of the reasons for the food industry to adopt novel technologies such as high-pressure processing (HPP) as a substitute or complementary technology for thermal pasteurization. HPP has been used industrially for the pasteurization of high-acid RTE products. Yet, this method is not commonly used for pasteurization of low-acid RTE food products, due primarily to the need of additional heating to thermally inactivate spores, coupled with relatively long treatment times resulting in high processing costs. Practical Application: Food companies would like to adopt novel technologies such as HPP instead of using conventional thermal processes, yet there is a lack of information on spoilage and the shelf-life of pasteurized low-acid RTE foods (by different novel pasteurization methods including HPP) in cold storage. This article provides an overview of the microbial concerns and related regulatory guidelines for the pasteurization of low-acid RTE foods and summarizes the effects of HPP in terms of microbiology (both pathogens and spoilage microorganisms), quality, and shelf-life on low-acid RTE foods. This review also includes the most recent research articles regarding a comparison between HPP pasteurization and thermal pasteurization treatments and the limitations of HPP for low-acid chilled RTE foods.
Collapse
Affiliation(s)
- Sumeyye Inanoglu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| | - Gustavo V Barbosa-Cánovas
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA.,Center for Nonthermal Processing of Food, Washington State University, Pullman, Washington, USA
| | - Shyam S Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Larry Keener
- International Product Safety Consultants, Seattle, Washington, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Selective Survival of Protective Cultures during High-Pressure Processing by Leveraging Freeze-Drying and Encapsulation. Foods 2022; 11:foods11162465. [PMID: 36010466 PMCID: PMC9407356 DOI: 10.3390/foods11162465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
High-Pressure Processing’s (HPP) non-thermal inactivation of cells has been largely incompatible with food products in which the activity of selected cultures is intended (e.g., bio-preservation). This work aims to overcome this limitation using a cocoa butter encapsulation system for freeze-dried cultures that can be integrated with HPP technology with minimal detrimental effects on cell viability or activity capabilities. Using commercially available freeze-dried protective cultures, the desiccated cells survived HPP (600 MPa, 5 °C, 3 min) and subsequently experienced a 0.66-log increase in cell counts during 2 h of incubation. When the same culture was rehydrated prior to HPP, it underwent a >6.07-log decrease. Phosphate-buffered saline or skim milk inoculated with cocoa butter-encapsulated culture up to 24 h before HPP displayed robust cell counts after HPP and subsequent plating (8.37−9.16 CFU/mL). In addition to assessing viability following HPP, the study sought to test the applicability in a product in which post-HPP fermentation is desired While HPP-treated encapsulated cultures initially exhibited significantly delayed fermentative processes compared to the positive controls, by 48 h following inoculation, the HPP samples’ pH values bore no significant difference from those of the positive controls (encapsulated samples: pH 3.83 to 3.92; positive controls: pH 3.81 to 3.85). The HPP encapsulated cultures also maintained high cell counts throughout the fermentation (≥8.95 log CFU/mL).
Collapse
|
5
|
Luong NDM, Coroller L, Zagorec M, Moriceau N, Anthoine V, Guillou S, Membré JM. A Bayesian Approach to Describe and Simulate the pH Evolution of Fresh Meat Products Depending on the Preservation Conditions. Foods 2022; 11:foods11081114. [PMID: 35454701 PMCID: PMC9025361 DOI: 10.3390/foods11081114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Measuring the pH of meat products during storage represents an efficient way to monitor microbial spoilage, since pH is often linked to the growth of several spoilage-associated microorganisms under different conditions. The present work aimed to develop a modelling approach to describe and simulate the pH evolution of fresh meat products, depending on the preservation conditions. The measurement of pH on fresh poultry sausages, made with several lactate formulations and packed under three modified atmospheres (MAP), from several industrial production batches, was used as case-study. A hierarchical Bayesian approach was developed to better adjust kinetic models while handling a low number of measurement points. The pH changes were described as a two-phase evolution, with a first decreasing phase followed by a stabilisation phase. This stabilisation likely took place around the 13th day of storage, under all the considered lactate and MAP conditions. The effects of lactate and MAP on pH previously observed were confirmed herein: (i) lactate addition notably slowed down acidification, regardless of the packaging, whereas (ii) the 50%CO2-50%N2 MAP accelerated the acidification phase. The Bayesian modelling workflow—and the script—could be used for further model adaptation for the pH of other food products and/or other preservation strategies.
Collapse
Affiliation(s)
- Ngoc-Du Martin Luong
- Oniris, INRAE, SECALIM, 44200 Nantes, France; (N.-D.M.L.); (M.Z.); (N.M.); (V.A.); (S.G.)
| | - Louis Coroller
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ACTIA Alter’iX 19.03, 29000 Quimper, France;
| | - Monique Zagorec
- Oniris, INRAE, SECALIM, 44200 Nantes, France; (N.-D.M.L.); (M.Z.); (N.M.); (V.A.); (S.G.)
| | - Nicolas Moriceau
- Oniris, INRAE, SECALIM, 44200 Nantes, France; (N.-D.M.L.); (M.Z.); (N.M.); (V.A.); (S.G.)
| | - Valérie Anthoine
- Oniris, INRAE, SECALIM, 44200 Nantes, France; (N.-D.M.L.); (M.Z.); (N.M.); (V.A.); (S.G.)
| | - Sandrine Guillou
- Oniris, INRAE, SECALIM, 44200 Nantes, France; (N.-D.M.L.); (M.Z.); (N.M.); (V.A.); (S.G.)
| | - Jeanne-Marie Membré
- Oniris, INRAE, SECALIM, 44200 Nantes, France; (N.-D.M.L.); (M.Z.); (N.M.); (V.A.); (S.G.)
- Correspondence: ; Tel.: +33-24068-4058
| |
Collapse
|
6
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
7
|
Lactic fermentation of cooked, comminuted mussel, Perna canaliculus. Food Microbiol 2021; 99:103829. [PMID: 34119114 DOI: 10.1016/j.fm.2021.103829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022]
Abstract
The endogenous microflora of mussels, filter feeders, can include pathogens with resulting food safety concerns. The aim was to develop a cook-then-ferment technology to extend shelf life and safety of a ready-to-eat mussels. Only after cooking to destroy the mussel's endogenous microflora could an edible product be made as determined by pH decline after fermentation and the fate of common pathogens. Perna canaliculus was bought live at retail on many dates. Fermentation was with commercial lactic cultures incubated under vacuum at 30 °C for four days. Using one culture containing Pediococcus pentosaceus and Staphylococcus carnosus as a model, pH typically declined to 4.5 to 4.7, and common pathogens, Staphylococcus aureus, Salmonella and Vibrio parahaemolyticus were absent or reduced to acceptable levels. The fate of Listeria monocytogenes was studied with five cultures. These were variably effective at inhibition with one clear success, Chr Hansen's T-SC-150 containing a specific strain of Lactobacillus sakei, and flavour-generating Staphylococcus carnosus. This culture's efficacy was confirmed with sterile extracts of LAB challenging L. monocytogenes in vitro. This culture was also the most rapid fermenter by pH fall. Cook-then-ferment technology may be applied to other novel foods to minimise a disruptive endogenous microflora.
Collapse
|
8
|
Cardinal parameter growth and growth boundary model for non-proteolytic Clostridium botulinum - Effect of eight environmental factors. Int J Food Microbiol 2021; 346:109162. [PMID: 33827003 DOI: 10.1016/j.ijfoodmicro.2021.109162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/05/2021] [Accepted: 03/06/2021] [Indexed: 11/20/2022]
Abstract
A new cardinal parameter growth and growth boundary model for non-proteolytic C. botulinum was developed and validated for fresh and lightly preserved seafood and poultry products. 523 growth rates in broth were used to determine cardinal parameter values and terms for temperature, pH, NaCl/water activity, acetic, benzoic, citric, lactic and sorbic acids. The new growth and growth boundary model included the inhibiting interactive effect between these factors and it was calibrated using growth curves from 10 challenge tests with unprocessed seafood. For model evaluation, 40 challenge tests with well characterized fresh and lightly preserved seafood were performed. Comparison of these observed growth curves and growth rates (μmax-values) predicted by the new model resulted in a bias factor (Bf) of 1.12 and an accuracy factor (Af) of 1.40. Furthermore, the new model was evaluated with 94 growth rates and 432 time to toxin formation data extracted from the scientific literature for seafood, poultry, meat, pasta and prepared meals. These data included responses for 36 different toxigenic strains of non-proteolytic C. botulinum. The obtained Bf-/Af-values were 0.97/2.04 for μmax-values and 0.96/1.80 for time to toxin formation. The model correctly predicted 93.8% of the growth responses with 5.6% being fail-safe and <1% fail-dangerous. A cocktail of four non-toxin producing Clostridium spp. isolates was used to develop the new model and these isolates had more than 99.8% 16S rRNA gene similarity to non-proteolytic C. botulinum (Group II). The high number of environmental factors included in the new model makes it a flexible tool to facilitate development or reformulation of seafood and poultry products that do not support the growth of non-proteolytic C. botulinum. Further, evaluation of the new model with well characterized products is desirable particularly for meat, vegetables, pasta and prepared meals as well as for dairy products that was not included in the present study.
Collapse
|
9
|
Bolumar T, Orlien V, Sikes A, Aganovic K, Bak KH, Guyon C, Stübler AS, de Lamballerie M, Hertel C, Brüggemann DA. High-pressure processing of meat: Molecular impacts and industrial applications. Compr Rev Food Sci Food Saf 2020; 20:332-368. [PMID: 33443800 DOI: 10.1111/1541-4337.12670] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
High-pressure processing (HPP) has been the most adopted nonthermal processing technology in the food industry with a current ever-growing implementation, and meat products represent about a quarter of the HPP foods. The intensive research conducted in the last decades has described the molecular impacts of HPP on microorganisms and endogenous meat components such as structural proteins, enzyme activities, myoglobin and meat color chemistry, and lipids, resulting in the characterization of the mechanisms responsible for most of the texture, color, and oxidative changes observed when meat is submitted to HPP. These molecular mechanisms with major effect on the safety and quality of muscle foods are comprehensively reviewed. The understanding of the high pressure-induced molecular impacts has permitted a directed use of the HPP technology, and nowadays, HPP is applied as a cold pasteurization method to inactive vegetative spoilage and pathogenic microorganisms in ready-to-eat cold cuts and to extend shelf life, allowing the reduction of food waste and the gain of market boundaries in a globalized economy. Yet, other applications of HPP have been explored in detail, namely, its use for meat tenderization and for structure formation in the manufacturing of processed meats, though these two practices have scarcely been taken up by industry. This review condenses the most pertinent-related knowledge that can unlock the utilization of these two mainstream transformation processes of meat and facilitate the development of healthier clean label processed meats and a rapid method for achieving sous vide tenderness. Finally, scientific and technological challenges still to be overcome are discussed in order to leverage the development of innovative applications using HPP technology for the future meat industry.
Collapse
Affiliation(s)
- Tomas Bolumar
- Department of Safety and Quality of Meat, Meat Technology, Max Rubner Institute (MRI), Kulmbach, Germany
| | - Vibeke Orlien
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Anita Sikes
- Department of Agriculture and Food, Commonwealth for Scientific and Industrial Research Organization (CSIRO), Brisbane, Australia
| | - Kemal Aganovic
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Kathrine H Bak
- Department of Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claire Guyon
- Food Science and Engineering (ONIRIS), Nantes-Atlantic National College of Veterinary Medicine, Nantes, France
| | - Anna-Sophie Stübler
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Marie de Lamballerie
- Food Science and Engineering (ONIRIS), Nantes-Atlantic National College of Veterinary Medicine, Nantes, France
| | - Christian Hertel
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Dagmar A Brüggemann
- Department of Safety and Quality of Meat, Meat Technology, Max Rubner Institute (MRI), Kulmbach, Germany
| |
Collapse
|
10
|
Spoilage of fresh turkey and pork sausages: Influence of potassium lactate and modified atmosphere packaging. Food Res Int 2020; 137:109501. [DOI: 10.1016/j.foodres.2020.109501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
|
11
|
González-Angulo M, Clauwers C, Harastani R, Tonello C, Jaime I, Rovira J, Michiels CW. Evaluation of factors influencing the growth of non-toxigenic Clostridium botulinum type E and Clostridium sp. in high-pressure processed and conditioned tender coconut water from Thailand. Food Res Int 2020; 134:109278. [PMID: 32517944 DOI: 10.1016/j.foodres.2020.109278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
Abstract
Bacterial spores survive high pressure processing (HPP). Group II Clostridium botulinum is an obligate anaerobe spore-forming pathogen that can produce the botulinum neurotoxin under refrigeration. This study assessed nontoxigenic type E C. botulinum and Group II Clostridium sp. growth in raw and HPP (550 MPa, 3 min, 10 °C) Thai coconut water (CCW; pH 5.2). No spore germination or growth occurred in HPP CCW inoculated with 105 CFU/ml after 61 days regardless of oxygen concentration (<0.5 - 11 mg/l) or storage temperature (4 and 20 °C). Spore concentration decreased by 3.0 ± 0.1 log CFU/ml in a worst-case scenario consisting of non-HPP filter-sterilized CCW (pH 7.0) under anoxic incubation at 30 °C during 61 days, suggesting spore germination followed by cellular death. Supplementing filter-sterilized CCW (pH 7.0) with selected germinants and free amino acids did not support spore development, but the addition of nutrient-rich laboratory media (TPGY broth) at low concentrations (6.25%) promoted growth, suggesting that a lack of nutrients prevents C. botulinum development in CCW. Further risk assessment will require evaluating other CCW varieties and toxin production.
Collapse
Affiliation(s)
- Mario González-Angulo
- Hiperbaric, S.A., C/ Condado de Treviño, 6, 09001 Burgos, Spain; Universidad de Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Charlien Clauwers
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Rania Harastani
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Carole Tonello
- Hiperbaric, S.A., C/ Condado de Treviño, 6, 09001 Burgos, Spain
| | - Isabel Jaime
- Universidad de Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- Universidad de Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Chris W Michiels
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| |
Collapse
|
12
|
De Mandal S, Singh SS, Muthukumaran RB, Thanzami K, Kumar V, Kumar NS. Metagenomic analysis and the functional profiles of traditional fermented pork fat 'sa-um' of Northeast India. AMB Express 2018; 8:163. [PMID: 30298308 PMCID: PMC6175732 DOI: 10.1186/s13568-018-0695-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Fermented pork fat (sa-um) is traditionally and extensively consumed in Northeast Indian region for several decades. However, no scientific reports are available regarding its nutritional value as well as its potential health risks. The objective of this work was essentially the characterization of sa-um using a polyphasic approach, viz., physicochemical, electrospray ionization-mass spectrometry (ESI+-MS) and metagenomic analysis in order to gain an understanding of the nutrient contents and microbial population diversity. On a dry weight basis, about 91% fat, 2% carbohydrate and 0.70% protein were present. ESI+-MS analysis of sa-um revealed the presence of various polar and neutral lipids corresponding to monoacylglyceride, diacylglyceride and triacylglyceride species. The dominant bacterial phyla were Firmicutes, Proteobacteria and Bacteroidetes. A total of 72 bacterial genera were identified, largely abundant with Clostridium species including C. butyricum, C. citroniae, C. methylpentosum, C. perfringens, C. saccharogumia and C. tetani. The imputed functional profiles of bacterial communities were predominantly involved in energy, carbohydrate and amino acid metabolisms. Furthermore, this study deduces the presence of pro-inflammatory molecules as well as antibiotic resistance genes associated with the bacterial families such as Bacillaceae, Bacteroidaceae, Clostridiaceae, Corynebacteriaceae and Enterobacteriaceae which might be a major health concern for the sa-um consuming population.
Collapse
Affiliation(s)
- Surajit De Mandal
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram 796004 India
| | | | | | - Kawl Thanzami
- Dept of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Aizawl, Mizoram 796017 India
| | - Vinod Kumar
- Biotech Consortium India Ltd, Anuvrat Bhawan, Deen Dayal Upadhyaya Marg, New Delhi, 110002 India
| | | |
Collapse
|
13
|
Ávila M, Gómez-Torres N, Delgado D, Gaya P, Garde S. Application of high pressure processing for controlling Clostridium tyrobutyricum and late blowing defect on semi-hard cheese. Food Microbiol 2016; 60:165-73. [PMID: 27554159 DOI: 10.1016/j.fm.2016.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/10/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
In this study we evaluated the application of different high pressure (HP) treatments (200-500 MPa at 14 °C for 10 min) to industrial sized semi-hard cheeses on day 7, with the aim of controlling two Clostridium tyrobutyricum strains causing butyric acid fermentation and cheese late blowing defect (LBD). Clostridium metabolism and LBD appearance in cheeses were monitored by sensory (cheese swelling, cracks/splits, off-odours) and instrumental analyses (organic acids by HPLC and volatile compounds by SPME/GC-MS) after 60 days. Cheeses with clostridial spores HP-untreated and HP-treated at 200 MPa showed visible LBD symptoms, lower concentrations of lactic, citric and acetic acids, and higher levels of pyruvic, propionic and butyric acids and of 1-butanol, ethyl and methyl butanoate, and ethyl pentanoate than cheeses without spores. However, cheeses with clostridial spores and HP-treated at ≥ 300 MPa did not show LBD symptoms and their organic acids and volatile compounds profiles were comparable to those of their respective HP-treated control cheeses, despite HP treatments caused a low spore reduction. A decrease in C. tyrobutyricum spore counts was observed after curd pressing, which seems to indicate an early spore germination, suggesting that HP treatments ≥300 MPa were able to inactivate the emerged C. tyrobutyricum vegetative cells and, thereby, prevent LBD.
Collapse
Affiliation(s)
- Marta Ávila
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Natalia Gómez-Torres
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - David Delgado
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Estación Tecnológica de la Leche, Carretera de Autilla s/n, 34071 Palencia, Spain
| | - Pilar Gaya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Sonia Garde
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Di Gioia D, Mazzola G, Nikodinoska I, Aloisio I, Langerholc T, Rossi M, Raimondi S, Melero B, Rovira J. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth. Int J Food Microbiol 2016; 235:53-9. [PMID: 27400453 DOI: 10.1016/j.ijfoodmicro.2016.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/13/2016] [Accepted: 06/18/2016] [Indexed: 12/28/2022]
Abstract
In meat fermented foods, Clostridium spp. growth is kept under control by the addition of nitrite. The growing request of consumers for safer products has led to consider alternative bio-based approaches, the use of protective cultures being one of them. This work is aimed at checking the possibility of using two Lactobacillus spp. strains as protective cultures against Clostridium spp. in pork ground meat for fermented salami preparation. Both Lactobacillus strains displayed anti-clostridia activity in vitro using the spot agar test and after co-culturing them in liquid medium with each Clostridium strain. Only one of them, however, namely L. plantarum PCS20, was capable of effectively surviving in ground meat and of performing anti-microbial activity in carnis in a challenge test where meat was inoculated with the Clostridium strain. Therefore, this work pointed out that protective cultures can be a feasible approach for nitrite reduction in fermented meat products.
Collapse
Affiliation(s)
- Diana Di Gioia
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy.
| | - Giuseppe Mazzola
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy
| | - Ivana Nikodinoska
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy; Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Irene Aloisio
- Department of Agricultural Science, University of Bologna, viale Fanin 42, 40136 Bologna, Italy
| | - Tomaz Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
| | - Maddalena Rossi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | - Stefano Raimondi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
15
|
Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree. Anaerobe 2015; 35:11-21. [DOI: 10.1016/j.anaerobe.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 11/22/2022]
|
16
|
Weiss J, Loeffler M, Terjung N. The antimicrobial paradox: why preservatives lose activity in foods. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Abstract
High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.
Collapse
|