1
|
Zhang H, Zhou G, Yang C, Nychas GJE, Zhang Y, Mao Y. The prevalence, distribution, and diversity of Salmonella isolated from pork slaughtering processors and retail outlets in the Shandong Province of China. Meat Sci 2025; 221:109734. [PMID: 39731976 DOI: 10.1016/j.meatsci.2024.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Salmonella is a foodborne pathogen of global significance and is highly prevalent in pork. This study investigated the prevalence, contamination distribution, virulence genes and antibiotic resistance of Salmonella in 3 pork processors in the Shandong Province of China. Samples were collected from 13 different sampling sources across the slaughter procedures (600 samples) as well as at retail outlets supplied by these processors (45 samples). The prevalence was 18.9 % among all the samples, with the highest prevalence observed in feces (40.0 %), lairage pens (38.0 %), and hides (34.0 %). A total of 6 serotypes were identified, with S. Rissen (46.3 %) and S. typhimurium (32.0 %) found to be the most prevalent serotypes. 86.8 % of Salmonella isolates were multi-drug resistant, with the majority of strains resistant to erythromycin, sulfisoxazole, and ampicillin. The multilocus sequence typing analysis revealed 6 STs were obtained from 45 isolates, with the dominant type ST469 accounting for 40.0 % of the total, which suggested a high possibility of cross-contamination between the plant processing chain and retail outlets. This work reveals the prevalence and correlation of Salmonella isolates between pork slaughter and retail outlets and acts as a case-study for stakeholders wishing to improve pork supply chain hygiene, control cross-contamination between the various slaughtering processes, and obtain continuous updates on Salmonella surveillance.
Collapse
Affiliation(s)
- Haoqi Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| | - Guanghui Zhou
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - Caishuai Yang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - George-John E Nychas
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China; Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Yimin Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
2
|
Elzhraa F, Al-Ashmawy M, El-Sherbini M, El-Sebaey AM, Mohácsi-Farkas C, Kiskó G, Belák Á. Rumi and Pasteurized Kareish Cheeses Are a Source of β-Lactam-Resistant Salmonella in the Nile Delta Region of Egypt: Insights into Their Incidence, AMR Pattern, Genotypic Determinants of Virulence and β-Lactam Resistance. Antibiotics (Basel) 2024; 13:454. [PMID: 38786185 PMCID: PMC11117923 DOI: 10.3390/antibiotics13050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The spread of superbugs in dairy products can jeopardize global public health. To date, information on the incidence rates of virulent and β-lactams-resistant (BLR) Salmonella in cheeses from rural areas of Egypt has been lacking. Biochemical, serological, antibiotic susceptibility, and multiplex PCR (M-PCR) tests were performed to identify and characterize Salmonella isolates. In this study, 44 (15.71%) Salmonella isolates of eight different serotypes were recovered from 280 samples of Rumi and pasteurized Kariesh cheeses across the Nile Delta region of Egypt. The most predominant serotypes were S. Typhimurium, S. Enteritidis, and S. Infantis. The virulence genes (invA, stn, and hilA) were identified in all isolates. However, spvC was only detected in S. Typhimurium. The highest resistance was developed against Erythromycin and Clindamycin (90.91%), followed by Ceftazidime and Cephalothin (84.09%). Meropenem and colistin were the most effective antibiotics. A high proportion (79.55%) of multi-drug resistance (MDR) isolates carried narrow spectrum (NS), extended-spectrum (ES), and AmpC-BLR genes. The blaOXA-1, blaOXA-2, blaTEM-1, blaCTX-M, blaCMY-1, and blaCMY-2 BLR genes were positive in 37.04%, 29.63%, 25.93%, 14.81%, 37.04%, and 3.70% of isolates, respectively. In conclusion, a high prevalence of virulence and BLR genes harboring Salmonella strains in Egyptian cheeses is considered a great threat to public health.
Collapse
Affiliation(s)
- Fatma Elzhraa
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (F.E.); (M.A.-A.); (M.E.-S.)
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary; (G.K.); (Á.B.)
| | - Maha Al-Ashmawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (F.E.); (M.A.-A.); (M.E.-S.)
| | - Mohammed El-Sherbini
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (F.E.); (M.A.-A.); (M.E.-S.)
| | - Ahmed M. El-Sebaey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary; (G.K.); (Á.B.)
| | - Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary; (G.K.); (Á.B.)
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary; (G.K.); (Á.B.)
| |
Collapse
|
3
|
Hong S, Moon JS, Yoon SS, Kim HY, Lee YJ. Levels of Indicator Bacteria and Characteristics of Foodborne Pathogens from Carcasses of Cattle Slaughterhouses in Korea. J Food Prot 2024; 87:100220. [PMID: 38215980 DOI: 10.1016/j.jfp.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The initial microbial contamination of carcasses during slaughtering adversely affects spoilage and shelf life and is of global concern for food safety and meat quality. This study evaluated the hygiene and quality using the prevalence of foodborne pathogens and the level of indicator bacteria on 200 carcasses, collecting 10 from each of 20 cattle slaughterhouses in Korea. The distribution of aerobic bacterial count in carcasses was significantly highest at 2.0-3.0 log10 CFU/cm2 (34.1%), whereas the Escherichia coli count was significantly highest at under 1.0 log10 CFU/cm2 (94.0%) (P < 0.05). Clostridium perfringens was most prevalent (60.0% of slaughterhouses; 17.5% of carcasses), followed by Yersinia enterocolitica (30.0% of slaughterhouses; 6.5% of carcasses), Staphylococcus aureus (15.0% of slaughterhouses; 4.0% of carcasses), Listeria monocytogenes 1/2a (5.0% of slaughterhouses; 1.0% of carcasses), Salmonella enterica subsp. enterica serovar Infantis (5.0% of slaughterhouses; 1.0% of carcasses), and Shiga toxin-producing E. coli O:66 (5.0% of slaughterhouses; 0.5% of carcasses). Although 28 C. perfringens isolates from 11 slaughterhouses were divided into 21 pulsotypes, all isolates showed the same toxinotype as type A and only carried the cpa. Interestingly, 83.3% of isolates from two slaughterhouses located in the same province showed resistance to tetracycline. Furthermore, 13 Y. enterocolitica isolates from six slaughterhouses were divided into seven pulsotypes that were divided into biotypes 1A and 2 and serotypes O:5 and O:8, except for isolates that could not be typed. Twelve (92.3%) isolates only carried ystB, but one (7.7%) isolate carried ail and ystA. Moreover, 46.2% of Y. enterocolitica isolates showed multidrug resistance against ampicillin, cefoxitin, and amoxicillin/clavulanic acid. This study supports the need for continuous monitoring of slaughterhouses and hygiene management to improve the microbiological safety of carcasses.
Collapse
Affiliation(s)
- Serim Hong
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-San Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Zhu X, Zhao Y, Liu H, Zhang Z, Yan L, Chen Y, Robertson ID, Guo A, Aleri JW. Prevalence and antimicrobial resistance of Salmonella and ESBL E. coli isolated from dairy cattle in Henan Province, China. Prev Vet Med 2023; 213:105856. [PMID: 36716653 DOI: 10.1016/j.prevetmed.2023.105856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Salmonella and ESBL-producing E. coli pose a threat to public health through the food chain. A cross-sectional study was conducted to determine the prevalence and antimicrobial resistance of Salmonella and ESBL E. coli in apparently healthy lactating dairy cattle in Henan Province. Thirty-five lactating cows per farm were sampled by fecal swabbing from 38 farms, with samples being pooled to a total of 7 pooled samples per herd. Eight of the 266 pooled fecal samples (3.0%) were positive for Salmonella (95% confidence intervals (CI): 1.3, 5.8) with a herd-level Salmonella prevalence of 13.2% (95% CI: 4.4, 28.1). The within-herd prevalence for pooled samples for Salmonella ranged from 0.0% to 28.6%. A high proportion of resistance to tetracycline (6/8) and florfenicol (6/8) was obtained in the cultured Salmonella. Multi-drug resistant isolates were observed on 4/5 Salmonella-positive farms. ESBL E. coli were identified on all farms (100% - 34/34, 95% CI: 89.7, 100). All ESBL E. coli isolates (n = 216) contained the blaCTX-M gene and two isolates also contained the blaTEM gene. Our study reports the prevalence and antimicrobial resistance of Salmonella and ESBL E. coli in apparently healthy lactating dairy cows from Henan Province.
Collapse
Affiliation(s)
- Jie Wang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaojie Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuxi Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huan Liu
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China.
| | - Zhen Zhang
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China.
| | - Lei Yan
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China.
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ian D Robertson
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Joshua W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia.
| |
Collapse
|
5
|
Wang J, Zhu X, Wang Z, Chen Y, Robertson ID, Guo A, Aleri JW. Prevalence and antimicrobial resistance of Salmonella and the enumeration of ESBL E. coli in dairy farms in Hubei Province, China. Prev Vet Med 2023; 212:105822. [PMID: 36610285 DOI: 10.1016/j.prevetmed.2022.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Dairy cattle and their products have been linked to human outbreaks of Salmonella and Escherichia coli (E. coli). The objective of this study was to estimate the prevalence and antimicrobial resistance of Salmonella and to enumerate Extended-spectrum β-lactamase (ESBL)-producing E. coli in apparently healthy lactating dairy cows in Hubei Province, China. In a cross-sectional study, a total of 291 adult lactating dairy cows from 10 dairy farms were sampled for the detection of Salmonella and ESBL E. coli. Overall, Salmonella was cultured from 15 out of 291 sampled animals (5.2 %; 95 % confidence intervals (CI): 2.9, 8.4), all from two herds with a herd prevalence of 20.0 % (95 % CI: 2.5, 55.6) and the main serotype being S. Dublin. The within-herd prevalence ranged between 0.0 % and 33.3 %. ESBL E. coli was detected by culture in all farms with an animal level prevalence of 59.1 % (95 % CI: 53.2, 64.8) and 116 samples (39.9 %, 95 % CI: 34.2, 45.7) contained ESBL E. coli with a number exceeding 104 CFU/g feces. Sixty percent (9/15) of Salmonella isolates were resistant to ampicillin, however all isolates were sensitive to the other 8 antimicrobials tested. Ninety percent (95 % CI: 84.6, 94.1) of ESBL E. coli contained the resistance gene blaCTX-M, but no ESBL Salmonella was found. Our findings contribute to the understanding of the prevalence and antimicrobial resistance of Salmonella and the enumeration of ESBL E. coli and will assist in the decision-making for the control of Salmonella in Hubei Province.
Collapse
Affiliation(s)
- Jie Wang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojie Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijian Wang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ian D Robertson
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Joshua W Aleri
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, 90 South Street, Murdoch, 6150 Western Australia, Australia.
| |
Collapse
|
6
|
Liu Y, Yan Y, Yang K, Yang X, Dong P, Wu H, Luo X, Zhang Y, Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Abd-Elghany SM, Fathy TM, Zakaria AI, Imre K, Morar A, Herman V, Pașcalău R, Șmuleac L, Morar D, Imre M, Sallam KI. Prevalence of Multidrug-Resistant Salmonella enterica Serovars in Buffalo Meat in Egypt. Foods 2022; 11:foods11182924. [PMID: 36141052 PMCID: PMC9498544 DOI: 10.3390/foods11182924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
The current study aimed to investigate the presence of Salmonella spp. prevalence in buffalo meat in Egypt, along with studying the antimicrobial susceptibility of the recovered isolates. Salmonella spp. was detected in 25% of tested buffalo meat. A total of 53 (100%) isolates were genetically verified by PCR as Salmonella, based on the detection of the invA gene. The stn and hilA genes were detected in 71.7% (38/53), and 83.0% (44/53) of the recovered isolates, respectively. Salmonella Enteritidis (11/53; 20.7%) was the most commonly isolated serovar, followed by S. Typhimurium (9/53; 17%), S. Montevideo (6/53; 11.3%), meanwhile, S. Chester, S. Derby, S. Papuana, and S. Saintpaul were the least commonly identified serovars (a single strain for each; 1.9%). Among the 16 antimicrobials tested, amikacin, imipenem, gentamicin, cefotaxime, meropenem, ciprofloxacin, and enrofloxacin were the most effective drugs, with bacterial susceptibility percentages of 98.1%, 94.3%, 92.5%, 86.8%, 83.0%, 73.6%, and 69.8%, respectively. Meanwhile, the least effective ones were erythromycin, streptomycin, clindamycin, cefepime, and nalidixic acid, with bacterial resistance percentages of 100%, 98.1%, 88.7%, 77.4%, and 66%, respectively. Interestingly, the high contamination level of Egyptian buffalo meat with multidrug-resistant Salmonella (79.2%; 42/53) can constitute a problem for public health. Therefore, programs to control Salmonella contamination are needed in Egypt.
Collapse
Affiliation(s)
- Samir Mohammed Abd-Elghany
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (S.M.A.-E.); or (K.I.); Tel.: +20-100-047-9670 (S.M.A-E.); +40-256-277-186 (K.I.)
| | - Takwa Mohammed Fathy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Ibrahim Zakaria
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
- Correspondence: (S.M.A.-E.); or (K.I.); Tel.: +20-100-047-9670 (S.M.A-E.); +40-256-277-186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Raul Pașcalău
- Department of Agricultural Technologies, Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Laura Șmuleac
- Department of Sustainable Development and Environmental Engineering, Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Doru Morar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Mirela Imre
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Zelalem A, Abegaz K, Kebede A, Terefe Y, Vipham JL. Withdrawn: Investigation on Salmonella enterica, Escherichia coli, and coliforms in beef from Ethiopian abattoirs: A potential risk of meat safety. Food Sci Nutr 2022; 10:1714-1724. [PMID: 35702307 PMCID: PMC9179143 DOI: 10.1002/fsn3.2752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
|
9
|
Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Liu Y, Zhang Y, Zhu L, Niu L, Luo X, Dong P. The acid tolerance responses of the Salmonella strains isolated from beef processing plants. Food Microbiol 2022; 104:103977. [DOI: 10.1016/j.fm.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
|
11
|
Wang Z, Xu Q, Liu S, Liu Y, Gao Y, Wang M, Zhang L, Chang H, Wei Q, Sui Z. Rapid and multiplexed quantification of Salmonella, Escherichia coli O157:H7, and Shigella flexneri in ground beef using flow cytometry. Talanta 2022; 238:123005. [PMID: 34857336 DOI: 10.1016/j.talanta.2021.123005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Salmonella, Escherichia coli O157:H7 (E. coli O157:H7) and Shigella flexneri (S. flexneri) might contaminate similar types of meat products and cause deadly diseases in humans. In reality, ground beef samples may carry more than one pathogen and a rapid and accurate detection method for the simultaneous identification of multiple specific pathogenic strains in ground beef is crucial. In this study, a sample pretreatment protocol and a flow cytometry method were developed for rapid and multiplexed quantification of the three pathogens without cultural enrichment in ground beef. The whole process of sample pretreatment, staining, and instrument analysis can be accomplished within 1 h. The three bacteria upon sample pretreatment were demonstrated good recoveries (93.8%-101.2%). The quantitative detection range of the mothed was 103 to 108 cells/g for all three pathogens, and the detection limit for Salmonella, E. coli O157:H7 and S. flexneri in ground beef were 3.1 × 103 cells/g, 2.1 × 103 cells/g and 2.3 × 103 cells/g, respectively. Therefore, the as-developed approach is a rapid and quantitative method for multiplexed detection of Salmonella, E. coli O157:H7, and S. flexneri in ground beef.
Collapse
Affiliation(s)
- Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Qian Xu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China; College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yingying Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Ying Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Ling Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
12
|
Liu Y, Jiang J, Ed-Dra A, Li X, Peng X, Xia L, Guo Q, Yao G, Yue M. Prevalence and genomic investigation of Salmonella isolates recovered from animal food-chain in Xinjiang, China. Food Res Int 2021; 142:110198. [PMID: 33773671 DOI: 10.1016/j.foodres.2021.110198] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Salmonella is a major foodborne pathogen worldwide, causing serious cases of morbidity and mortality due to the consumption of contaminated foods. Animal-borne foods were considered the main source of transferring Salmonella to humans; however, route surveillance by genomic platforms along the food-chain is limited in China. Here, we proceeded to the application of whole genome sequencing in the epidemiological analysis of Salmonella isolated along the food-chain in Xinjiang, China. A total of 2408 samples were collected from farms, slaughterhouses, and markets, and subjected to the isolation of Salmonella strains. 314 (13.04%) of the samples were positive for Salmonella. Phenotypic antimicrobial resistance was conducted by the broth dilution method using 14 antimicrobial agents belonging to ten classes for all 314 isolates. A selection of representative 103 isolates was subjected to whole-genome sequencing for understanding the Salmonella diversity, including serovars, antimicrobial and virulence genes, plasmid types, multi-locus sequence types, and allelic types. We found that S. Agona was the dominant serovar and O:4(B) was the dominant serogroup. The dominant genotype was ST13 and each serovar has a unique MLST pattern. Plasmids prediction reported Col(MGD2)_1 and Col(Ye4449)_1 as the dominant plasmids, in addition to the detection of IncFII(S)_1 and IncFIB(S)_1 carried by all S. Enteritidis isolates. Importantly, virulence genes prediction showed the presence of cdtB gene encoding typhoid toxins, spv genes, and pef gene cluster encoding fimbriae in the genomes of S. Indiana and S. Enteritidis. Phenotypic antimicrobial resistance identified 92.04% of the sampled isolates as multi-drug resistance (MDR), with high resistance to tetracycline (78.03%; 245/314), amoxicillin/ clavulanic acid (75.80%; 238/314), and ampicillin (70.70%; 222/314). Together, we firstly reported the prevalence of MDR Salmonella isolates harboring critical virulence factors transmission via animal-borne food-chain in Xinjiang, hence route surveillance by whole-genome sequencing platform could facilitate recognition and project early warning for the emerging MDR clones along the food-chain.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jindou Jiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Abdelaziz Ed-Dra
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiaomeng Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xianqi Peng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
13
|
Lang C, Zhang Y, Mao Y, Yang X, Wang X, Luo X, Dong P, Zhu L. Acid tolerance response of Salmonella during simulated chilled beef storage and its regulatory mechanism based on the PhoP/Q system. Food Microbiol 2020; 95:103716. [PMID: 33397629 DOI: 10.1016/j.fm.2020.103716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
To investigate the persistence of acid tolerance response (ATR) and the regulatory mechanism during chilled storage, Salmonella ATCC 14028 and the △phoP mutant were acid adapted and then incubated in meat extract at 4 °C for 24 days as simulated beef storage. The bacterial population, D values and expression of PhoP/PhoQ linked genes of both strains were determined at 6-day intervals. Although a mild suppression effect on the D values of adapted Salmonella was found during the long-time storage in meat extract at 4 °C, the D value of adapted strains was significantly higher than non-adapted strains, indicating the persistence of ATR during the whole aging and distribution of beef posing a threat to food safety. The fact that low temperature inhibits the formation of ATR at the early adapted stage emphasizes the importance of keeping a low-temperature environment during slaughter. An interaction between the acidic adaptation and phoP gene on D values was found and the expression levels of adiA, adiY, cadA and cadB genes was significantly reduced in the △phoP mutant, suggesting that PhoP/Q system plays an important role in the ATR by sensing the pH and regulating lysine and arginine decarboxylation directly or indirectly.
Collapse
Affiliation(s)
- Chenxiao Lang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
14
|
An Abattoir-Based Study on the Prevalence of Salmonella Fecal Carriage and ESBL Related Antimicrobial Resistance from Culled Adult Dairy Cows in Wuhan, China. Pathogens 2020; 9:pathogens9100853. [PMID: 33086687 PMCID: PMC7590148 DOI: 10.3390/pathogens9100853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to estimate the fecal carriage of Salmonella spp. among culled adult dairy cows presented to an abattoir in Wuhan, China and to evaluate their antimicrobial resistance profiles. Rectal swabs from 138 culled cows were cultured. Laboratory analysis involved the identification of Salmonella, the susceptibility assessment and the presence of Extended Spectrum β-lactamases and mcr genes in the isolates. An overall prevalence of Salmonella of 29.0% was recorded with 63.4% (26/41) and 2.4% (1/41) of the isolates identified as S. Typhimurium and S. Dublin, respectively. The occurrence of Salmonella was higher (odd ratios: 3.3) in culled cows originating from the northeast zone of China than cows originating from the central and north zones. Twenty multi-drug resistant strains (resistant to three or more antimicrobial agents) were detected (48.8%) and overall, a high resistance to ampicillin (36/41) and tetracycline (15/41) was observed. Extended Spectrum β-lactamases phenotypes were found in 7/41 isolates, of which all contained the blaCTX-M resistance gene, and no mcr genes were found by polymerase chain reaction. The high prevalence of Salmonella fecal carriage and antimicrobial resistance may contribute to an increased risk of Salmonella transmission to food.
Collapse
|
15
|
Santos PDM, Widmer KW, Rivera WL. PCR-based detection and serovar identification of Salmonella in retail meat collected from wet markets in Metro Manila, Philippines. PLoS One 2020; 15:e0239457. [PMID: 32997676 PMCID: PMC7526908 DOI: 10.1371/journal.pone.0239457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022] Open
Abstract
This study aimed to detect Salmonella from retail meat collected from nine wet markets in Metro Manila, and identify the subtypes of Salmonella isolates using molecular serotyping assays from previously developed primers. Of the 720 collected meat samples, 57.64% were found to be Salmonella-contaminated. The most predominant serogroup was Salmonella O:3, and Salmonella serogroups O:4, O:6,7, O:8, O:9, and undetermined serogroups were also found. Most frequently detected isolates in bovine meat were S. 3:e,h:1,6 (putative identity: S. Anatum) and S: 4:e,h:1,2 (putative identity: S. Saintpaul), in porcine meat was S. 3:e,h:1,6 (putative identity: S. Anatum), and S. 8:i:z6 (putative identity: S. Kentucky) was common in poultry products. This study also demonstrated retail meat samples were contaminated with multiple Salmonella serogroups and serovars. This is the first Philippine study that utilized PCR-based assays to characterize Salmonella isolates down to a serovar level and provides baseline information regarding Salmonella prevalence and serovar distribution in retail meat. Molecular serotyping performed in this study can be used as an alternative approach to traditional serotyping in surveillance of Salmonella in the Philippines since the latter is expensive, time-consuming, and requires skilled technicians.
Collapse
Affiliation(s)
- Pauline Dianne M. Santos
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Kenneth W. Widmer
- International Environmental Research Institute, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Windell L. Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- * E-mail:
| |
Collapse
|
16
|
Vidal Junior PO, Menezes ACR, de Souza LMP, Guimarães AG, Cardoso RDCV. Trade and safety issues of raw beef from the countryside of Bahia state, Brazil. J Public Health Res 2020; 9:1752. [PMID: 33014913 PMCID: PMC7499098 DOI: 10.4081/jphr.2020.1752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Brazil is one of the world's largest meat exporters. However, there is a paradox in this situation due to existing non-inspected meat trade and technical-sanitary failures in retail marketing. Design and methods: This study aimed at characterizing the issues of trade, food safety and quality of raw beef in the street market of a municipality in the state of Bahia. An exploratory, quantitative and census study was carried out, at 17 raw beef vending locations. A questionnaire was administered and meat samples were collected (n=34), which were submitted to a physicochemical assessment, color analysis and microbiological analyses. Results: Meat sellers were between 20 and 64 years of age, predominantly males (82.4%), with limited education and without professional training (64.7%). Medians for temperature and pH in the small butcher shops samples were 18.10ºC and 5.75 respectively, and 21.80ºC and 5.50, in small supermarkets samples. The difference in pH was significant (p<0.05). The filtration test suggested quality changes in 17.65% of the samples. No frauds were detected. Total coliform count medians were 4.90 and 4.78 log CFU/g, for the samples taken from butcher shops and supermarkets, respectively. E. coli was identified in approximately 40.0% of the samples. Salmonella spp. were confirmed in two samples collected in the butcher shops. There was a significant association between inadequate storage conditions and microorganism counts (p<0.02). Conclusions: The results evidenced a meat supply with preservation failures and non-compliance with hygiene requirements, constituting a consumers' health hazard, not in line with an agroexporting country model.
Collapse
|
17
|
Dong P, Xiao T, Nychas GJE, Zhang Y, Zhu L, Luo X. Occurrence and characterization of Shiga toxin-producing Escherichia coli (STEC) isolated from Chinese beef processing plants. Meat Sci 2020; 168:108188. [PMID: 32470758 DOI: 10.1016/j.meatsci.2020.108188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/26/2022]
Abstract
In order to investigate the prevalence, O serogroup, virulence genes and antibiotic resistance of Shiga toxin-producing Escherichia coli (STEC) in two beef plants in China, a total of 600 samples collected from 6 sites (feces, hide, pre-evisceration carcasses, post-washing carcasses, chilled carcasses and meat, 50 samples per site in each plant) were screened for the existence of Shiga toxin-encoding genes by PCR. STEC strains in positives were isolated and characterized for serogroup and antibiotic sensitivity. The PCR prevalence rate in each site was 45.0%, 31.0%, 14.0%, 13.0%, 9.0% and 18.0%, respectively. Sixteen O serogroups including O157, O146 and O76 which are associated with disease were identified. The existence of both stx1 and stx2 genes was the most common among the isolated strains (42.3%). Among the overall 26 isolates, seven and three were resistant to at least three and ten antibiotics, indicating a high antibiotic resistance in STEC strains isolated from the study.
Collapse
Affiliation(s)
- Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tongtong Xiao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
18
|
Yin B, Zhu L, Zhang Y, Dong P, Mao Y, Liang R, Niu L, Luo X. The Characterization of Biofilm Formation and Detection of Biofilm-Related Genes in Salmonella Isolated from Beef Processing Plants. Foodborne Pathog Dis 2018; 15:660-667. [DOI: 10.1089/fpd.2018.2466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Binru Yin
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lixian Zhu
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yimin Zhang
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Pengcheng Dong
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yanwei Mao
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Rongrong Liang
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lebao Niu
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xin Luo
- Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, Tan BH, Lee E, Yeoh SL, Chin YZ, Tan CW, Kuan CH, Basri DF, Wan Mohamed Radzi CWJ. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia. Front Microbiol 2018; 8:2697. [PMID: 29379488 PMCID: PMC5770799 DOI: 10.3389/fmicb.2017.02697] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
Collapse
Affiliation(s)
- Tze Y Thung
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| | - Nor A Mahyudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zunita Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurzafirah Mazlan
- Department of Diagnostic and Allied Science, Faculty of Health and Life Science, Management and Science University, Shah Alam, Malaysia
| | - Boon H Tan
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Epeng Lee
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| | - Soo L Yeoh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| | - Yih Z Chin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chia W Tan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chee H Kuan
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Dayang F Basri
- Novel Antibiotic Laboratory, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Che W J Wan Mohamed Radzi
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Siala M, Barbana A, Smaoui S, Hachicha S, Marouane C, Kammoun S, Gdoura R, Messadi-Akrout F. Screening and Detecting Salmonella in Different Food Matrices in Southern Tunisia Using a Combined Enrichment/Real-Time PCR Method: Correlation with Conventional Culture Method. Front Microbiol 2017; 8:2416. [PMID: 29270157 PMCID: PMC5725475 DOI: 10.3389/fmicb.2017.02416] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
A combined enrichment/ newly developed invA TaqMan® real-time PCR (qPCR) method as a screening assay to detect Salmonella spp. in 500 naturally food matrices is evaluated. DNA template for qPCR was extracted from an overnight pre-enriched sample in buffered peptone water using lysis–guanidine isothiocyanate method. Heterologous internal amplification control (IAC) was incorporated during qPCR assays and co-amplified with the invA gene of the target pathogen. InvA qPCR exhibited 100% specificity when testing 94 Salmonella strains (inclusivity) and 32 non-Salmonella strains (exclusivity). The qPCR showed a consistent detection of two copies of the invA gene/PCR reaction, a good intra- and inter-run reproducibility with a good PCR efficiency (89.6%). QPCR was sensitive and showed Salmonella detection at 8.5 × 100 CFU mL-1 of artificially spiked poultry meat -BWP solution in less than 40 cycles. When analyzing 500 different food matrices and comparing the results with the ISO 6579:2002 conventional culture method, the sensitivity and specificity were 100 and 76.6%, respectively. QPCR showed Salmonella spp. DNA in raw poultry meat 27/45 (60%), milk 31/93 (33.3%), raw red meat 5/13 (38.5%), and fish 11/46 (23.9%) samples. The prevalence of Salmonella spp. in cakes, dairy, cooked meals, charcuterie products using qPCR was 11/14 (26.8%), 5/22 (22.7%), 32/150 (21.3%), and 5/20 (25%), respectively, compared to 0% as demonstrated by culture. S. Anatum was the most common serovar found associated with red meat compared to S. kentucky isolated from fish and poultry meat. In conclusion, our study is the first to use a combined enrichment/invA qPCR method as a screening assay to detect Salmonella DNA in different types of commercialized food in Southern Tunisia. QPCR results indicate that Salmonella contamination is common in milk and in other types of food samples.
Collapse
Affiliation(s)
- Mariam Siala
- Department of Biology, Preparatory Institute for Engineering Studies of Sfax, University of Sfax, Sfax, Tunisia.,Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Amina Barbana
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Salma Smaoui
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Salma Hachicha
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Chema Marouane
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Kammoun
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Radhouane Gdoura
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Férièle Messadi-Akrout
- Regional Hygiene Care Laboratory, Department of Microbiology, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
21
|
The diversity of beef safety: A global reason to strengthen our current systems. Meat Sci 2017; 132:59-71. [DOI: 10.1016/j.meatsci.2017.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022]
|
22
|
Young I, Wilhelm BJ, Cahill S, Nakagawa R, Desmarchelier P, Rajić A. A Rapid Systematic Review and Meta-Analysis of the Efficacy of Slaughter and Processing Interventions to Control Non-Typhoidal Salmonella in Beef and Pork. J Food Prot 2016; 79:2196-2210. [PMID: 28104927 PMCID: PMC5238939 DOI: 10.4315/0362-028x.jfp-16-203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pork is one of the major food sources of human salmonellosis worldwide, while beef products have been implicated in numerous foodborne outbreaks. As a result, effective interventions to reduce Salmonella contamination during beef and pork processing are of interest to both regulators and industry. We conducted a rapid systematic review and meta-analysis of literature investigating the efficacy of slaughter and processing interventions to control Salmonella in beef and pork. Review steps included: a comprehensive search strategy; relevance screening of abstracts; relevance confirmation of articles; data extraction; risk-of-bias assessment; meta-analysis (where appropriate); and a weight-of-evidence assessment. A total of 191 relevant experimental studies were identified. Two controlled trials indicated that hot water and steam treatments are effective at reducing the prevalence of Salmonella on beef carcasses (relative risk [RR] = 0.11, 95% confidence interval [CI]: 0.02, 0.58), while four trials found that pre-chill organic acid washes are effective at reducing Salmonella on pork carcasses (RR = 0.32, 95% CI: 0.13, 0.78), with high confidence in the estimates of effect. Four quasi-experimental studies found that post-exsanguination chemical washes were effective to reduce the prevalence of Salmonella on cattle hides, with low confidence in the specific estimate of effect; moderate confidence was found for the effect estimates of scalding (RR = 0.20, 95% CI: 0.14, 0.29) and singeing (RR = 0.34, 95% CI: 0.22, 0.52) of pork carcasses. The overall evidence supported enhanced reductions of Salmonella through a multiple-hurdle approach. In conclusion, various slaughter and processing interventions can contribute to reducing Salmonella on beef and pork carcasses, depending on the context of application; an appropriate combination should be selected, validated, and verified by establishment operators within their local conditions.
Collapse
Affiliation(s)
- Ian Young
- School of Occupational and Public Health, Ryerson University, 350 Victoria Street, POD 249, Toronto, Ontario, Canada, M5B 2K3
| | - Barbara J Wilhelm
- Department of Population Medicine, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada, N1G 2W1
| | - Sarah Cahill
- Food Safety and Quality Unit, Office of Food Safety, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome 00153, Italy
| | - Rei Nakagawa
- Department of Food Safety and Zoonoses, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| | | | - Andrijana Rajić
- Food Safety and Quality Unit, Office of Food Safety, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome 00153, Italy
| |
Collapse
|
23
|
Thung T, Mahyudin N, Basri D, Wan Mohamed Radzi C, Nakaguchi Y, Nishibuchi M, Radu S. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia. Poult Sci 2016; 95:1888-93. [DOI: 10.3382/ps/pew144] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 01/06/2023] Open
|
24
|
Dong P, Zhu L, Mao Y, Liang R, Niu L, Zhang Y, Luo X. Prevalence and characterization of Escherichia coli O157:H7 from samples along the production line in Chinese beef-processing plants. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Microbiological detection of bacteria in animal products seized in baggage of international air passengers to Brazil. Prev Vet Med 2015; 118:22-7. [DOI: 10.1016/j.prevetmed.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
|