1
|
Wang X, Borjesson T, Wetterlind J, van der Fels-Klerx HJ. Prediction of deoxynivalenol contamination in spring oats in Sweden using explainable artificial intelligence. NPJ Sci Food 2024; 8:75. [PMID: 39366957 PMCID: PMC11452490 DOI: 10.1038/s41538-024-00310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024] Open
Abstract
Weather conditions and agronomical factors are known to affect Fusarium spp. growth and ultimately deoxynivalenol (DON) contamination in oat. This study aimed to develop predictive models for the contamination of spring oat at harvest with DON on a regional basis in Sweden using machine-learning algorithms. Three models were developed as regional risk-assessment tools for farmers, crop collectors, and food safety inspectors, respectively. Data included: weather data from different oat growing periods, agronomical data, site-specific data, and DON contamination data from the previous year. Results showed that: (1) RF models were able to predict DON contamination at harvest with a total classification accuracy of minimal 0.72; (2) good predictions could already be made in June; (3) rainfall, relative humidity, and wind speed in different oat growing stages, followed by crop variety and elevation were the most important features for predicting DON contamination in spring oats at harvest.
Collapse
Affiliation(s)
- X Wang
- Business Economics Group, Wageningen University, Hollandseweg 1, Wageningen, the Netherlands.
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen, the Netherlands.
| | - T Borjesson
- Agroväst Livsmedel AB, PO Box 234, Skara, Sweden
| | - J Wetterlind
- Department of Soil and Environment, Swedish, University of Agricultural Sciences, Skara, Sweden
| | - H J van der Fels-Klerx
- Business Economics Group, Wageningen University, Hollandseweg 1, Wageningen, the Netherlands
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen, the Netherlands
| |
Collapse
|
2
|
Li W, Xin S, Deng W, Wang B, Liu X, Yuan Y, Wang S. Occurrence, spatiotemporal distribution patterns,partitioning and risk assessments of multiple pesticide residues in typical estuarine water environments in eastern China. WATER RESEARCH 2023; 245:120570. [PMID: 37703754 DOI: 10.1016/j.watres.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
The low terrain and the prosperous agriculture in the east of China, have caused the accumulation of pesticide residues in the estuaries. Therefore, this study analyzed the spatiotemporal distribution and partition tendency of 106 pesticides based on their abundance, frequencies, and concentrations in the aquatic environment of 16 river estuaries in 7 major basins in the eastern China by using solid-phase extraction (SPE) with high-performance liquid chromatography tandem mass spectrometry (HPLC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS). In addition, potential risk of multiple pesticides was also evaluated. The results showed that herbicides were the dominant pesticide type, while triazines were the predominate substance group of pesticide. In addition, triadimenol, vinclozolin, diethylatrazine, prometryn, thiamethoxam, atrazine, and metalachlor were the major pesticides in the water, while prometryn, metalachlor, and atrazine were the main pesticides in the sediment. The average total concentration of pesticide was 751.15 ng/L in the dry season, 651.17 ng/L in the wet season, and 617.37 ng/L in the normal season, respectively. The estuaries of the Huai River Basin, the Yangtze River Basin, the Hai River Basin, and the Yellow River Basin have been affected by the low pollution treatment efficiency, weak infrastructure, and agricultural/non-agricultural activities in eastern China, resulting in relatively serious pesticide pollution. The estuaries of Huaihe River, Yangtze River, Xiaoqing River, and Luanhe River had large pesticide abundance and comparatively severe pesticide pollution, while the estuaries of Tuhai River and Haihe River had heavy pesticide contamination in the sediment, which might be induced by historical sedimentary factors. The log KOC values showed that except for thioketone, other pesticides were relatively stable due to the adsorption by sediment. The ecological risk assessment results indicated that insecticides had a high risk. Teenagers were the most severely affected by the noncarcinogenic risk of pesticides, while adults were mostly affected by the carcinogenic risk of pesticides. Therefore, pesticide hazards in the water environment of estuaries in eastern China needs to be further close supervision.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Wenjing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
3
|
Zhang TW, Wu DL, Li WD, Hao ZH, Wu XL, Xing YJ, Shi JR, Li Y, Dong F. Occurrence of Fusarium mycotoxins in freshly harvested highland barley (qingke) grains from Tibet, China. Mycotoxin Res 2023:10.1007/s12550-023-00487-1. [PMID: 37237114 DOI: 10.1007/s12550-023-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Highland barley, also called "qingke" in Tibetan, is mainly cultivated in the Tibetan Plateau of China and has been used as a major staple food for Tibetans. Recently, Fusarium head blight (FHB) of qingke was frequently observed around the Brahmaputra River in Tibet. Considering the importance of qingke for Tibetans, the assessment of Fusarium mycotoxin contamination is essential for food safety. In this study, a total of 150 freshly harvested qingke grain samples were obtained from three regions around the Brahmaputra River in Tibet (China) in 2020. The samples were investigated for the occurrence of 20 Fusarium mycotoxins using high-performance liquid chromatography-tandem mass spectrometry (HPLC‒MS/MS). The most frequently occurring mycotoxin was enniatin B (ENB) (46%), followed by enniatin B1 (ENB1) (14.7%), zearalenone (ZEN) (6.0%), enniatin A1 (ENA1) (3.3%), enniatin A (ENA) (1.3%), beauvericin (BEA) (0.7%), and nivalenol (NIV) (0.7%). Due to the increase in altitude, the cumulative precipitation level and average temperature decreased from the downstream to the upstream of the Brahmaputra River; this directly correlated to the contamination level of ENB in qingke, which gradually decreased from downstream to upstream. In addition, the level of ENB in qingke obtained from qingke-rape rotation was significantly lower than that from qingke-wheat and qingke-qingke rotations (p < 0.05). These results disseminated the occurrence of Fusarium mycotoxins and provided further understanding of the effect of environmental factors and crop rotation on Fusarium mycotoxins.
Collapse
Affiliation(s)
- T W Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - D L Wu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - W D Li
- College of Food Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China
| | - Z H Hao
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - X L Wu
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - Y J Xing
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - J R Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Y Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China.
- College of Food Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China.
| | - F Dong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
4
|
Dong F, Chen X, Lei X, Wu D, Zhang Y, Lee YW, Mokoena MP, Olaniran AO, Li Y, Shen G, Liu X, Xu JH, Shi JR. Effect of Crop Rotation on Fusarium Mycotoxins and Fusarium Species in Cereals in Sichuan Province (China). PLANT DISEASE 2023; 107:1060-1066. [PMID: 36122196 DOI: 10.1094/pdis-01-22-0024-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study was performed to evaluate the effect of crop rotation on Fusarium mycotoxins and species in cereals in Sichuan Province. A total of 311 cereal samples were randomly collected and analyzed from 2018 to 2019 in Sichuan Province. The results of mycotoxin analysis showed that the major trichothecene mycotoxins in Sichuan Province were nivalenol (NIV) and deoxynivalenol (DON), and the mean concentration of total trichothecenes (including NIV, fusarenone X [4ANIV], DON, 3-acetyldeoxynivalenol [3ADON], and 15-acetyldeoxynivalenol [15ADON]) in wheat was significantly higher than that in maize and rice. The concentration of total trichothecenes in the succeeding crops was significantly higher than that in the previous crops. In addition, wheat grown after maize had reduced incidence and concentration of trichothecene mycotoxins compared with that grown after rice, and ratooning rice grown after rice had increased incidence and concentration of trichothecene mycotoxins. Our data indicated that Fusarium asiaticum with the NIV chemotype was predominant in wheat and rice samples, while the number of the NIV chemotypes of F. asiaticum and Fusarium meridionale and the 15ADON chemotype of Fusarium graminearum in maize were almost the same. Although the composition of Fusarium species was affected by crop rotations, there were no differences when comparing the same crop rotation except for the maize-wheat rotation. Moreover, the same species and chemotype of Fusarium strains originated from different crops in various rotations, but there were no significant differences in pathogenicity in wheat and rice. These results contribute to the knowledge of the effect of crop rotation on Fusarium mycotoxins and species affecting cereals in Sichuan Province, which may lead to improved strategies for control of Fusarium mycotoxins and fungal disease in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xiangxiang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xinyu Lei
- Institute of Quality Standard and Testing Technology for Agro-products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yifan Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ying Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
5
|
Development of a certified reference material for the accurate determination of type B trichothecenes in corn. Food Chem 2023; 404:134542. [DOI: 10.1016/j.foodchem.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/04/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
6
|
A predictive model on deoxynivalenol in harvested wheat in China: revealing the impact of the environment and agronomic practicing. Food Chem 2022; 405:134727. [DOI: 10.1016/j.foodchem.2022.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
|
7
|
Mamo FT, Abate BA, Tesfaye K, Nie C, Wang G, Liu Y. Mycotoxins in Ethiopia: A Review on Prevalence, Economic and Health Impacts. Toxins (Basel) 2020; 12:E648. [PMID: 33049980 PMCID: PMC7601512 DOI: 10.3390/toxins12100648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mycotoxigenic fungi and their toxins are a global concern, causing huge economic and health impacts in developing countries such as Ethiopia, where the mycotoxin control system is inadequate. This work aimed to review the occurrences of agriculturally essential fungi such as Aspergillus, Fusarium, and Penicillium and their major mycotoxins in Ethiopian food/feedstuffs. The incidents of crucial toxins, including aflatoxins (B1, B2, G1, G2, M1), fumonisins (B1, B2), zearalenone, deoxynivalenol, and ochratoxin A, were studied. The impacts of chronic aflatoxin exposure on liver cancer risks, synergy with chronic hepatitis B infection, and possible links with Ethiopian childhood malnutrition were thoroughly examined. In addition, health risks of other potential mycotoxin exposure are also discussed, and the impacts of unsafe level of mycotoxin contaminations on economically essential export products and livestock productions were assessed. Feasible mycotoxin mitigation strategies such as biocontrol methods and binding agents (bentonite) were recommended because they are relatively cheap for low-income farmers and widely available in Ethiopia, respectively. Moreover, Ethiopian mycotoxin regulations, storage practice, adulteration practice, mycotoxin tests, and knowledge gaps among value chain actors were highlighted. Finally, sustained public awareness was suggested, along with technical and human capacity developments in the food control sector.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar 79, Ethiopia
| | | | - Kassahun Tesfaye
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia; (B.A.A.); (K.T.)
| | - Chengrong Nie
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
| | - Gang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
8
|
Risk assessment and spatial analysis of deoxynivalenol exposure in Chinese population. Mycotoxin Res 2020; 36:419-427. [PMID: 32829468 DOI: 10.1007/s12550-020-00406-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Deoxynivalenol (DON) is one of the most commonly found mycotoxins across the world, and it mainly contaminates staple food crops. This study aims to evaluate the dietary exposure of DON and to provide a geographical profile of DON exposure in China. The concentrations of DON and its acetylated derivatives in 15,004 cereal samples (10,192 wheat flour, 1750 maize meal, 892 oat flakes, and 2170 polished rice) were collected from 30 provinces, autonomous regions, or municipalities across China during 2010-2017, through a national food safety risk surveillance system. The consumption data for cereals were obtained from China National Nutrition and Health Survey in 2002, and 67,923 respondents from the same 30 regions were included in the analysis. Among all the cereals considered, the concentration was the highest in wheat flour, with the mean concentration of 250.8 μg/kg. Applying a worst-case scenario, some individuals were possibly at risk, but the probability of acute effects was low. The mean and median exposure for the entire population was 0.61 and 0.36 μg/kg bw/day, respectively, below the (PM) TDI, indicating an acceptable overall health risk in Chinese population. Wheat contributed to 86% of the total DON exposure. Significant discrepancy was observed between the exposure and the contamination of DON. The high-exposure cluster area was in northern China, whilst the most seriously contaminated regions were all located in the southeast, which formed a seriously contaminated area.
Collapse
|
9
|
Structure Elucidation and Toxicity Analysis of the Degradation Products of Deoxynivalenol by Gaseous Ozone. Toxins (Basel) 2019; 11:toxins11080474. [PMID: 31443171 PMCID: PMC6723297 DOI: 10.3390/toxins11080474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
Fusarium Head Blight (FHB) or scab is a fungal disease of cereal grains. Wheat scab affects the yield and quality of wheat and produces mycotoxins such as deoxynivalenol (DON), which can seriously threaten human and animal health. In this study, gaseous ozone was used to degrade DON in wheat scab and the degradation products of ozonolysis were analyzed by ultra-performance liquid chromatography quadrupole-orbitrap mass spectrometry (UHPLC Q-Orbitrap). Toxicology analyses of the degradation products were also studied using structure-activity relationships. Ozone (8 mg L-1 concentration) was applied to 2 μg mL-1 of DON in ultrapure water, resulted in 95.68% degradation within 15 s. Ten ozonized products of DON in ultrapure water were analyzed and six main products (C15H18O7, C15H18O9, C15H22O9, C15H20O10, C15H18O8, and C15H20O9) were analyzed at varying concentrations of ozone and DON. Structural formulae were assigned to fragmentation products generated by MS2 and Mass Frontier® software. According to structure-activity relationship studies, the toxicities of the ozonized products were significantly decreased due to de-epoxidation and the attack of ozone at the C9-10 double bond in DON. Based on the results of the study above, we can find that gaseous ozone is an efficient and safe technology to degrade DON, and these results may provide a theoretical basis for the practical research of detoxifying DON in scabby wheat and other grains.
Collapse
|
10
|
Qiu J, Xu J, Shi J. Fusarium Toxins in Chinese Wheat since the 1980s. Toxins (Basel) 2019; 11:toxins11050248. [PMID: 31052282 PMCID: PMC6562770 DOI: 10.3390/toxins11050248] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 01/08/2023] Open
Abstract
Wheat Fusarium head blight (FHB), caused by Fusarium species, is a widespread and destructive fungal disease. In addition to the substantial yield and revenue losses, diseased grains are often contaminated with Fusarium mycotoxins, making them unsuitable for human consumption or use as animal feed. As a vital food and feed ingredient in China, the quality and safety of wheat and its products have gained growing attention from consumers, producers, scientists, and policymakers. This review supplies detailed data about the occurrence of Fusarium toxins and related intoxications from the 1980s to the present. Despite the serious situation of toxin contamination in wheat, the concentration of toxins in flour is usually lower than that in raw materials, and food-poisoning incidents have been considerably reduced. Much work has been conducted on every phase of toxin production and wheat circulation by scientific researchers. Regulations for maximum contamination limits have been established in recent years and play a substantial role in ensuring the stability of the national economy and people's livelihoods.
Collapse
Affiliation(s)
- Jianbo Qiu
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianhong Xu
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianrong Shi
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Zhao Y, Guan X, Zong Y, Hua X, Xing F, Wang Y, Wang F, Liu Y. Deoxynivalenol in wheat from the Northwestern region in China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2018; 11:281-285. [PMID: 30091682 DOI: 10.1080/19393210.2018.1503340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Because of global warming and changes in farming systems, Fusarium head blight has gradually spread towards high-latitude regions such as Northwestern China. A survey was conducted to assess the prevalence and concentration of deoxynivalenol (DON) in wheat harvested during 2013 from the Shaanxi, Ningxia, Gansu, and Xinjiang provinces in China. DON concentration in 181 wheat samples was analysed by high-performance liquid chromatography combined with ultraviolet detection. Of the wheat samples, 82.9% were contaminated with DON, with a mean DON concentration of 500 μg/kg. According to the Chinese standard limits for DON, 10% of the positive samples were above the maximum limit of 1000 μg/kg. Regions with higher humidity showed higher levels of DON in the wheat samples. These results show the necessity of raising awareness of DON contamination in people from Northwestern China to protect their health from the risk of exposure to DON.
Collapse
Affiliation(s)
- Yueju Zhao
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Xuanli Guan
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Ying Zong
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Xiaotong Hua
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Fuguo Xing
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Yan Wang
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Fengzhong Wang
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Yang Liu
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| |
Collapse
|
12
|
Increase of Deoxynivalenol during the malting of naturally Fusarium infected Chinese winter wheat. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Jiang D, Chen J, Li F, Li W, Yu L, Zheng F, Wang X. Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong province of China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 11:43-48. [PMID: 29125057 DOI: 10.1080/19393210.2017.1402824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, 100 commercial breads and biscuits were investigated for the occurrence of deoxynivalenol (DON) and its acetylated derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON). The target mycotoxins were determined by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). DON was determined in 95% of the test samples with a mean value of 153.3 µg/kg. Compared with DON, 3-Ac-DON and 15-Ac-DON were far less frequently detected, with mean values of 1.14 and 0.37 µg/kg, respectively. The estimated daily intakes of the sum of DON and its derivatives in breads and biscuits were 0.0059 and 0.0313 µg/kg bw/day, respectively, which was within the group provisional tolerable daily intake of 1.0 µg/kg bw/day set by the Joint FAO/WHO Expert Committee on Food Additives. In the future, systematic monitoring programmes of DON and its derivatives in relevant foodstuffs are still necessary for food safety and human health.
Collapse
Affiliation(s)
- Dafeng Jiang
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Jindong Chen
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Fenghua Li
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Wei Li
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Lianlong Yu
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Fengjia Zheng
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Xiaolin Wang
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| |
Collapse
|
14
|
Qiu J, Dong F, Yu M, Xu J, Shi J. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4536-41. [PMID: 26867679 DOI: 10.1002/jsfa.7670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Fusarium graminearum species complex infects several cereals and causes the reduction of grain yield and quality. Many factors influence the extent of Fusarium infection and mycotoxin levels. Such factors include crop rotation. In the present study, we explored the effect of rice or maize as former crops on mycotoxin accumulation in wheat grains. RESULTS More than 97% of samples were contaminated with deoxynivalenol (DON). DON concentrations in wheat grains from rice and maize rotation fields were 884.37 and 235.78 µg kg(-1) . Zearalenone (ZEN) was detected in 45% of samples which were mainly collected from maize-wheat rotation systems. Fusarium strains were isolated and more F. graminearum sensu stricto (s. str.) isolates were cultured from wheat samples obtained from maize rotation fields. DON levels produced by Fusarium isolates from rice rotation fields were higher than those of samples from maize rotation fields. CONCLUSIONS Rice-wheat rotation favours DON accumulation, while more ZEN contamination may occur in maize-wheat rotation models. Appropriate crop rotation may help to reduce toxin levels in wheat grains. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianbo Qiu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Lab of Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, Jiangsu, China
| | - Fei Dong
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Lab of Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, Jiangsu, China
| | - Mingzheng Yu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Lab of Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, Jiangsu, China
| | - Jianhong Xu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Lab of Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, Jiangsu, China
| | - Jianrong Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
- Key Lab of Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, Jiangsu, China
| |
Collapse
|