1
|
Hardy M, Kashani Zadeh H, Tzouchas A, Vasefi F, MacKinnon N, Bearman G, Sokolov Y, Haughey SA, Elliott CT. Freshness in Salmon by Hand-Held Devices: Methods in Feature Selection and Data Fusion for Spectroscopy. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:2813-2823. [PMID: 39723219 PMCID: PMC11667728 DOI: 10.1021/acsfoodscitech.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 12/28/2024]
Abstract
Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted K-nearest neighbors, and an ensemble bagged tree method. Dual-mode data fusion returned almost perfect accuracies (mean = 99.5 ± 0.51%), while single-mode ML analyses (fluorescence, visible absorbance, and NIR absorbance) returned lower mean accuracies at greater spread (77.1 ± 10.1%). Single-mode fluorescence accuracy was especially poor; however, via principal component analysis, we found that a truncated fluorescence data set of four variables (wavelengths) could predict "fresh" and "spoilt" salmon fillet based on a subtle peak redshift as the fillet aged, albeit marginally short of statistical significance (95% confidence ellipse). Thus, whether by feature selection of one spectral data set, or the combination of multiple data sets through different modes, this study lays the foundation for better determination of fish freshness within the context of rapid spectroscopic analyses.
Collapse
Affiliation(s)
- Mike Hardy
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| | - Hossein Kashani Zadeh
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
- Biomedical
Engineering Program, University of North
Dakota, Grand Forks, North Dakota 58202, United States
| | - Angelis Tzouchas
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Fartash Vasefi
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Nicholas MacKinnon
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Gregory Bearman
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Yaroslav Sokolov
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Simon A. Haughey
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| | - Christopher T. Elliott
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| |
Collapse
|
2
|
Abou El Karam S, Ferrand M, El Jabri M, Vautier A, Carlier M, Germond A, Astruc T. Influence of sodium chloride on muscle UV autofluorescence characteristics. Food Chem 2023; 410:135352. [PMID: 36623466 DOI: 10.1016/j.foodchem.2022.135352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Salted and tumbled pork teres major muscle samples, with varying sodium chloride content (1.1 % to 1.9 %), were examined by UV fluorescence spectroscopy. Results indicated that muscle fluorescence varies with salt level as a consequence of the protein denaturation state. The 1.5 % NaCl level was the threshold beyond which the fluorescence properties no longer changed markedly. Changes in muscle fluorescence do not appear to be linearly related to salt levels. Hence, we explored whether the change in fluorescence relies on other factors relating to the variability of carcass characteristics and on muscle physicochemical changes that are partly dependent on stress response and on postmortem metabolism evolution.
Collapse
Affiliation(s)
| | - Maxime Ferrand
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | | | - Antoine Vautier
- IFIP, 7 Avenue Général de Gaulle, 94700 Maison Alfort, France
| | - Martine Carlier
- IFIP, 7 Avenue Général de Gaulle, 94700 Maison Alfort, France
| | - Arnaud Germond
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Thierry Astruc
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
3
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Compr Rev Food Sci Food Saf 2023; 22:107-134. [PMID: 36318404 DOI: 10.1111/1541-4337.13064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
For years, various thawing technologies based on pressure, ultrasound, electromagnetic energy, and electric field energy have been actively investigated to minimize the amount of drip and reduce the quality deterioration of muscle foods during thawing. However, existing thawing technologies have limitations in practical applications due to their high costs and technical defects. Therefore, key factors of thawing technologies must be comprehensively analyzed, and their effects must be systematically evaluated by the quality indexes of muscle foods. In this review, the principles and key factors of thawing techniques are discussed, with an emphasis on combinations of thawing technologies. Furthermore, the application effects of thawing technologies in muscle foods are systematically evaluated from the viewpoints of eating quality and microbial and chemical stability. Finally, the disadvantages of the existing thawing technologies and the development prospects of tempering technologies are highlighted. This review can be highly instrumental in achieving more ideal thawing goals.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Xue SS, Tan J. Rapid and non-destructive composition analysis of cereal flour blends by front-face synchronous fluorescence spectroscopy. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Saleem A, Sahar A, Pasha I, Shahid M. Determination of Adulteration of Chicken Meat into Minced Beef Mixtures using Front Face Fluorescence Spectroscopy Coupled with Chemometric. Food Sci Anim Resour 2022; 42:672-688. [PMID: 35855273 PMCID: PMC9289803 DOI: 10.5851/kosfa.2022.e29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to explore the potential of front face fluorescence spectroscopy (FFFS) as rapid, non-destructive and inclusive technique along with multi-variate analysis for predicting meat adulteration. For this purpose (FFFS) was used to discriminate pure minced beef meat and adulterated minced beef meat containing (1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) of chicken meat as an adulterant in uncooked beef meat samples. Fixed excitation (290 nm, 322 nm, and 340 nm) and fixed emission (410 nm) wavelengths were used for performing analysis. Fluorescence spectra were acquired from pure and adulterated meat samples to differentiate pure and binary mixtures of meat samples. Principle component analysis, partial least square regression and hierarchical cluster analysis were used as chemometric tools to find out the information from spectral data. These chemometric tools predict adulteration in minced beef meat up to 10% chicken meat but are not good in distinguishing adulteration level from 1% to 5%. The results of this research provide baseline for future work for generating spectral libraries using larger datasets for on-line detection of meat authenticity by using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Asima Saleem
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Corresponding author: Amna Sahar, National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture Faisalabad 38000, Pakistan, Tel: +92-03326959611, E-mail:
| | - Imran Pasha
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods 2022; 11:foods11131897. [PMID: 35804712 PMCID: PMC9265959 DOI: 10.3390/foods11131897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affected by micro-organisms and endogenous enzymes, fish are highly perishable during storage, processing and transportation. Efficient evaluation of fish freshness to ensure consumer safety and reduce raw material losses has received an increasing amount of attention. Several of the conventional freshness assessment techniques have plenty of shortcomings, such as being destructive, time-consuming and laborious. Recently, various sensors and spectroscopic techniques have shown great potential due to rapid analysis, low sample preparation and cost-effectiveness, and some methods are especially non-destructive and suitable for online or large-scale operations. Non-destructive techniques typically respond to characteristic substances produced by fish during spoilage without destroying the sample. In this review, we summarize, in detail, the principles and applications of emerging approaches for assessing fish freshness including visual indicators derived from intelligent packaging, active sensors, nuclear magnetic resonance (NMR) and optical spectroscopic techniques. Recent developments in emerging technologies have demonstrated their advantages in detecting fish freshness, but some challenges remain in popularization, optimizing sensor selectivity and sensitivity, and the development of algorithms and chemometrics in spectroscopic techniques.
Collapse
|
8
|
Zhuang Q, Peng Y, Yang D, Wang Y, Zhao R, Chao K, Guo Q. Detection of frozen pork freshness by fluorescence hyperspectral image. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110840] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Fan KJ, Su WH. Applications of Fluorescence Spectroscopy, RGB- and MultiSpectral Imaging for Quality Determinations of White Meat: A Review. BIOSENSORS 2022; 12:bios12020076. [PMID: 35200337 PMCID: PMC8869398 DOI: 10.3390/bios12020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 05/12/2023]
Abstract
Fluorescence spectroscopy, color imaging and multispectral imaging (MSI) have emerged as effective analytical methods for the non-destructive detection of quality attributes of various white meat products such as fish, shrimp, chicken, duck and goose. Based on machine learning and convolutional neural network, these techniques can not only be used to determine the freshness and category of white meat through imaging and analysis, but can also be used to detect various harmful substances in meat products to prevent stale and spoiled meat from entering the market and causing harm to consumer health and even the ecosystem. The development of quality inspection systems based on such techniques to measure and classify white meat quality parameters will help improve the productivity and economic efficiency of the meat industry, as well as the health of consumers. Herein, a comprehensive review and discussion of the literature on fluorescence spectroscopy, color imaging and MSI is presented. The principles of these three techniques, the quality analysis models selected and the research results of non-destructive determinations of white meat quality over the last decade or so are analyzed and summarized. The review is conducted in this highly practical research field in order to provide information for future research directions. The conclusions detail how these efficient and convenient imaging and analytical techniques can be used for non-destructive quality evaluation of white meat in the laboratory and in industry.
Collapse
|
10
|
Xie JY, Tan J, Tang SH, Wang Y. Fluorescence quenching by competitive absorption between solid foods: Rapid and non-destructive determination of maize flour adulterated in turmeric powder. Food Chem 2021; 375:131887. [PMID: 34952388 DOI: 10.1016/j.foodchem.2021.131887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Fluorescence quenching induced by competitive absorption between different components of solid foods was observed for the first time. By using front-face synchronous fluorescence spectroscopy (FFSFS) and fluorescence titration, competitive absorption between maize flour and turmeric powder was proven to occur between phenolic acids in maize flour and curcumin in turmeric powder. FFSFS was applied for the rapid and non-destructive determination of maize flour adulterated in turmeric powder. Prediction models were constructed by partial least square (PLS) regression based on unfolded total synchronous fluorescence spectra, and were validated by five-fold cross-validation and external validation, with the determination coefficient of prediction (Rp2) greater than 0.95, root mean square error of prediction (RMSEP) < 6%, relative error of prediction (REP) < 15% and residual predictive deviation (RPD) greater than 5. The limit of detection (LOD) of maize flour was approximately 9%. In addition, most relative errors for test samples were from -20% to 20%.
Collapse
Affiliation(s)
- Jing-Ya Xie
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Jin Tan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Shu-Hua Tang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Ying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| |
Collapse
|
11
|
Rossi G, Durek J, Ojha S, Schlüter OK. Fluorescence-based characterisation of selected edible insect species: Excitation emission matrix (EEM) and parallel factor (PARAFAC) analysis. Curr Res Food Sci 2021; 4:862-872. [PMID: 34917946 PMCID: PMC8646056 DOI: 10.1016/j.crfs.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Fluorescence spectroscopy coupled with chemometric tools is a powerful analytical method, largely used for rapid food quality and safety evaluations. However, its potential has not yet been explored in the novel food sector. In the present study, excitation emission matrices (EEMs) of 15 insect powders produced by milling insects belonging to 5 Orthoptera species (Acheta domesticus, Gryllus assimilis, Gryllus bimaculatus, Locusta migratoria, Schistocerca gregaria) from 3 different origins were investigated. Parallel factor (PARAFAC) analysis performed on the overall averaged dataset was validated for five components, highlighting the presence of five different fluorescence peaks. The presence of these peaks was confirmed on each species, suggesting that fluorescence compounds of edible insects are the same in several species. PARAFAC analysis performed on the overall averaged dataset after alternatively adding the EEM recorded from one standard compound allowed to speculate that edible insects fluorescence raises from mixtures of: tryptophan + tyrosine (PARAFAC component-1), tryptophan + tyrosine + tocopherol (PARAFAC component-2), collagen + pyridoxine + pterins (PARAFAC component-3). This study suggests that fluorescence spectroscopy may represent a powerful method for investigating composition and quality of insect-based foods. Fluorescence landscape of edible insects comprises of 5 different peaks. Similar fluorescence compounds are present among several Orthoptera species. Fluorescence peaks of edible insects result from several chemical molecules. Fluorescence intensity of edible insects depends on their species and origin.
Collapse
Affiliation(s)
- G Rossi
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - J Durek
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - S Ojha
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - O K Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.,Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| |
Collapse
|
12
|
Xue SS, Tan J, Xie JY, Li MF. Rapid, simultaneous and non-destructive determination of maize flour and soybean flour adulterated in quinoa flour by front-face synchronous fluorescence spectroscopy. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Classification of sea bream (Sparus aurata) fillets subjected to freeze-thaw cycles by using front-face fluorescence spectroscopy. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Abeyrathne EDNS, Nam K, Ahn DU. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants (Basel) 2021; 10:antiox10101587. [PMID: 34679722 PMCID: PMC8533275 DOI: 10.3390/antiox10101587] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023] Open
Abstract
Lipid oxidation is the most crucial quality parameter in foods. Many methods were developed to determine the level of oxidation and antioxidant activity. This review compares the methods used to determine lipid oxidation and antioxidant capacity in foods. Lipid oxidation methods developed are based on the direct or indirect measurement of produced primary or secondary oxidation substances. Peroxide values and conjugated diene methods determine the primary oxidative products of lipid oxidation and are commonly used for plant oils and high-fat products. 2-Thiobarbituric acid-reactive substances and chromatographic methods are used to determine the secondary products of oxidation and are suitable for meat and meat-based products. The fluorometric and sensory analyses are indirect methods. The antioxidant capacity of additives is determined indirectly using the lipid oxidation methods mentioned above or directly based on the free-radical scavenging activity of the antioxidant compounds. Each lipid oxidation and antioxidant capacity methods use different approaches, and one method cannot be used for all foods. Therefore, selecting proper methods for specific foods is essential for accurately evaluating lipid oxidation or antioxidant capacity.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka;
- Department of Animal Science & Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Kichang Nam
- Department of Animal Science & Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
15
|
Vilkova D, Kondratenko E, Chèné C, Karoui R. Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Tan J, Li MF, Li R, Jiang ZT, Tang SH, Wang Y. Front-face synchronous fluorescence spectroscopy for rapid and non-destructive determination of free capsanthin, the predominant carotenoid in chili (Capsicum annuum L.) powders based on aggregation-induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119696. [PMID: 33774412 DOI: 10.1016/j.saa.2021.119696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Capsanthin is the major natural carotenoid pigment in red chili pepper possessing important bioactivity. Its conventional determination method is high performance liquid chromatography (HPLC) with complex and tedious sample pretreatment. In this study, synchronous front-face fluorescence spectroscopy (FFFS) was applied for the fast and non-invasive detection of free capsanthin in chili powders. Although capsanthin was only weak fluorescent in solution state, it showed strong fluorescence in two separated regions in front-face geometry which could also be clearly observed in chili powders. The mechanisms of these emissions are revealed to be aggregation-induced emission (AIE) and J-aggregate formation (JAF). The free capsanthin in 85 chili powder samples were determined by HPLC as in the range of 0.6-3.0 mg/g. The total synchronous FFFS spectra of these samples were scanned. Simple first-order models were built by partial least square regression (PLSR), and were validated by 5-fold cross-validation and external validation. The coefficients of determination (R2) were higher than 0.9, and the root mean square errors (RMSE) were less than 0.2 mg/g. The relative error of prediction (REP) was 9.9%, and the residual predictive deviation (RPD) was 3.7. The method was applied for the estimation of free capsanthin in several real-world samples with satisfactory analytical results. The average relative error to HPLC reference values was -11.8%.
Collapse
Affiliation(s)
- Jin Tan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Ming-Fen Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Rong Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Zi-Tao Jiang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Shu-Hua Tang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Ying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| |
Collapse
|
17
|
Wang X, Lin ZZ, Hong CY, Huang ZY. Colorimetric detection of hypoxanthine in aquatic products based on the enzyme mimic of cobalt-doped carbon nitride. NEW J CHEM 2021. [DOI: 10.1039/d1nj03467g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A colorimetric method for the rapid detection of Hx in aquatic products was established based on the peroxidase-like activity of cobalt-doped graphite phase carbon nitride (Co-doped-g-C3N4).
Collapse
Affiliation(s)
- Xin Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zheng-Zhong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Cheng-Yi Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zhi-Yong Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
18
|
Emerging Techniques for Differentiation of Fresh and Frozen-Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020; 25:molecules25194472. [PMID: 33003382 PMCID: PMC7582365 DOI: 10.3390/molecules25194472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023] Open
Abstract
Fish and other seafood products have a limited shelf life due to favorable conditions for microbial growth and enzymatic alterations. Various preservation and/or processing methods have been developed for shelf-life extension and for maintaining the quality of such highly perishable products. Freezing and frozen storage are among the most commonly applied techniques for this purpose. However, frozen–thawed fish or meat are less preferred by consumers; thus, labeling thawed products as fresh is considered a fraudulent practice. To detect this kind of fraud, several techniques and approaches (e.g., enzymatic, histological) have been commonly employed. While these methods have proven successful, they are not without limitations. In recent years, different emerging methods have been investigated to be used in place of other traditional detection methods of thawed products. In this context, spectroscopic techniques have received considerable attention due to their potential as being rapid and non-destructive analytical tools. This review paper aims to summarize studies that investigated the potential of emerging techniques, particularly those based on spectroscopy in combination with chemometric tools, to detect frozen–thawed muscle foods.
Collapse
|
19
|
Assessment of fish freshness based on fluorescence measurement of mitochondrial membrane potential. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Sun J, Zhang R, Zhang Y, Liang Q, Zhang F, Xu P, Li G. Evaluation of fish freshness using impedance spectroscopy based on the characteristic parameter of orthogonal direction difference. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4124-4131. [PMID: 32329072 DOI: 10.1002/jsfa.10435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a nondestructive testing technology, electrochemical impedance spectroscopy (EIS) has been applied to evaluate food quality because of its features of rapidity, low cost, nondestructiveness and portability. However, fish freshness evaluation based on existing EIS technology is affected by the differences of individual biological samples. In this study, the difference of electrical properties between two orthogonal directions was extracted to develop a new freshness indicator. A real part orthogonal direction difference parameter set (RODDS) was used to establish a prediction model for total volatile basic nitrogen (TVB-N). RESULTS Compared with the traditional parameter of EIS, coefficient of determination between RODDS and TVB-N increased from 0.55 to 0.71 for the calibration group, and root mean squared error between predicted and measured values of TVB-N decreased from 5.46 to 3.81 for the test group. CONCLUSIONS The results implied that RODDS could effectively offset individual differences in basic electrical properties and improve the TVB-N prediction accuracy in practical application scenarios with samples from multiple origins. The proposed method may provide a new idea for the development and improvement of EIS-based portable testing devices for fish and meat. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
- School of Information Engineering, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Yecheng Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| | - Peifeng Xu
- School of Information Engineering, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Guoxiao Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Boughattas F, Vilkova D, Kondratenko E, Karoui R. Targeted and untargeted techniques coupled with chemometric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 °C. Food Chem 2020; 312:126000. [DOI: 10.1016/j.foodchem.2019.126000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/26/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022]
|
22
|
Hassoun A, Cropotova J, Rustad T, Heia K, Lindberg SK, Nilsen H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2410. [PMID: 32340297 PMCID: PMC7219502 DOI: 10.3390/s20082410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
In this work, the potential of spectroscopic techniques was studied to investigate heat-induced changes occurring during the application of thermal treatments on cod (Gadus morhua L.) fillets. Vacuum-packed samples were thermally treated in a water bath at 50, 60, 70 and 80 °C for 5 and 10 min, and further stored for one, four, and eight days at 4 ± 1 °C before analysis. Several traditional (including cooking loss, drip loss, texture, protein solubility, protein oxidation, and color) and spectroscopic (fluorescence and diffuse reflectance hyperspectral imaging) measurements were conducted on the same samples. The results showed a decrease in fluorescence intensity with increasing cooking temperature and storage time, while the impact of cooking time was only noticeable at low temperatures. Diffuse reflectance data exhibited a decrease in absorbance, possibly as a result of protein denaturation and increased scattering at higher cooking temperatures. Both fluorescence and diffuse reflectance data were highly correlated with color parameters, whereas moderate correlations were observed with most other traditional parameters. Support vector machine models performed better than partial least square ones for both classification of cod samples cooked at different temperatures and in prediction of the cooking temperature. The best classification result was obtained on fluorescence data, achieving an accuracy of 92.5%, while the prediction models resulted in a root mean square error of prediction of cooking temperature lower than 5 °C. Overall, the classification and prediction models showed good results, indicating that spectroscopic techniques, especially fluorescence hyperspectral imaging, have a high potential for monitoring thermal treatments in cod fillets.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | - Janna Cropotova
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7941 Trondheim, Norway; (J.C.); (T.R.)
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7941 Trondheim, Norway; (J.C.); (T.R.)
| | - Karsten Heia
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | - Stein-Kato Lindberg
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | - Heidi Nilsen
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| |
Collapse
|
23
|
Non-Targeted Identification of Brine Covered Canned Tuna Species Using Front-Face Fluorescence Spectroscopy Combined with Chemometric Tools. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01638-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Analysis of Proteins Associated with Quality Deterioration of Grouper Fillets Based on TMT Quantitative Proteomics during Refrigerated Storage. Molecules 2019; 24:molecules24142641. [PMID: 31330849 PMCID: PMC6680736 DOI: 10.3390/molecules24142641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
A TMT (Tandem Mass Tag)-based strategy was applied to elucidate proteins that change in proteomes of grouper fillets during refrigerated storage. In addition, quality analyses on pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) for grouper fillets were performed. A total of 64 differentially significant expressed proteins (DSEPs) were found in the results in the Day 0 vs. Day 6 group comparison and the Day 0 vs. Day 12 group comparison. It is worth mentioning that more proteome changes were found in the Day 0 vs. Day 12 comparisons. Bioinformatics was utilized to analyze the DSEP. UniProt Knowledgebase (UniProtKB), Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein interaction network analysis were adopted. All DSEPs were classified into seven areas by function: binding proteins, calcium handling, enzymes, heat shock protein, protein turnover, structural proteins and miscellaneous. The numbers of proteins that correlated closely with pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) were 4, 3, 6 and 8, respectively.
Collapse
|
25
|
Rahman MM, Shibata M, ElMasry G, Nakazawa N, Nakauchi S, Hagiwara T, Osako K, Okazaki E. Expeditious prediction of post-mortem changes in frozen fish meat using three-dimensional fluorescence fingerprints. Biosci Biotechnol Biochem 2019; 83:901-913. [DOI: 10.1080/09168451.2019.1569494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
The present study was conducted to characterize fluorophores in the fish body using three-dimensional fluorescence fingerprints (3D-FFs) and to utilize these 3D-FFs obtained from frozen horse mackerel (Trachurus japonicus) fillets to predict early post-mortem changes. Alive fish were sacrificed instantly, preserved in ice until 2 days, and then filleted, vacuum packed, and frozen. Subsequently, 3D-FFs of the frozen fillets were acquired using F-7000 aided with a fiber probe. Post-mortem freshness changes were tracked by measuring adenylate energy charge (AEC) values and nicotinamide adenine dinucleotide (NAD and NADH) content. Partial least squares regression models for predicting AEC values and NADH content in frozen fish meat showed good fittings, with R2 of 0.90 and 0.85, by utilizing eight and five excitation wavelengths, respectively, based on their fluorescence features acquired from standard fluorophores. This novel approach of 3D-FFs could be utilized as an efficient technique for at-line monitoring of frozen fish quality.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Fisheries Technology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Gamal ElMasry
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Naho Nakazawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Emiko Okazaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
26
|
Karuk Elmas ŞN, Arslan FN, Akin G, Kenar A, Janssen HG, Yilmaz I. Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold–pressed grape seed oil adulteration: Qualitative and quantitative study. Talanta 2019; 196:22-31. [DOI: 10.1016/j.talanta.2018.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
27
|
Tan J, Li R, Jiang ZT, Tang SH, Wang Y. Rapid and non-destructive prediction of methylxanthine and cocoa solid contents in dark chocolate by synchronous front-face fluorescence spectroscopy and PLSR. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Hassoun A, Sahar A, Lakhal L, Aït-Kaddour A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.12.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Classifying fish freshness according to the relationship between EIS parameters and spoilage stages. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Kumar K, Tarai M, Mishra AK. Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Aït-Kaddour A, Loudiyi M, Ferlay A, Gruffat D. Performance of fluorescence spectroscopy for beef meat authentication: Effect of excitation mode and discriminant algorithms. Meat Sci 2017; 137:58-66. [PMID: 29154219 DOI: 10.1016/j.meatsci.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 07/12/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
This study evaluated the performance of classical front face (FFFS) and synchronous (SFS) fluorescence spectroscopy combined with Partial Least Square Discriminant Analysis (PLSDA), Support Vector Machine associated with PLS (PLS-SVM) and Principal Components Analysis (PCA-SVM) to discriminate three beef muscles (Longissimus thoracis, Rectus abdominis and Semitendinosus). For the FFFS, 5 excitation wavelengths were investigated, while 6 offsets were studied for SFS. Globally, the results showed a good discrimination between muscles with Recall and Precision between 47.82 and 94.34% and Error ranging from 6.03 to 32.39%. For the FFFS, the PLS-SVM with the 382nm excitation wavelength gave the best discrimination results (Recall, Precision and Error of 94.34%, 89.53% and 6.03% respectively). For SFS, when performing discrimination of the three muscles, the 120nm offset gave the highest Recall and Precision (from 57.66% to 94.99%) and the lowest Error values (from 6.78 to 8.66%) whatever the algorithm (PLSDA, PLS-SVM and PCA-SVM).
Collapse
Affiliation(s)
- A Aït-Kaddour
- Université Clermont Auvergne, VetAgro Sup, 63370 Lempdes, France; Université Clermont Auvergne, INRA, VetAgro Sup, UMR sur le Fromage, UMRF, 15000 Aurillac, France.
| | - M Loudiyi
- Université Clermont Auvergne, VetAgro Sup, 63370 Lempdes, France
| | - A Ferlay
- INRA, UMR Herbivores, Research Centre Auvergne-Rhône-Alpes, 63122 Saint-Genès-Champanelle, France; Clermont University, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - D Gruffat
- INRA, UMR Herbivores, Research Centre Auvergne-Rhône-Alpes, 63122 Saint-Genès-Champanelle, France; Clermont University, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
33
|
Karoui R, Hassoun A, Ethuin P. Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Fluorescence Spectroscopy for the Monitoring of Food Processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 161:121-151. [PMID: 28424827 DOI: 10.1007/10_2017_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Different analytical techniques have been used to examine the complexity of food samples. Among them, fluorescence spectroscopy cannot be ignored in developing rapid and non-invasive analytical methodologies. It is one of the most sensitive spectroscopic approaches employed in identification, classification, authentication, quantification, and optimization of different parameters during food handling, processing, and storage and uses different chemometric tools. Chemometrics helps to retrieve useful information from spectral data utilized in the characterization of food samples. This contribution discusses in detail the potential of fluorescence spectroscopy of different foods, such as dairy, meat, fish, eggs, edible oil, cereals, fruit, vegetables, etc., for qualitative and quantitative analysis with different chemometric approaches.
Collapse
|
35
|
Hassoun A, Karoui R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit Rev Food Sci Nutr 2017; 57:1976-1998. [PMID: 26192079 DOI: 10.1080/10408398.2015.1047926] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although being one of the most vulnerable and perishable products, fish and other seafoods provide a wide range of health-promoting compounds. Recently, the growing interest of consumers in food quality and safety issues has contributed to the increasing demand for sensitive and rapid analytical technologies. Several traditional physicochemical, textural, sensory, and electrical methods have been used to evaluate freshness and authentication of fish and other seafood products. Despite the importance of these standard methods, they are expensive and time-consuming, and often susceptible to large sources of variation. Recently, spectroscopic methods and other emerging techniques have shown great potential due to speed of analysis, minimal sample preparation, high repeatability, low cost, and, most of all, the fact that these techniques are noninvasive and nondestructive and, therefore, could be applied to any online monitoring system. This review describes firstly and briefly the basic principles of multivariate data analysis, followed by the most commonly traditional methods used for the determination of the freshness and authenticity of fish and other seafood products. A special focus is put on the use of rapid and nondestructive techniques (spectroscopic techniques and instrumental sensors) to address several issues related to the quality of these products. Moreover, the advantages and limitations of each technique are reviewed and some perspectives are also given.
Collapse
Affiliation(s)
- Abdo Hassoun
- a Université d'Artois, Institut Régional en Agroalimentaire et Biotechnologie Charles Violette, Equipe Qualité et Sécurité des Aliments (QSA), Unité Ingénierie de Formulation des Aliments et Altération (IFAA), Faculté des Sciences Jean-Perrin , Lens , France
| | - Romdhane Karoui
- a Université d'Artois, Institut Régional en Agroalimentaire et Biotechnologie Charles Violette, Equipe Qualité et Sécurité des Aliments (QSA), Unité Ingénierie de Formulation des Aliments et Altération (IFAA), Faculté des Sciences Jean-Perrin , Lens , France
| |
Collapse
|
36
|
Diop M, Watier D, Masson PY, Diouf A, Amara R, Grard T, Lencel P. Assessment of freshness and freeze-thawing of sea bream fillets (Sparus aurata) by a cytosolic enzyme: Lactate dehydrogenase. Food Chem 2016; 210:428-34. [DOI: 10.1016/j.foodchem.2016.04.136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/23/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022]
|
37
|
The effects of tangerine peel ( Citri reticulatae pericarpium ) essential oils as glazing layer on freshness preservation of bream ( Megalobrama amblycephala ) during superchilling storage. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Ahmad MH, Nache M, Waffenschmidt S, Hitzmann B. Characterization of farinographic kneading process for different types of wheat flours using fluorescence spectroscopy and chemometrics. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Hassoun A, Karoui R. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques. Food Chem 2016; 200:343-53. [DOI: 10.1016/j.foodchem.2016.01.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 12/06/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
40
|
Abstract
The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle.
Collapse
Affiliation(s)
- Zou Xiaobo
- Agricultural Product Processing and Storage Lab
- School of Food and Biological Engineering
- Key Laboratory of Modern Agriculture Equipment and Technology
- Jiangsu University
- Zhenjiang
| | - Huang Xiaowei
- Agricultural Product Processing and Storage Lab
- School of Food and Biological Engineering
- Key Laboratory of Modern Agriculture Equipment and Technology
- Jiangsu University
- Zhenjiang
| | - Malcolm Povey
- School of Food Science and Nutrition
- the University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|
41
|
Sahar A, Rahman UU, Kondjoyan A, Portanguen S, Dufour E. Monitoring of thermal changes in meat by synchronous fluorescence spectroscopy. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2015.07.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation–emission matrix. Talanta 2015; 143:145-156. [DOI: 10.1016/j.talanta.2015.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/23/2022]
|