1
|
Abd El-Ghany WA. A Natural Feed Additive Phytobiotic, Pomegranate ( Punica granatum L.), and the Health Status of Poultry. MACEDONIAN VETERINARY REVIEW 2023; 0. [DOI: 10.2478/macvetrev-2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Abstract
The addition of antibiotic growth promotors in poultry diets results in a development of resistant bacterial strains and accumulation of drug residues in the meat and eggs. The new trend in poultry industry is the dietary addition of natural feed additives including phytobiotics. Pomegranate (Punica granatum L.) is a natural cheap feed source that has been extensively used in the livestock production. In poultry production system, pomegranate by-products such as peel powder or extract, seed oil, or juice showed high nutritional values, several health benefits, and good economic profits. Pomegranate displays a growth promoting effect and an enhancement of carcass traits of broilers, along with an improvement of the egg production traits parameters. Moreover, dietary pomegranate by-products showed a potential antioxidant and antimicrobial effects on the treated birds. Modulation of both humeral and cell mediated immune response, hypo-lipidemia, as well as enhancement of liver functions have been proved following dietary treatment with different pomegranate by-products. Therefore, this review article was designed to present the different effects of dietary pomegranate by-products on the production indices of broilers and layers, the antioxidant, antimicrobial, and immune status, as well as the blood parameters.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- 1 Poultry Diseases Department, Faculty of Veterinary Medicine , Cairo University , Giza , Egypt
| |
Collapse
|
2
|
López-Romero JC, García-Dávila J, Peña-Ramos EA, González-Ríos H, Valenzuela-Melendres M, Osoria M, Juneja VK. Effect of Citral on the Thermal Inactivation of Escherichia coli O104:H4 in Ground Beef. J Food Prot 2022; 85:1635-1639. [PMID: 35776056 DOI: 10.4315/jfp-22-086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The objective of the present study was to analyze the combined effect of heat treatment (55 to 62.5°C) and citral (0 to 3%) on the heat resistance of Escherichia coli O104:H4 inoculated into ground beef. Inoculated meat packages were immersed in a circulating water bath stabilized at 55, 57.5, 60, or 62.5°C for various times. The surviving microbial cells were counted after culture on tryptic soy agar. A factorial design (4 × 4) was used to analyze the effects and interaction of heat treatment and citral. Heat and citral promoted E. coli O104:H4 thermal inactivation, suggesting a synergistic effect. At 55°C, the incorporation of citral at 1, 2, and 3% decreased D-values (control = 42.75 min) by 85, 89, and 91%, respectively (P < 0.05). A citral concentration-dependent effect (P < 0.05) also was noted at other evaluated temperatures. These findings could be of value to the food industry for designing a safe thermal process for inactivating E. coli O104:H4 in ground beef under similar thermal inactivation conditions. HIGHLIGHTS
Collapse
Affiliation(s)
| | - Jimena García-Dávila
- LIPMAN Family Farms, Boulevard Antonio Quiroga 107i, 83174 Hermosillo, Sonora, México
| | - Etna Aida Peña-Ramos
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304 Hermosillo, Sonora, México
| | - Humberto González-Ríos
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304 Hermosillo, Sonora, México
| | - Martín Valenzuela-Melendres
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304 Hermosillo, Sonora, México
| | - Marangeli Osoria
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19308, USA
| | - Vijay K Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19308, USA
| |
Collapse
|
3
|
|
4
|
van Boekel MAJS. To pool or not to pool: That is the question in microbial kinetics. Int J Food Microbiol 2021; 354:109283. [PMID: 34140188 DOI: 10.1016/j.ijfoodmicro.2021.109283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
Variation observed in heat inactivation of Salmonella strains (data from Combase) was characterized using multilevel modeling with two case studies. One study concerned repetitions at one temperature, the other concerned isothermal experiments at various temperatures. Multilevel models characterize variation at various levels and handle dependencies in the data. The Weibull model was applied using Bayesian regression. The research question was how parameters varied with experimental conditions and how data can best be analyzed: no pooling (each experiment analyzed separately), complete pooling (all data analyzed together) or partial pooling (connecting the experiments while allowing for variation between experiments). In the first case study, level 1 consisted of the measurements, level 2 of the group of repetitions. While variation in the initial number parameter was low (set by the researchers), the Weibull shape factor varied for each repetition from 0.58-1.44, and the rate parameter from 0.006-0.074 h. With partial pooling variation was much less, with complete pooling variation was strongly underestimated. In the second case study, level 1 consisted of the measurements, level 2 of the group of repetitions per temperature experiment, level 3 of the cluster of various temperature experiments. The research question was how temperature affected the Weibull parameters. Variation in initial numbers was low (set by the researchers), the rate parameter was obviously affected by temperature, the estimate of the shape parameter depended on how the data were analyzed. With partial pooling, and one-step global modeling with a Bigelow-type model for the rate parameter, shape parameter variation was minimal. Model comparison based on prediction capacity of the various models was explored. The probability distribution of calculated decimal reduction times was much narrower using multilevel global modeling compared to the usual single level two-step approach. Multilevel modeling of microbial heat inactivation appears to be a suitable and powerful method to characterize and quantify variation at various levels. It handles possible dependencies in the data, and yields unbiased parameter estimates. The answer on the question "to pool or not to pool" depends on the goal of modeling, but if the goal is prediction, then partial pooling using multilevel modeling is the answer, provided that the experimental data allow that.
Collapse
Affiliation(s)
- M A J S van Boekel
- Food Quality & Design Group, Wageningen University & Research, the Netherlands.
| |
Collapse
|
5
|
Pennone V, Barron UG, Hunt K, Cadavez V, McAuliffe O, Butler F. Omnibus Modeling of Listeria monocytogenes Growth Rates at Low Temperatures. Foods 2021; 10:foods10051099. [PMID: 34063480 PMCID: PMC8156314 DOI: 10.3390/foods10051099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Listeria monocytogenes is a pathogen of considerable public health importance with a high case fatality. L. monocytogenes can grow at refrigeration temperatures and is of particular concern for ready-to-eat foods that require refrigeration. There is substantial interest in conducting and modeling shelf-life studies on L. monocytogenes, especially relating to storage temperature. Growth model parameters are generally estimated from constant-temperature growth experiments. Traditionally, first-order and second-order modeling (or primary and secondary) of growth data has been done sequentially. However, omnibus modeling, using a mixed-effects nonlinear regression approach, can model a full dataset covering all experimental conditions in one step. This study compared omnibus modeling to conventional sequential first-order/second-order modeling of growth data for five strains of L. monocytogenes. The omnibus model coupled a Huang primary model for growth with secondary models for growth rate and lag phase duration. First-order modeling indicated there were small significant differences in growth rate depending on the strain at all temperatures. Omnibus modeling indicated smaller differences. Overall, there was broad agreement between the estimates of growth rate obtained by the first-order and omnibus modeling. Through an appropriate choice of fixed and random effects incorporated in the omnibus model, potential errors in a dataset from one environmental condition can be identified and explored.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (V.P.); (O.M.)
| | - Ursula-Gonzales Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (U.G.-B.); (V.C.)
| | - Kevin Hunt
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (U.G.-B.); (V.C.)
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (V.P.); (O.M.)
| | - Francis Butler
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland;
- Correspondence:
| |
Collapse
|
6
|
Melgarejo-Sánchez P, Núñez-Gómez D, Martínez-Nicolás JJ, Hernández F, Legua P, Melgarejo P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: a review. BIORESOUR BIOPROCESS 2021; 8:2. [PMID: 38650225 PMCID: PMC10973758 DOI: 10.1186/s40643-020-00351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pomegranate (Punica granatum L.) belongs to the Punicaceae plant family. It is an important fruit due to its nutritional and medicinal properties. Pomegranates are widely distributed around the world and, therefore, have a broad genetic diversity, resulting in differences in their phytochemical composition. The scientific community has focused on the positive health effects of pomegranate as a whole, but the different varieties have rarely been compared according to their bioactive compounds and bioactivity. This review aims to provide a holistic overview of the current knowledge on the bioactivity of pomegranate trees, with an emphasis on differentiating both the varieties and the different plant parts. This review intends to provide a general and organized overview of the accumulated knowledge on pomegranates, the identification of the most bioactive varieties, their potential consumption pathways and seeks to provide knowledge on the present gaps to guide future research.
Collapse
Affiliation(s)
- Pablo Melgarejo-Sánchez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Dámaris Núñez-Gómez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain.
| | - Juan J Martínez-Nicolás
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Francisca Hernández
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pilar Legua
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pablo Melgarejo
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| |
Collapse
|
7
|
Magangana TP, Makunga NP, Fawole OA, Opara UL. Processing Factors Affecting the Phytochemical and Nutritional Properties of Pomegranate ( Punica granatum L.) Peel Waste: A Review. Molecules 2020; 25:E4690. [PMID: 33066412 PMCID: PMC7587354 DOI: 10.3390/molecules25204690] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Pomegranate peel has substantial amounts of phenolic compounds, such as hydrolysable tannins (punicalin, punicalagin, ellagic acid, and gallic acid), flavonoids (anthocyanins and catechins), and nutrients, which are responsible for its biological activity. However, during processing, the level of peel compounds can be significantly altered depending on the peel processing technique used, for example, ranging from 38.6 to 50.3 mg/g for punicalagins. This review focuses on the influence of postharvest processing factors on the pharmacological, phytochemical, and nutritional properties of pomegranate (Punica granatum L.) peel. Various peel drying strategies (sun drying, microwave drying, vacuum drying, and oven drying) and different extraction protocols (solvent, super-critical fluid, ultrasound-assisted, microwave-assisted, and pressurized liquid extractions) that are used to recover phytochemical compounds of the pomegranate peel are described. A total phenolic content of 40.8 mg gallic acid equivalent (GAE)/g DM was recorded when sun drying was used, but the recovery of the total phenolic content was higher at 264.3 mg TAE/g when pressurised liquid extraction was performed. However, pressurised liquid extraction is costly due to the high initial investment costs and the limited possibility of carrying out selective extractions of organic compounds from complex peel samples. The effects of these methods on the phytochemical profiles of pomegranate peel extracts are also influenced by the cultivar and conditions used, making it difficult to determine best practice. For example, oven drying at 60 °C resulted in higher levels of punicalin of 888.04 mg CE/kg DM compared to those obtained 40 °C of 768.11 mg CE/kg DM for the Wonderful cultivar. Processes that are easy to set up, cost-effective, and do not compromise the quality and safety aspects of the peel are, thus, more desirable. From the literature survey, we identified a lack of studies testing pretreatment protocols that may result in a lower loss of the valuable biological compounds of pomegranate peels to allow for full exploitation of their health-promoting properties in potentially new value-added products.
Collapse
Affiliation(s)
- Tandokazi Pamela Magangana
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.)
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Nokwanda Pearl Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.)
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa;
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
8
|
Nath S, Sinha A, Singha YS, Dey A, Bhattacharjee N, Deb B. Prevalence of antibiotic-resistant, toxic metal-tolerant and biofilm-forming bacteria in hospital surroundings. Environ Anal Health Toxicol 2020; 35:e2020018. [PMID: 32979903 PMCID: PMC7656160 DOI: 10.5620/eaht.2020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 01/26/2023] Open
Abstract
The emergence and rapid spread of antibiotic-resistant bacteria due to unethical and non-scientific disposal of hospital wastes and clinical by-products caused an alarming environmental concern and associated public health risks. The present study aims to assess the co-selection of antibiotic resistance and heavy metal tolerance by bacteria isolated from hospital effluents. These isolates were also tested for hemolytic activity, pH-tolerance, thermal inactivation, auto-aggregation, cell-surface hydrophobicity and interaction with other bacteria. The study reports the prevalence of antibiotic-resistant and heavy metal tolerant bacteria in clinical effluents and water samples. Most of these isolates were resistant to vancomycin, clindamycin, ampicillin, rifampicin, penicillin-G, methicillin and cefdinir, and evidenced the production of extended-spectrum β-lactamase enzyme. Toxic metals such as cadmium, copper, iron, lead and zinc also exert a selection pressure towards antibiotic resistance. Pseudomonas aeruginosa strain GCC_19W3, Bacillus sp. strain GCC_19S2 and Achromobacter spanius strain GCC_SB1 showed β-hemolysis, evidenced by the complete breakdown of the red blood cells. Highest auto-aggregation was exhibited by Bacillus sp. strain GCC_19S2; whereas, maximum cell-surface hydrophobicity was displayed by P. aeruginosa strain GCC_19W1. Antagonistic activity by Stenotrophomonas maltophilia strain GCC_19W2, P. aeruginosa strain GCC_19W3 and strains of Achromobacter restricts the growth of other microorganisms by producing some bactericidal substances. The study emphasises undertaking safety measures for the disposal of clinical effluents directly into the environment. The study suggests adopting necessary measures and regulations to restrict the spread of emerging pathogens within the hospital biome and community, which if unnoticed, might pose a significant clinical challenge.
Collapse
Affiliation(s)
- Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
- Bioinformatics Centre, Gurucharan College, Silchar, Assam, India
- Institutional Biotech Hub, Gurucharan College, Silchar, Assam, India
| | - Ahana Sinha
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | | | - Ankita Dey
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | | | - Bibhas Deb
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
- Bioinformatics Centre, Gurucharan College, Silchar, Assam, India
- Institutional Biotech Hub, Gurucharan College, Silchar, Assam, India
| |
Collapse
|
9
|
Kandylis P, Kokkinomagoulos E. Food Applications and Potential Health Benefits of Pomegranate and its Derivatives. Foods 2020; 9:E122. [PMID: 31979390 PMCID: PMC7074153 DOI: 10.3390/foods9020122] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit that is particularly cultivated in west Asia, though it is also cultivated in the Mediterranean region and other parts of the world. Since ancient years, its consumption has been associated with numerous health benefits. In recent years, several in vitro and in vivo studies have revealed its beneficial physiological activities, especially its antioxidative, antimicrobial and anti-inflammatory properties. Furthermore, human-based studies have shown promising results and have indicated pomegranate potential as a protective agent of several diseases. Following that trend and the food industry's demand for antioxidants and antimicrobials from natural sources, the application of pomegranate and its extracts (mainly as antioxidants and antimicrobials), has been studied extensively in different types of food products with satisfactory results. This review aims to present all the recent studies and trends in the applications of pomegranate in the food industry and how these trends have affected product's physicochemical characteristics and shelf-life. In addition, recent in vitro and in vivo studies are presented in order to reveal pomegranate's potential in the treatment of several diseases.
Collapse
Affiliation(s)
- Panagiotis Kandylis
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
10
|
Smaoui S, Hlima HB, Mtibaa AC, Fourati M, Sellem I, Elhadef K, Ennouri K, Mellouli L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci 2019; 158:107914. [PMID: 31437671 DOI: 10.1016/j.meatsci.2019.107914] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
The growing demand for natural food preservatives has promoted investigations on their application for preserving perishable foods. Consequently, the meat market is demanding natural antioxidants, free of synthetic additives and able to diminish the oxidation processes in high-fat meat and meat products. In this context, the present review discuss the development of healthier and shelf stable meat products by the successful use of pomegranate peel extracts containing phenolics as natural preservative agent in meat and meat products. This paper carries out an exhaustive review of the scientific literature on the main active phenolic compounds of pomegranate peel identified and quantified by advances in the separation sciences and spectrometry, and its biological activities evaluation. Moreover, the impact of pomegranate peel use on the quality and oxidative stability of meat products is also evaluated. As natural preservative, pomegranate peel phenolics could improve stored meat products quality, namely instrumental color retaining, limitaion of microflora growth, retardation of lipid and protein oxidation.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Mariam Fourati
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Imen Sellem
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| |
Collapse
|
11
|
Licciardello F, Kharchoufi S, Muratore G, Restuccia C. Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Noritake SM, Liu J, Kanetake S, Levin CE, Tam C, Cheng LW, Land KM, Friedman M. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads. Altern Ther Health Med 2017; 17:461. [PMID: 28903731 PMCID: PMC5598040 DOI: 10.1186/s12906-017-1967-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
Abstract
Background Plants produce secondary metabolites that often possess widespread bioactivity, and are then known as phytochemicals. We previously determined that several phytochemical-rich food-derived preparations were active against pathogenic foodborne bacteria. Trichomonads produce disease (trichomoniasis) in humans and in certain animals. Trichomonads are increasingly becoming resistant to conventional modes of treatment. It is of interest to test bioactive, natural compounds for efficacy against these pathogens. Methods Using a cell assay, black tea, green tea, grape, pomegranate, and jujube extracts, as well as whole dried jujube were tested against three trichomonads: Trichomonas vaginalis strain G3 (found in humans), Tritrichomonas foetus strain D1 (found in cattle), and Tritrichomonas foetus-like organism strain C1 (found in cats). The most effective of the test substances was subsequently tested against two metronidazole-resistant Trichomonas vaginalis strains, and on normal mucosal flora. Results Black tea extract inhibited all the tested trichomonads, but was most effective against the T. vaginalis organisms. Inhibition by black tea was correlated with the total and individual theaflavin content of the two tea extracts determined by HPLC. Metronidazole-resistant Trichomonas vaginalis strains were also inhibited by the black tea extract. The response of the organisms to the remaining preparations was variable and unique. We observed no effect of the black tea extract on common normal flora bacteria. Conclusions The results suggest that the black tea, and to a lesser degree green tea, grape seed, and pomegranate extracts might present possible natural alternative therapeutic agents to treat Trichomonas vaginalis infections in humans and the related trichomonad infections in animals, without negatively affecting the normal flora.
Collapse
|
13
|
Kang JH, Song KB. Effect of pomegranate (Punica granatum
) pomace extract as a washing agent on the inactivation of Listeria monocytogenes
inoculated on fresh produce. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ji-Hoon Kang
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Korea
| | - Kyung Bin Song
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Korea
| |
Collapse
|