1
|
Zheng J, Zhao L, Zhang J, Sheng X. Effect of cold plasma on ochratoxin A detoxification: Response surface, degradation pathways, and cytotoxicity analysis. Food Chem 2025; 477:143595. [PMID: 40023037 DOI: 10.1016/j.foodchem.2025.143595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Ochratoxin A (OTA) is one of the most widely contaminated mycotoxins. Dielectric barrier discharge cold plasma (DBD-CP) holds great potential in mycotoxin degradation. This study aimed to investigate the impact of DBD-CP on OTA degradation, assess the cytotoxicity of its degradation products, and evaluate its influence on wheat quality. Under the optimized DBD-CP conditions, a significant OTA degradation of 94.2 % was achieved within a short treatment time. Five major OTA degradation products were produced after DBD-CP treatment through various reaction pathways, including hydroxylation/dehydroxylation, demethylation, dechlorination, esterification, decarboxylation, and lactone opening, namely C19H17NO7 (P1), C18H17NO5 (P2), C21H21NO7 (P3), C20H19NO6 (P4), and C19H19NO6 (P5). HepG2 cell viability was increased from 50.8 % to 94.7 % after a treatment duration of 3.60 min. Furthermore, DBD-CP removed 71.4 % of OTA from wheat without significantly affecting other physiological properties. Hence, DBD-CP is a promising effective method for OTA detoxification in wheat to ensure human and animal health.
Collapse
Affiliation(s)
- Jiarong Zheng
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Luling Zhao
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianhao Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaowei Sheng
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Ma R, Fan Y, Yang X, Liu C, Wan J, Xu C, Wang R, Feng J, Jiao Z. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116547. [PMID: 38843744 DOI: 10.1016/j.ecoenv.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.
Collapse
Affiliation(s)
- Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Liu
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Jiang J, Zhou X, Chen H, Wang X, Ruan Y, Liu X, Ma J. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134319. [PMID: 38657511 DOI: 10.1016/j.jhazmat.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18β-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
4
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
5
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Qi Y, Yang Y, Hassane Hamadou A, Li B, Xu B. Gentle debranning as a technology to reduce microbial and deoxynivalenol levels in common wheat (Triticum aestivum L.) and its application in milling industry. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Abdel-Aal ES, Miah K. Kinetics of deoxynivalenol flux in wheat kernels steeped in different solutions for improved food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Mahato DK, Pandhi S, Kamle M, Gupta A, Sharma B, Panda BK, Srivastava S, Kumar M, Selvakumar R, Pandey AK, Suthar P, Arora S, Kumar A, Gamlath S, Bharti A, Kumar P. Trichothecenes in food and feed: Occurrence, impact on human health and their detection and management strategies. Toxicon 2022; 208:62-77. [DOI: 10.1016/j.toxicon.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
|
9
|
Yang X, Zhao Z, Wang J, Yang J, E H, Chen B, He P, Tan Y, Zhou C. Occurrence and Risk Assessment of Dietary Exposure to Deoxynivalenol in Wheat-Based Products Based Different Wheat-Producing Area for the Inhabitants in Shanghai, China. J Fungi (Basel) 2021; 7:1015. [PMID: 34946997 PMCID: PMC8703861 DOI: 10.3390/jof7121015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023] Open
Abstract
Deoxynivalenol (DON) is one of the major mycotoxins that contaminate cereals. In this study, we determined the DON level in wheat-based products from Chinese five main production areas collected in Shanghai and calculated the daily intake of DON for inhabitants using the point evaluation and the probabilistic evaluation based on Monte Carlo simulation. The results showed the positive rates of DON in the products were higher than 80.0%, with the concentrations ranging from 41.8 to 1110 µg/kg. The estimated mean daily intakes of DON for 7- to 10-year-old children and adults groups were below 1 µg/kg bw/day, the provisional maximum tolerable daily intake (PMTDI) set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), suggesting no health risks for the consumers. However, the 99th percentiles of dietary DON exposures for children and adults exceeded the PMTDI, indicating adverse health effects might occur if the two groups intake highly contaminated wheat-based products. The potential health risks for the two groups exposed to DON in the wheat-based products from the Middle and Lower Yangtze Valley (MLYV) were higher than those from the other areas in China.
Collapse
Affiliation(s)
- Xianli Yang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
- Shanghai Co-Elite Agro-Food Testing Technical Service Co., Ltd., Shanghai 201106, China
| | - Zhiyong Zhao
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Jianhua Wang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Junhua Yang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Hengchao E
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Bo Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai 200433, China;
| | - Pengzhen He
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157012, China;
| | - Yanglan Tan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Changyan Zhou
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| |
Collapse
|
10
|
Hou L, Tong X, Lin S, Yu M, Ye WC, Xie M. MiR-221/222 Ameliorates Deoxynivalenol-Induced Apoptosis and Proliferation Inhibition in Intestinal Epithelial Cells by Targeting PTEN. Front Cell Dev Biol 2021; 9:652939. [PMID: 34095117 PMCID: PMC8170406 DOI: 10.3389/fcell.2021.652939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelial cells are critical for nutrient absorption and defending against pathogen infection. Deoxynivalenol (Don), the most common mycotoxin, contaminates cereals and food throughout the world, causes serious damage to mammal intestinal mucosa, and appears as intestinal epithelial cell apoptosis and proliferation inhibition. Our previous study has found that milk-derived exosome ameliorates Don-induced intestinal damage, but the mechanism is still not fully understood. In this study, we demonstrated that Don downregulated the expression of miR-221/222 in intestinal epithelial cells, and exosome treatment reversed the inhibitory effect of Don on miR-221/222. Through immunofluorescence and flow cytometry analysis, we identified that miR-221/222 ameliorates Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells. Through bioinformatics analyses and RNA immunoprecipitation analysis, we identified Phosphatase and tensin homolog (PTEN) is the target of miR-221/222. Through the PTEN interfering experiment, we found Don-induced apoptosis and proliferation inhibition relied on PTEN. Finally, through adenovirus to overexpress miR-221/222 in mice intestinal epithelial cells specifically, our results showed that miR-221/222 ameliorated Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells by targeting PTEN. This study not only expands our understanding of how miR-221/222 and the host gene PTEN regulate intestinal epithelial cells defending against Don-induced damage, but also provides a new way to protect the development of the intestine.
Collapse
Affiliation(s)
- Lianjie Hou
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiong Tong
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuyun Lin
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Mingfang Yu
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wen-Chu Ye
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Meiying Xie
- Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
11
|
Huang X, Huang X, Xie J, Li X, Huang Z. Rapid simultaneous detection of fumonisin B1 and deoxynivalenol in grain by immunochromatographic test strip. Anal Biochem 2020; 606:113878. [DOI: 10.1016/j.ab.2020.113878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
|
12
|
Iqbal SZ, Usman S, Razis AFA, Basheir Ali N, Saif T, Asi MR. Assessment of Deoxynivalenol in Wheat, Corn and Its Products and Estimation of Dietary Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5602. [PMID: 32756472 PMCID: PMC7432857 DOI: 10.3390/ijerph17155602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/23/2023]
Abstract
The main goal of the present research was to explore the seasonal variation of deoxynivalenol (DON) in wheat, corn, and their products, collected during 2018-2019. Samples of 449 of wheat and products and 270 samples of corn and their products were examined using reverse-phase liquid chromatography with a UV detector. The findings of the present work showed that 104 (44.8%) samples of wheat and products from the summer season, and 91 (41.9%) samples from winter season were contaminated with DON (concentration limit of detections (LOD) to 2145 µg/kg and LOD to 2050 µg/kg), from summer and winter seasons, respectively. In corn and products, 87 (61.2%) samples from summer and 57 (44.5%) samples from winter season were polluted with DON with levels ranging from LOD to 2967 µg/kg and LOD to 2490 µg/kg, from the summer and winter season, respectively. The highest dietary intake of DON was determined in wheat flour 8.84 µg/kg body weight/day from the summer season, and 7.21 µg/kg body weight/day from the winter season. The findings of the work argued the need to implement stringent guidelines and create awareness among farmers, stakeholders, and traders of the harmful effect of DON. It is mostly observed that cereal crops are transported and stockpiled in jute bags, which may absorb moisture from the environment and produce favorable conditions for fungal growth. Therefore, these crops must store in polyethylene bags during transportation and storage, and moisture should be controlled. It is highly desirable to use those varieties that are more resistant to fungi attack. Humidity and moisture levels need to be controlled during storage and transportation.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Sunusi Usman
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Tahmina Saif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | | |
Collapse
|
13
|
Mousavi Khaneghah A, Farhadi A, Nematollahi A, Vasseghian Y, Fakhri Y. A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Mallmann CA, Tyska D, Almeida CAA, Oliveira MS, Gressler LT. Mycotoxicological monitoring of breakfast and infant cereals marketed in Brazil. Int J Food Microbiol 2020; 331:108628. [PMID: 32535523 DOI: 10.1016/j.ijfoodmicro.2020.108628] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
A mycotoxicological survey was conducted in breakfast (n = 172) and infant (n = 43) cereals commercialized in Brazil. Samples were collected in 2018 for analyses of: aflatoxins (AFs) B1 (AFB1), B2, G1 and G2; fumonisins (FBs) B1 (FB1) and B2; zearalenone (ZEN); the trichothecenes (TRCs) deoxynivalenol (DON), T-2 toxin, HT-2 toxin, nivalenol, fusarenon X, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol and diacetoxyscirpenol; and ochratoxin A. FB1 was the most prevalent metabolite in breakfast cereals, being detected in 26.7% of the samples (mean 105 μg/kg); ZEN had the second highest positivity, 14.8% (mean 17 μg/kg), followed by DON with 10% (mean 44 μg/kg). In infant cereals, FB1 also had the highest incidence, 27.8% (mean 55 μg/kg), followed by DON with 10.3% (mean 36 μg/kg) and ZEN with 6.9% (mean 3 μg/kg). Mycotoxins contamination was found in 31.4% (n = 54) of the breakfast cereals and in 18.6% (n = 8) of the infant cereals. In these positive samples, co-occurrence of two or three mycotoxins was detected in 31.5% (n = 17) of the breakfast cereals and in 25% (n = 2) of the infant cereals. The mycotoxins found co-contaminating the breakfast cereals belong to the genera Aspergillus and Fusarium; ZEN, followed by AFB1, were the most prevalent ones. As for the infant cereals, the associated fungal metabolites are produced by the genus Fusarium; the highest incidence was seen for ZEN. Low contamination and positivity of mycotoxins were found herein; nonetheless, in some samples these substances were present at levels which transgress those preconized in the Brazilian legislation. Therefore, mycotoxicological monitoring of this type of product throughout the nation is crucial in order to identify the potential risk to which the Brazilian population is exposed, particularly the children.
Collapse
Affiliation(s)
- Carlos A Mallmann
- Universidade Federal de Santa Maria (UFSM), Laboratório de Análises Micotoxicológicas (LAMIC), CEP 97105 900 Santa Maria, Rio Grande do Sul, Brazil.
| | - Denize Tyska
- Universidade Federal de Santa Maria (UFSM), Laboratório de Análises Micotoxicológicas (LAMIC), CEP 97105 900 Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos A A Almeida
- Universidade Federal de Santa Maria (UFSM), Laboratório de Análises Micotoxicológicas (LAMIC), CEP 97105 900 Santa Maria, Rio Grande do Sul, Brazil
| | - Maurício S Oliveira
- Soluções Analíticas Microbiológicas e Tecnológicas (SAMITEC), CEP 97105-970 Santa Maria, Rio Grande do Sul, Brazil
| | - Luciane T Gressler
- Independent Veterinary Researcher, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Chen Y, Yao K, Wang K, Xiao C, Li K, Khan B, Zhao S, Yan W, Ye Y. Bioactive-guided structural optimization of 1,2,3-triazole phenylhydrazones as potential fungicides against Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:26-32. [PMID: 32284133 DOI: 10.1016/j.pestbp.2019.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 06/11/2023]
Abstract
The phytopathogenic fungus Fusarium graminearum is the major causal agent of fusarium head blight (FHB), which is one of the most serious diseases in wheat. Based on our previous work, the 1,2,3-triazole phenylhydrazone scaffold was further optimized at three modification sites to improve its antifungal activity against F. graminearum. The optimization yielded compound 8d was discovered to be a potent fungicidal agent with an EC50 value of 0.28 μg/mL against F. graminearum, which is 3.6 times lower than previously reported. In addition, 8d also exhibited good inhibitory activities against Rhizoctonia solani and Sclerotinia sclerotiorum with EC50 values of 0.86 and 1.66 μg/mL, respectively. In vivo testing demonstrated that 8d could effectively suppress the disease development of FHB at 200 μg/mL with a protection efficacy of 80.6%. Scanning electron micrographs and transmission electron micrographs showed that the external morphology and internal contents of F. graminearum hyphae were abnormal after 24 h of 8d treatment. Therefore, compound 8d was a promising fungicide candidate for further development.
Collapse
Affiliation(s)
- Yiliang Chen
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaicheng Yao
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyan Wang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xiao
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Li
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Babar Khan
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangshuang Zhao
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Yan
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghao Ye
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Lee SY, Woo SY, Tian F, Song J, Michlmayr H, Kim JB, Chun HS. Occurrence of Deoxynivalenol, Nivalenol, and Their Glucosides in Korean Market Foods and Estimation of Their Population Exposure through Food Consumption. Toxins (Basel) 2020; 12:E89. [PMID: 32013156 PMCID: PMC7076772 DOI: 10.3390/toxins12020089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Major type B trichothecene mycotoxins, including deoxynivalenol (DON), nivalenol (NIV), and their respective glucoside conjugates, deoxynivalenol-3-β-D-glucose (DON3G) and nivalenol-3-β-D-glucose (NIV3G), are present in food products, such as cereals, legumes, and their processed products. Thus, here, DON, NIV, and their 3-β-D-glucosides were monitored in 506 Korean market foods, and exposure to these mycotoxins was estimated in the population consuming these foods. The accuracy and precision of our method, which simultaneously determined four toxins, were 80.1-106.5% and 0.3-12.4%, in four representative food matrices assessed. The incidences of DON, DON3G, NIV, and NIV3G among all food samples tested were 13%, 8%, 12%, and 5%, respectively. The glucoside conjugate with free toxin was found to have the maximum co-occurrence of 49%. The estimated daily intakes of DON, DON3G, NIV, and NIV3G through food intake under four different scenarios were 0.019-0.102, 0.004-0.089, 0.007-0.094, and 0.002-0.095 μg kg-1 body weight (b.w.) day-1, respectively, which are lower than the established health-based guidance values. Overall, our results suggest that the estimated exposure of the Korean population to type B trichothecenes, namely, DON, NIV, and their 3-β-D-glucoside conjugates, may not pose a potential health risk.
Collapse
Affiliation(s)
- Sang Yoo Lee
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.Y.L.); (S.Y.W.); (F.T.); (J.S.)
| | - So Young Woo
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.Y.L.); (S.Y.W.); (F.T.); (J.S.)
| | - Fei Tian
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.Y.L.); (S.Y.W.); (F.T.); (J.S.)
| | - Jeonghun Song
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.Y.L.); (S.Y.W.); (F.T.); (J.S.)
| | - Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, (BOKU), 3430 Tulln, Austria;
| | - Jung-Bok Kim
- Korea Advanced Food Research Institute, Uiwang 16001, Korea;
| | - Hyang Sook Chun
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.Y.L.); (S.Y.W.); (F.T.); (J.S.)
| |
Collapse
|
17
|
Qiu J, Xu J, Shi J. Fusarium Toxins in Chinese Wheat since the 1980s. Toxins (Basel) 2019; 11:toxins11050248. [PMID: 31052282 PMCID: PMC6562770 DOI: 10.3390/toxins11050248] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 01/08/2023] Open
Abstract
Wheat Fusarium head blight (FHB), caused by Fusarium species, is a widespread and destructive fungal disease. In addition to the substantial yield and revenue losses, diseased grains are often contaminated with Fusarium mycotoxins, making them unsuitable for human consumption or use as animal feed. As a vital food and feed ingredient in China, the quality and safety of wheat and its products have gained growing attention from consumers, producers, scientists, and policymakers. This review supplies detailed data about the occurrence of Fusarium toxins and related intoxications from the 1980s to the present. Despite the serious situation of toxin contamination in wheat, the concentration of toxins in flour is usually lower than that in raw materials, and food-poisoning incidents have been considerably reduced. Much work has been conducted on every phase of toxin production and wheat circulation by scientific researchers. Regulations for maximum contamination limits have been established in recent years and play a substantial role in ensuring the stability of the national economy and people's livelihoods.
Collapse
Affiliation(s)
- Jianbo Qiu
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianhong Xu
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianrong Shi
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Wall-Martínez HA, Pascari X, Ramos AJ, Marín S, Sanchis V. Frequency and levels of mycotoxins in beer from the Mexican market and exposure estimate for deoxynivalenol mycotoxins. Mycotoxin Res 2019; 35:207-216. [PMID: 30859459 DOI: 10.1007/s12550-019-00347-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to evaluate the occurrence of 23 mycotoxins in beer purchased in Mexico and to assess two exposure scenarios in the Mexican population through beer consumption. Multi-mycotoxin analysis of a total of 61 different beers (132 samples) was carried out using UHPLC-MS/MS equipment. Probability density functions were used to describe mycotoxins contamination. The daily intake of mycotoxins was estimated using a semi-probabilistic approach, applying the Monte Carlo method. Deoxynivalenol (DON) and its metabolites (deoxynivalenol-3-glucoside (DON3G) and 3-acetyl-deoxynivalenol (3ADON)) were the mycotoxins found in higher proportions in contaminated samples. None of the other mycotoxins overpassed the limit of quantification (LOQ) of the method. The combined intake of DON and its analogues ranged from 5.24 to 86.59 ng kg-1 bw day-1, which represent from 1.20 to 19.83% of the DON TDI. The results suggest that depending on the individual consumption of beer and depending on the type of beer, the intake of DON via beer could represent a significant percentage of the tolerable daily intake (TDI).
Collapse
Affiliation(s)
- Hiram A Wall-Martínez
- UNIDA-Chemical and Biochemical Engineering Department, Tecnológico Nacional de México/I.T. Veracruz, Miguel Ángel de Quevedo 2779, 91860, Veracruz, Mexico
| | - Xenia Pascari
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Vicente Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|