1
|
Wang Q, Tian Y, Wang J, Li JY, He W, Craig NJ. Assessing pathways of heavy metal accumulation in aquaculture shrimp and their introductions into the pond environment based on a dynamic model and mass balance principle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163164. [PMID: 37003319 DOI: 10.1016/j.scitotenv.2023.163164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
The impact of heavy metals (HMs) on the quality of aquaculture products has attracted worldwide attention. Since Litopenaeus vannamei is a popular aquaculture product among consumers worldwide, it is of great importance to guarantee its dietary safety. An in-situ monitoring program lasting for three months in a typical Litopenaeus vannamei farm found that Pb (100 %) and Cr (86 %) in the adult shrimp were higher than the safety guidelines. In the meantime, Cu (100 %), Cd (100 %) in the water and Cr (40 %) in the feed exceeded the corresponding thresholds. Therefore, quantification of different exposure pathways of shrimp and contamination origins in pond is valuable to improve the dietary safety of the shrimp. Based on Optimal Modeling for Ecotoxicological Applications (OMEGA), Cu was primarily from the ingestion of feed, accounting for 67 % of bioaccumulation, while Cd, Pb and Cr primarily entered shrimp through the adsorption from overlying water (53 % for Cd and 78 % for Pb) and porewater (66 % for Cr), respectively. The HMs in the pond water were further tracked based on a mass balance analysis. The main source of Cu in the aquaculture environment was feed, being responsible for 37 % of the total input. Pb, Cd and Cr were primarily from the inlet water with contributions of 84 %, 54 % and 52 %, respectively. In summary, the proportions of different exposure pathways and origins of HMs in pond-cultured shrimp and its living environment varied widely. To keep end-consumers eating healthily, species specific treatment is required. Feed should be regulated more for Cu. Aimed pretreatments for Pb and Cd in influent water are needed and an additional immobilization for Cr in sediment porewater should be investigated. After implementation of these treatments, the food quality improvement could be further quantified based on our prediction model.
Collapse
Affiliation(s)
- Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Yaxiong Tian
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Jian Wang
- Shanghai Radio Equipment Research Institute, Yangpu, Shanghai, China; Shanghai Shentian Industrial Co., Ltd., Yangpu, Shanghai, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, China.
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
2
|
Davis R, Boyd C, Ahyani N, Sasmita PG, Harris B, McNevin A, Shatova O, Wakefield J, Davis A. The role of species and geography in the elemental profiles of farm-raised shrimp from Indonesia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15830-15841. [PMID: 36171322 DOI: 10.1007/s11356-022-23318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Elemental profiling is being explored as a traceability tool in many seafood products. However, the extent that elemental profiling can be used at finer geographical scales in cultured shrimp is unknown. Additionally, few studies have included multiple species in the same discriminant models, which would be useful in applications where one species is common, and the other is not. Here, elemental profiling was used to discern the provenance of black tiger shrimp Penaeus monodon and whiteleg shrimp Litopenaeus vannamei from the regions of North Kalimantan, Sulawesi Seletan, and Aceh in Indonesia. ICP-MS was used to determine elemental concentrations of 41 elements in shrimp muscle tissue and was the basis for multivariate and univariate statistical analyses. A MANOVA showed that multivariate differences exist in regions and between species of shrimp sampled. Univariate comparisons were utilized after the significance of the MANOVA and showed that 19 of the 24 elements above detection limits had significant differences. Classification via random forest was used to access the ability to discern, region, species, and region × species group combinations. The lowest model accuracy was the region × species combinations at 78.9%, while the highest accuracy was species irrespective of geographical origin at 93.59%. Elements that were routinely important in classification included As, B, Ba, Li, Na, Rb, Se, and Zn. Elemental profiles of white leg shrimp and black tiger shrimp are varied and potentially should not be used in the same classification models. Altogether, these results suggest that elemental profiling of farmed shrimp at finer geographic scales needs refinement as a traceability tool.
Collapse
Affiliation(s)
- Robert Davis
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL, USA.
| | - Claude Boyd
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL, USA
| | | | - Pande Gde Sasmita
- Department of Aquatic Resource Management, Udayana University, Badung, Indonesia
| | | | | | - Olga Shatova
- Oritain Global Limited, 167 High Street, Dunedin, 9016, New Zealand
| | - Joshua Wakefield
- Oritain Global Limited, 167 High Street, Dunedin, 9016, New Zealand
| | - Allen Davis
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL, USA
| |
Collapse
|
3
|
Origin and farming pattern authentication of wild-caught, coast-pond and freshwater farming white shrimp (Litopenaeus vannamei) in Chinese market using multi-stable isotope analysis of tail shell. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Recent advances in Chinese food authentication and origin verification using isotope ratio mass spectrometry. Food Chem 2023; 398:133896. [DOI: 10.1016/j.foodchem.2022.133896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
|
5
|
Kotsanopoulos K, Martsikalis PV, Gkafas GA, Exadactylos A. The use of various statistical methods for authenticity and detection of adulteration in fish and seafood. Crit Rev Food Sci Nutr 2022; 64:1553-1571. [PMID: 36052815 DOI: 10.1080/10408398.2022.2117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Various methodologies including genetic analyses, morphometrics, proteomics, lipidomics, metabolomics, etc. are now used or being developed to authenticate fish and seafood. Such techniques usually lead to the generation of enormous amounts of data. The analysis and interpretation of this information can be particularly challenging. Statistical techniques are therefore commonly used to assist in analyzing these data, visualizing trends and differences and extracting conclusions. This review article aims at presenting and discussing statistical methods used in studies on fish and seafood authenticity and adulteration, allowing researchers to consider their options based on previous successes/failures but also offering some recommendations about the future of such techniques. Techniques such as PCA, AMOVA and FST statistics, that allow the differentiation of genetic groups, or techniques such as MANOVA that allow large data sets of morphometric characteristics or elemental differences to be analyzed are discussed. Furthermore, methods such as cluster analysis, DFA, CVA, CDA and heatmaps/Circos plots that allow samples to be differentiated based on their geographical origin are also reviewed and their advantages and disadvantages as found in past studies are given. Finally, mathematical simulations and modeling are presented in a detailed review of studies using them, together with their advantages and limitations.
Collapse
Affiliation(s)
- Konstantinos Kotsanopoulos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Petros V Martsikalis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - George A Gkafas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
6
|
Davis R, Boyd C, Gonzalez A, Shatova O, Wakefield J, Harris B, McNevin A, Davis DA. Sources of variation in elemental profiles of whiteleg shrimp (Litopenaeus vannamei) and their potential effects on the accuracy of discriminant analysis. J Trace Elem Med Biol 2022; 71:126961. [PMID: 35231879 DOI: 10.1016/j.jtemb.2022.126961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Elemental profiling is a tool that has been proposed to improve the traceability of seafood products. Small sources of variation can affect the outcome of elemental profiling and therefore pose to lower the overall accuracy of analyses. Here, we investigate two potential sources of variation through three experiments: laboratory variation (intra-, interlaboratory variation, and tissue matrix) and tissue variation. METHODS AND RESULTS Samples of whitleleg shrimp (Litopenaeus vannamei) were obtained from 20 farms in Ecuador and two farms in Alabama to be analyzed. In the first experiment of the study, samples from Ecuador were analyzed at three different laboratories and compared. Two out of the five elements reported were statistically different across the three laboratories (Cu and Se). In the second experiment, the effect of tissue matrix (ground vs whole tissue during acid digestion) was investigated. Altogether, five out of 29 elements analyzed were statistically different. In the third experiment, samples from two farms in Alabama were analyzed to understand the variation in element concentrations in different tissues (head on shell on (HOSO), headless shell on (HLSO), headless peeled (PLD) and headless peeled and deveined (PLDV)). Elemental concentrations varied across tissues, and patterns in elemental concentrations were site specific. The samples from the two farms were analyzed with a Random Forest classification model to site x tissue groupings with 94% accuracy. CONCLUSION The result of this study highlights the following: 1. Consistency in laboratory analysis important in studies that involve element concentrations, as minor differences in methodology can propagate as significant differences in results. 2. In shrimp, elements are compartmentalized in different tissues and elemental profiling should consistently use the same type of tissue.
Collapse
Affiliation(s)
- Robert Davis
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL, USA.
| | - Claude Boyd
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL, USA
| | | | | | | | | | | | - D Allen Davis
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL, USA
| |
Collapse
|
7
|
Davis RP, Boyd CE, Gonzalez A, Shatova O, Wakefield J, McNevin AA, Davis DA. The effect of commercial scale processing on trace element concentrations in shrimp muscle tissue – A preliminary study from two processors in Thailand and Ecuador. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Bai S, Qin D, Chen Z, Wu S, Tang S, Wang P. Geographic origin discrimination of red swamp crayfish Procambarus clarkii from different Chinese regions using mineral element analysis assisted by machine learning techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Davis RP, Boyd CE, Godumala R, Ch Mohan AB, Gonzalez A, Duy NP, Sasmita J PG, Ahyani N, Shatova O, Wakefield J, Harris B, McNevin AA, Davis DA. Assessing the variability and discriminatory power of elemental fingerprints in whiteleg shrimp Litopenaeus vannamei from major shrimp production countries. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Zhu L, Geng D, Pan B, Li W, Jiang S, Xu Q. Trace Elemental Analysis of the Exoskeleton, Leg Muscle, and Gut of Three Hadal Amphipods. Biol Trace Elem Res 2022; 200:1395-1407. [PMID: 34018124 DOI: 10.1007/s12011-021-02728-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Hadal trenches are the deepest areas worldwide. Amphipods are considered a key factor in hadal ecosystems because of their important impacts on the hadal environment. Amphipods have benthic habits, and therefore, serve as good metal biomonitors. However, little is known about the hadal amphipod metal accumulations. In the present study, Alicella gigantea, Hirondellea gigas, and Scopelocheirus schellenbergi were sampled from the New Britain Trench (8824m, 7.02S 149.16E), Mariana Trench (10,839m, 11.38N 142.42E), and Marceau Trench (6690m, 1.42N 148.74E) in the West Pacific Ocean, respectively. The elemental concentrations of the three hadal amphipods were subsequently investigated. Nine trace elements (V, Cr, Mn, Co, Ni, Se, Mo, Ag, and Cd) of three tissues (exoskeleton, leg muscle, and gut) of the hadal amphipods were detected by using inductively coupled plasma mass spectrometry (ICP-MS) method. The concentrations of Cr, Cd, and Mn were comparably higher among those nine examined elements. The greatest accumulations of the elements Cr, Ag, and V in the exoskeleton and leg muscle were observed in H. gigas, and elements Mn, Co, and Se showed the highest accumulations in the gut in H. gigas among the three hadal amphipods. In addition, comparisons of the leg muscle trace element accumulation between the hadal amphipods and non-abyssal and shallow water decapoda and amphipoda species showed that the hadal amphipods possessed comparably higher concentrations of the trace elements Cd, Co, Mo, Ag, and V. This finding suggested a bottom-up effect of food availability and indicated the effects of human activities within the hadal environments. This study reveals the trace element bio-accumulation of three hadal amphipods, and suggests that deep-sea amphipods are potential indicator species for trace element bioavailability in the deep-sea environment.
Collapse
Affiliation(s)
- Lingyue Zhu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Daoqiang Geng
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Bingbing Pan
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhao Li
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
11
|
Ulaganathan A, Robinson JS, Rajendran S, Geevaretnam J, Pandurangan P, Durairaj S. Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. J Food Compost Anal 2022; 105:104259. [DOI: 10.1016/j.jfca.2021.104259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Han C, Li L, Zhang G, Dong S, Tian X. Assessment of elemental profiling combined with chemometrics for authenticating the geographical origins of Pacific white shrimp (Litopenaeus vannamei). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Davis R, Boyd CE, Wakefield J, Shatova O, McNevin A, Harris B, Davis DA. Trace element concentrations in white leg shrimp Litopenaeus vannamei from retail stores in the EU, UK, and USA and the ability to discern country of origin with classification models. Curr Res Food Sci 2021; 4:655-661. [PMID: 34604792 PMCID: PMC8473577 DOI: 10.1016/j.crfs.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Shrimp are a globally traded aquaculture commodity that accounts for a large proportion of the monetary value of aquaculture. There are concerns among consumers about seafood labeling fraud and environmental sustainability. Therefore, the geographic origin of shrimp from retail stores was investigated with trace element profiling. 94 shrimp samples were collected from grocery stores across the USA, UK, and EU in 70 different grocery stores. The results of 24 elements are reported. Shrimp samples were from Thailand, India, Vietnam, Indonesia, and Ecuador were shown to have 15 elements that were statistically different across labeled country of origin, with Ecuador having unique post hoc group membership in 5 of the elements. Based on a classification procedure, shrimp were classified to labeled country of origin with an overall accuracy of 71.2%. Overall, the results suggest that elemental profiling could be a traceability tool for classifying samples of shrimp from retail stores. Frozen Shrimp samples were obtained from grocery stores in the EU and USA. Samples were analyzed for element concentrations in 42 elements. 24 elements were detectable and presented here. Samples from Ecuador shown property of having a unique elemental profile. Samples were classified to country of origin with reasonable accuracy (71%).
Collapse
Affiliation(s)
- Robert Davis
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Claude E Boyd
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Joshua Wakefield
- Oritain Global Limited, 167 High Street, Dunedin, 9016, New Zealand
| | - Olga Shatova
- Oritain Global Limited, 167 High Street, Dunedin, 9016, New Zealand
| | - Aaron McNevin
- World Wildlife Fund, 1250 24th St NW, Washington, DC, 20037, USA
| | - Blake Harris
- World Wildlife Fund, 1250 24th St NW, Washington, DC, 20037, USA
| | - D Allen Davis
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn, AL, 36849, USA
| |
Collapse
|
14
|
Li S, Wang H, Jin L, White JF, Kingsley KL, Gou W, Cui L, Wang F, Wang Z, Wu G. Validation and analysis of the geographical origin of Angelica sinensis (Oliv.) Diels using multi-element and stable isotopes. PeerJ 2021; 9:e11928. [PMID: 34434658 PMCID: PMC8351574 DOI: 10.7717/peerj.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background Place of origin is an important factor when determining the quality and authenticity of Angelica sinensis for medicinal use. It is important to trace the origin and confirm the regional characteristics of medicinal products for sustainable industrial development. Effectively tracing and confirming the material’s origin may be accomplished by detecting stable isotopes and mineral elements. Methods We studied 25 A. sinensis samples collected from three main producing areas (Linxia, Gannan, and Dingxi) in southeastern Gansu Province, China, to better identify its origin. We used inductively coupled plasma mass spectrometry (ICP-MS) and stable isotope ratio mass spectrometry (IRMS) to determine eight mineral elements (K, Mg, Ca, Zn, Cu, Mn, Cr, Al) and three stable isotopes (δ13C, δ15N, δ18O). Principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) were used to verify the validity of its geographical origin. Results K, Ca/Al, δ13C, δ15N and δ18O are important elements to distinguish A. sinensis sampled from Linxia, Gannan and Dingxi. We used an unsupervised PCA model to determine the dimensionality reduction of mineral elements and stable isotopes, which could distinguish the A. sinensis from Linxia. However, it could not easily distinguish A. sinensis sampled from Gannan and Dingxi. The supervised PLS-DA and LDA models could effectively distinguish samples taken from all three regions and perform cross-validation. The cross-validation accuracy of PLS-DA using mineral elements and stable isotopes was 84%, which was higher than LDA using mineral elements and stable isotopes. Conclusions The PLS-DA and LDA models provide a theoretical basis for tracing the origin of A. sinensis in three regions (Linxia, Gannan and Dingxi). This is significant for protecting consumers’ health, rights and interests.
Collapse
Affiliation(s)
- Shanjia Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China.,Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Hui Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, United States of America
| | - Kathryn L Kingsley
- Department of Plant Biology, Rutgers University, New Brunswick, United States of America
| | - Wei Gou
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Lijuan Cui
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Fuxiang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Zihao Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Guoqiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Varrà MO, Husáková L, Patočka J, Ghidini S, Zanardi E. Classification of transformed anchovy products based on the use of element patterns and decision trees to assess traceability and country of origin labelling. Food Chem 2021; 360:129790. [PMID: 33971507 DOI: 10.1016/j.foodchem.2021.129790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and direct mercury analysis were used to determine the elemental composition of 180 transformed (salt-ripened) anchovies from three different fishing areas before and after packaging. To this purpose, four decision trees-based algorithms, corresponding to C5.0, classification and regression trees (CART), chi-squareautomatic interaction detection (CHAID), and quick unbiased efficient statistical tree (QUEST) were applied to the elemental datasets to find the most accurate data mining procedure to achieve the ultimate goal of fish origin prediction. Classification rules generated by the trained CHAID model optimally identified unlabelled testing bulk anchovies (93.9% F-score) by using just 6 out of 52 elements (As, K, P, Cd, Li, and Sr). The finished packaged product was better modelled by the QUEST algorithm which recognised the origin of anchovies with F-score of 97.7%, considering the information carried out by 5 elements (B, As, K. Cd, and Pd). Results obtained suggested that the traceability system in the fishery sector may be supported by simplified machine learning techniques applied to a limited but effective number of inorganic predictors of origin.
Collapse
Affiliation(s)
- Maria Olga Varrà
- Department of Food and Drug, University of Parma, Parma Via del Taglio, 10, Parma 43126, Italy.
| | - Lenka Husáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, Pardubice CZ-532 10, Czech Republic.
| | - Jan Patočka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, Pardubice CZ-532 10, Czech Republic.
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Parma Via del Taglio, 10, Parma 43126, Italy.
| | - Emanuela Zanardi
- Department of Food and Drug, University of Parma, Parma Via del Taglio, 10, Parma 43126, Italy.
| |
Collapse
|
16
|
Varrà MO, Husáková L, Patočka J, Ghidini S, Zanardi E. Multi-element signature of cuttlefish and its potential for the discrimination of different geographical provenances and traceability. Food Chem 2021; 356:129687. [PMID: 33836355 DOI: 10.1016/j.foodchem.2021.129687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022]
Abstract
The measurement and analysis of fifty-two elements by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and direct mercury analysis were applied to origin discrimination of Italian traditional cuttlefish (Chioggia, Venice lagoon) from Mediterranean and Atlantic samples. A total 68 specimens were analyzed in triplicates to generate 204 mass spectra profiles which were statistically processed by different chemometric techniques. Loading weights from principal component analysis as input for linear discriminant analysis (LW-LDA), stepwise-LDA (S-LDA) and variable influence of projection-partial least square discriminant analysis (VIP-PLS-DA) were used to classify samples while retaining the lowest possible number of key variables. VIP-PLS-DA was found to be the best variable selection-discriminant tool combo since the selected Na-Co-B-K-Cd-V-U-Rb-Ni-Ba-Cu-As-Sr-Mn-Mo-Li-Ca-Mg-Se-Bi-Cs-P-Y elemental pattern allowed the samples to be classified with 100% sensitivity, specificity and accuracy.
Collapse
Affiliation(s)
- Maria Olga Varrà
- Department of Food and Drug, University of Parma, Parma, Via del Taglio, 10, Parma 43126, Italy.
| | - Lenka Husáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, Pardubice CZ-532 10, Czech Republic.
| | - Jan Patočka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, Pardubice CZ-532 10, Czech Republic.
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Parma, Via del Taglio, 10, Parma 43126, Italy.
| | - Emanuela Zanardi
- Department of Food and Drug, University of Parma, Parma, Via del Taglio, 10, Parma 43126, Italy.
| |
Collapse
|
17
|
Han C, Dong S, Li L, Gao Q, Zhou Y. Assessment of phospholipid fatty acid profiles for discrimination of salmonids cultured in freshwater and seawater. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Varrà MO, Ghidini S, Husáková L, Ianieri A, Zanardi E. Advances in Troubleshooting Fish and Seafood Authentication by Inorganic Elemental Composition. Foods 2021; 10:foods10020270. [PMID: 33572834 PMCID: PMC7912245 DOI: 10.3390/foods10020270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
The demand for fish and seafood is growing worldwide. Meanwhile, problems related to the integrity and safety of the fishery sector are increasing, leading legislators, producers, and consumers to search for ways to effectively protect themselves from fraud and health hazards related to fish consumption. What is urgently required now is the availability of reliable, truthful, and reproducible methods assuring the correspondence between the real nature of the product and label declarations accompanying the same product during its market life. The evaluation of the inorganic composition of fish and seafood appears to be one of the most promising strategies to be exploited in the near future to assist routine and official monitoring operations along the supply chain. The present review article focuses on exploring the latest scientific achievements of using the multi-elemental composition of fish and seafood as an imprint of their authenticity and traceability, especially with regards to the geographical origin. The scientific literature of the last 10 years focusing on the analytical determination and statistical elaboration of elemental data (alone or in combination with methodologies targeting other compounds) to verify the identity of fishery products is summarized and discussed.
Collapse
Affiliation(s)
- Maria Olga Varrà
- Department of Food and Drug, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.O.V.); (S.G.); (A.I.)
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.O.V.); (S.G.); (A.I.)
| | - Lenka Husáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573 HB/D, CZ-532 10 Pardubice, Czech Republic;
| | - Adriana Ianieri
- Department of Food and Drug, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.O.V.); (S.G.); (A.I.)
| | - Emanuela Zanardi
- Department of Food and Drug, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.O.V.); (S.G.); (A.I.)
- Correspondence: ; Tel.: +39-052-190-2760
| |
Collapse
|
19
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
20
|
Lin T, Chen P, Chen X, Shen J, Zhong S, Sun Q, Guo M, Cheng X. Geographical Classification of Helicoverpa armigera (Lepidoptera: Noctuidae) through Mineral Component Analysis. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1777560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tao Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Peng Chen
- Sichuan Province Tobacco Corporation, Chengdu, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jia Shen
- Tobacco Research Institute/Maize Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shangshang Zhong
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Qian Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Mingquan Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xinsheng Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Han C, Dong S, Li L, Wei F, Zhou Y, Gao Q. The effect of the seasons on geographical traceability of salmonid based on multi-element analysis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Combining near-infrared hyperspectral imaging with elemental and isotopic analysis to discriminate farm-raised pacific white shrimp from high-salinity and low-salinity environments. Food Chem 2019; 299:125121. [PMID: 31310915 DOI: 10.1016/j.foodchem.2019.125121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/01/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
Abstract
White shrimp (Litopenaeus vannamei) raised in low-salinity farm are considered inferior to those in seawater. In order to develop a rapid discrimination method for the food industry, we investigated the potential of using near-infrared hyperspectral imaging to discriminate shrimp muscle samples from freshwater and seawater farms. We constructed 3 different discrimination models with 4 optimal wavelength selection methods and compared the performance of each model. The results showed that sequential forward selection combined with partial least squares discriminant analysis (SFS-PLS-DA) generated the best discrimination performance with an overall accuracy of 99.2%. The elemental and isotopic analysis indicated a high correlation between 918 and 925 nm region (which was selected by SFS) and 13C concentration. This agrees with the fact that there is more 13C in shrimp of salty water compared to those of freshwater. The results demonstrated (hyperspectral imaging) HSI is promising to discriminate L. vannamei raised in fresh and seawater environments.
Collapse
|