1
|
Li L, Yang H, Zhao X, Wang H, Zhao R. Sustainable Alkali Activation: The Role of Water- and Alkali-Treated Sisal Leaf Wastewaters in Solid- Waste-Based Composite Synthesis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3838. [PMID: 39124502 PMCID: PMC11313445 DOI: 10.3390/ma17153838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The intricate composition of wastewater impedes the recycling of agricultural and industrial effluents. This study aims to investigate the potential of sisal leaf wastewater (SLW), both water-treated (WTSLW) and alkali-treated (ATSLW), as a substitute for the alkali activator (NaOH solution) in the production of slag-powder- and fly-ash-based composites, with a focus on the effects of WTSLW substitution ratios and sisal leaf soaking durations. Initially, the fresh properties were assessed including electrical conductivity and fluidity. A further analysis was conducted on the influence of both WTSLW and ATSLW on drying shrinkage, density, and mechanical strength, including flexural and compressive measures. Microstructural features were characterized using SEM and CT imaging, while XRD patterns and FTIR spectra were employed to dissect the influence of WTSLW substitution on the composite's products. The results show that incorporating 14 wt% WTSLW into the composite enhances 90-day flexural and compressive strengths by 34.8% and 13.2%, respectively, while WTSLW curtails drying shrinkage. Conversely, ATSLW increases porosity and decreases density. Organic constituents in both WTSLW and ATSLW encapsulated in the alkaline matrix fail to modify the composites' chemical composition. These outcomes underscore the potential for sustainable construction materials through the integrated recycling of plant wastewater and solid by-products.
Collapse
Affiliation(s)
- Liang Li
- School of Civil Engineering, Tianjin Renai College, Tianjin 301636, China;
| | - Hongqi Yang
- CCCC First Harbor Consultants Co., Ltd., Tianjin 300220, China;
| | - Xianhui Zhao
- School of Civil Engineering, Hebei University of Engineering, Handan 056038, China;
| | - Haoyu Wang
- School of Civil Engineering, Tianjin Renai College, Tianjin 301636, China;
| | - Renlong Zhao
- Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050000, China;
| |
Collapse
|
2
|
Temitope Bankole D, Peter Oluyori A, Abosede Inyinbor A. The removal of pharmaceutical pollutants from aqueous solution by Agro-waste. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
3
|
Galioto F, Zucaro R, Pergamo R. Environmental challenges and perspectives of the fresh-cuts sector in Italy. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This perspective paper provides insights on the characteristics of the fresh-cut sector in Italy and on the key environmental challenges the sector is currently facing. Specifically, the paper investigates the factors that brought to the development of agro-industrial hubs for fresh-cuts, capable of influencing the income and employment of various local communities in Italy and the factors that contributed causing serious environmental issues, especially related to the disposal of packaging waste and to the consumption and pollution of water resources. Such issues were recently addressed by the EU through dedicated directives and regulations. These regulations require a serious reflection on the strategies to be undertaken for the future of the sector and the surrounding socioeconomic context. The paper concludes with some policy recommendation to overcome existing barriers and, eventually, transform them into opportunities.
Collapse
|
4
|
The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042345. [PMID: 35206534 PMCID: PMC8871893 DOI: 10.3390/ijerph19042345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
The use of treated wastewater (TWW) for irrigation has gained global attention since it reduces pressure on groundwater (GW) and surface water. This study aimed to evaluate the effect of TWW on agronomic, photosynthetic, stomatal, and nutritional characteristics of barley plants. The experiment with barley was established on two bands: one band was irrigated with GW and the other with TWW. The evaluation was performed 25, 40, 60, 90, and 115 days after sowing (DAS). Results showed that irrigation with TWW increased (p < 0.01) grain yield by 54.3% and forage yield by 39.4% compared to GW irrigation. In addition, it increased plant height (PH) (p = 0.013), chlorophyll concentration index (CCI) (p = 0.006), and leaf area index (LAI) (p = 0.002). TWW also produced a positive effect (p < 0.05) in all the photosynthetic efficiency parameters evaluated. Barley plants irrigated with TWW had lower stomatal density (SD) and area (SA) (p < 0.001) than plants irrigated with GW. Plants irrigated with TWW had a higher P concentration (p < 0.05) in stems and roots and K concentration in leaves than plants irrigated with GW. We concluded that the use of TWW induced important biochemical, physiological, and agronomic changes in barley plants. Hence, the use of TWW may be a sustainable alternative for barley production in arid and semi-arid regions. This study was part of a government project, which aimed to develop a new metropolitan irrigation district with TWW. This study may contribute to the sustainability of water resources and agricultural practices in northern Mexico.
Collapse
|
5
|
Heavy Metals and Nutrients Loads in Water, Soil, and Crops Irrigated with Effluent from WWTPs in Blantyre City, Malawi. WATER 2022. [DOI: 10.3390/w14010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heavy metals may cause acute and chronic toxic effects to humans and other organisms, hence the need to treat wastewater properly, as it contains these toxicants. This work aimed at assessing zinc, copper, cadmium, and chromium in water, soil, and plants that are irrigated with effluent from Manase and Soche Wastewater Treatment Plants (WWTPs) in Blantyre, Malawi. Atomic Absorption Spectrophotometry (AAS) was used to assess the heavy metals. Heavy Metal Health Risk Assessment (HMHRA) on plants (vegetables) around both WWTPs was also conducted. Average daily dose (ADD) and target hazard quotients (THQ) were used to assess HMHRA. Physicochemical parameters were determined using standard methods from American Public Health Association (APHA). The heavy metal ranges were below detection limit (BDL) to 6.94 mg/L in water, 0.0003 to 4.48 mg/kg in soil, and 3 to 32 mg/L in plants. The results revealed that plants irrigated with effluent from WWTP had high values of aforementioned metals exceeding the Malawi Standards and WHO permissible limits. Furthermore, the health risk assessment values showed that vegetables consumed for a long period of time from Manase WWTP were likely to cause adverse health effects as compared to those from Soche WWTP.
Collapse
|
6
|
Singh G, Patel N, Jindal T, Ranjan MR. Heavy Metal Contamination in Soils and Crops Irrigated by Kali River in Uttar Pradesh, India. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:931-937. [PMID: 34370088 DOI: 10.1007/s00128-021-03349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The study investigated concentrations, distribution, and bioaccumulation of heavy metals in agriculture soil and crops irrigated by the Kali River of Uttar Pradesh, India. Soils and crop samples were collected from 17 locations along the river and analyzed for heavy metal concentrations. Metals in soil and plant were recorded as Fe > Zn > Mn > Cu > Ni > Pb > Cr > Cd and Mn > Fe > Zn > Cu > Cr > Ni > Pb > Cd, respectively. The bioaccumulation factor was < 1 that indicates lesser accumulation of metals in plants except for Cd, Mn, and Zn. Metal pollution index ranged between 1.84 and 6.62 and shows that crops growing at the S10 to S17 sites accumulate greater metal concentrations. Cluster analysis showed agglomeration of Cr-Pb-Cd, Cu-Ni-Mn, and Fe-Zn which revealed different sources of metal pollution. The present study shows low to moderate heavy metal pollution in Kali River irrigated areas thus consumption of agriculture produce may cause adverse health effects.
Collapse
Affiliation(s)
- Gaurav Singh
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India.
- Water Technology Centre, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Neelam Patel
- Water Technology Centre, ICAR-Indian Agricultural Research Institute, New Delhi, India
- National Institution for Transforming India (NITI Aayog), New Delhi, India
| | - Tanu Jindal
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India
| | - Manju Rawat Ranjan
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
7
|
Deh-Haghi Z, Bagheri A, Damalas CA, Fotourehchi Z. Horticultural products irrigated with treated sewage: are they acceptable? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54057-54068. [PMID: 34043166 DOI: 10.1007/s11356-021-14552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Public acceptance of treated sewage (TS) reuse in agriculture is a key element in successful implementation of TS reuse projects, but relevant research on the topic is limited. This study examined public willingness to accept (WTA) and willingness to pay (WTP) for agricultural products derived by irrigation with TS in Lorestan province, Iran, applying the contingent valuation (CV) method. The agricultural products determined for the study included corn, peaches, apricots, and plums, while TS was introduced in three qualities [Q1, complete TS treatment (i.e., physical treatment, aeration, and chemical treatment); Q2, partial TS treatment (i.e., physical treatment and aeration); and Q3, no TS treatment]. With reference to WTA, products irrigated with Q1 TS received 62.7% positive responses, while products irrigated with Q2 TS and Q3 TS received 21.3% and 17.0% positive responses, respectively. With reference to WTP, data showed that if the price of products derived by irrigation with TS was less than that of products irrigated with fresh water, some people would be willing to pay for these products (52.0% positive responses versus 48.0% negative responses). Awareness had a significantly positive impact on WTA1 and WTA2 (products irrigated with Q1 TS and Q2 TS, respectively) as well as on WTP1, WTP2, and WTP3 (products irrigated with Q1 TS, Q2 TS, and Q3 TS, respectively). Similarly, information sources had a significantly positive effect on WTP1, WTP2, and WTP3. Overall, individuals with high levels of health risk perception and high awareness showed high WTA, while non-processed corn and men were associated with low WTA. Concerning WTP, individuals with high awareness and those who had access to information sources showed high WTP, while men were associated with low WTP. Information about the importance of TS reuse, reduction of prices of products derived by irrigation with TS, and promotion of public confidence in TS are essential to increase public WTA and WTP.
Collapse
Affiliation(s)
- Zoherh Deh-Haghi
- Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asghar Bagheri
- Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Christos A Damalas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece.
| | - Zahra Fotourehchi
- Faculty of Humanity, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
8
|
Nahim-Granados S, Martínez-Piernas AB, Rivas-Ibáñez G, Plaza-Bolaños P, Oller I, Malato S, Pérez JAS, Agüera A, Polo-López MI. Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. WATER RESEARCH 2021; 203:117532. [PMID: 34419922 DOI: 10.1016/j.watres.2021.117532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads < 7 CFU/100 mL and 21-90 % of OMC reduction), robustness (based on 7 or 10 analysed batches for each treatment process) and high suitability for subsequent treated SFCWW safe reuse: non-phytotoxic towards Lactuca sativa and no bacterial regrowth during its storage for a week. The analysis of the harvested crop samples irrigated with treated SFCWW in all the studied processes showed an absence of microbial contamination (< limit of detection, LOD; i.e., < 1 CFU/99 g of lettuce and < 1 CFU/8 g of radish), a significant reduction of OMC uptake (in the range 40-60 % and > 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.
Collapse
Affiliation(s)
- Samira Nahim-Granados
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Ana Belén Martínez-Piernas
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Gracia Rivas-Ibáñez
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Sixto Malato
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | | | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - María Inmaculada Polo-López
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain.
| |
Collapse
|
9
|
Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. WATER 2021. [DOI: 10.3390/w13172431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Treated wastewater is constantly produced and relatively unaffected by climatic conditions, while Constructed Wetlands (CWs) are recognized as green technology and a cost-effective alternative to improve treated wastewater quality standards. This paper analyses how farmers consider (1) treated wastewater to face water scarcity risk and (2) CW as mechanisms to face agricultural water pollution in a climate change adaptation context. A survey about climate change perception and adaptation measures was answered by 177 farmers from two irrigation communities near El Hondo coastal wetland and the Santa Pola saltmarshes, both perceived as natural-constructed systems in Alicante, southern Spain. Results highlighted how, even with poor-quality standards, treated wastewater is considered a non-riskier measure and more reliable option when addressing climate change impacts. Overall, physical water harvesting (such as CWs) is the favorite choice when investing in water technologies, being perceived as the best option for users of treated wastewater and those concerned about water quality standards. Consequently, CWs were recognized as mechanisms to increase water supply and reduce water pollution. Policy-makers and water managers can use these learnings from farmers’ experience to identify the main barriers and benefits of using treated wastewater and CWs to address water scarcity and water pollution risks.
Collapse
|
10
|
Impact of Irrigation with Treated Domestic Wastewater on Squash (Cucurbita pepo L.) Fruit and Seed under Semi-Arid Conditions. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigated the effect of using municipal treated wastewater in irrigation on plant growth and seed quality of squash as compared to fresh water. The physico-chemical properties of both water sources were investigated. Soil, fruits and seeds were tested for heavy metals presence and accumulation. A number of seed composition parameters were also measured. Growth parameters (fruit length, diameter and oven-dried weight) were increased in response to irrigation with treated wastewater as compared to control. All tested heavy metals concentrations were below the toxic limit of the Jordanian standards. Crude protein content was highest (41.28%) in naked seeds under treated wastewater treatment, whereas the lowest content (33.57%) was under freshwater treatment of the whole seeds.
Collapse
|
11
|
Chen YG, He XLS, Huang JH, Luo R, Ge HZ, Wołowicz A, Wawrzkiewicz M, Gładysz-Płaska A, Li B, Yu QX, Kołodyńska D, Lv GY, Chen SH. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112336. [PMID: 34044310 DOI: 10.1016/j.ecoenv.2021.112336] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are widely distributed in the environment due to the natural processes and anthropogenic human activities. Their migration into no contaminated areas contributing towards pollution of the ecosystems e.g. soils, plants, water and air. It is recognized that heavy metals due to their toxicity, long persistence in nature can accumulate in the trophic chain and cause organism dysfunction. Although the popularity of herbal medicine is rapidly increasing all over the world heavy metal toxicity has a great impact and importance on herbal plants and consequently affects the quality of herbal raw materials, herbal extracts, the safety and marketability of drugs. Effective control of heavy metal content in herbal plants using in pharmaceutical and food industries has become indispensable. Therefore, this review describes various important factors such as ecological and environmental pollution, cultivation and harvest of herbal plants and manufacturing processes which effects on the quality of herbal plants and then on Chinese herbal medicines which influence human health. This review also proposes possible management strategies to recover environmental sustainability and medication safety. About 276 published studies (1988-2021) are reviewed in this paper.
Collapse
Affiliation(s)
- Yi-Gong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Jia-Hui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Hong-Zhang Ge
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Anna Wołowicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Agnieszka Gładysz-Płaska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, No. 8 Wanmao Road, Choujiang Street, Yiwu City, Zhejiang Province, China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Ghiorghita CA, Mihai M. Recent developments in layer-by-layer assembled systems application in water purification. CHEMOSPHERE 2021; 270:129477. [PMID: 33388497 DOI: 10.1016/j.chemosphere.2020.129477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Electrostatically-based layer-by-layer (LbL) assembly is a versatile surface functionalization technique allowing the construction of complex three-dimensional architectures on virtually any type of material using various combinations of nano-bricks. One of the most promising applications of LbL assembled systems is in water purification. The main two strategies developed in this purpose consist in either enhancing the barrier properties of separation membranes and in the construction of core-shell organic/inorganic sorbents. In this review, the recent achievements in this topic are discussed with respect to the use of LbL-based composites in desalination and removal of heavy metal ions or organic pollutants. Finally, some works dealing with economic aspects of using LbL assemblies for water purification are presented, thus highlighting forthcoming strategies to develop economically-viable materials for such applications.
Collapse
Affiliation(s)
| | - Marcela Mihai
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| |
Collapse
|
13
|
Abstract
Since prehistoric times, water conflicts have occurred as a result of a wide range of tensions and/or violence, which have rarely taken the form of traditional warfare waged over water resources alone. Instead, water has historically been a (re)source of tension and a factor in conflicts that start for other reasons. In some cases, water was used directly as a weapon through its ability to cause damage through deprivation or erosion or water resources of enemy populations and their armies. However, water conflicts, both past and present, arise for several reasons; including territorial disputes, fight for resources, and strategic advantage. The main reasons of water conflicts are usually delimitation of boundaries, waterlogging (e.g., dams and lakes), diversion of rivers flow, running water, food, and political distresses. In recent decades, the number of human casualties caused by water conflicts is more than that of natural disasters, indicating the importance of emerging trends on water wars in the world. This paper presents arguments, fights, discourses, and conflicts around water from ancient times to the present. This diachronic survey attempts to provide water governance alternatives for the current and future.
Collapse
|
14
|
Atamaleki A, Yazdanbakhsh A, Fakhri Y, Salem A, Ghorbanian M, Mousavi Khaneghah A. A Systematic Review and Meta-analysis to Investigate the Correlation Vegetable Irrigation with Wastewater and Concentration of Potentially Toxic Elements (PTES): a Case Study of Spinach (Spinacia oleracea) and Radish (Raphanus raphanistrum subsp. sativus). Biol Trace Elem Res 2021; 199:792-799. [PMID: 32474848 DOI: 10.1007/s12011-020-02181-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
Water shortage and stress around the world lead to the reuse of wastewater in many sectors while the recycling of water in agriculture as one of the most consumed sectors can boost the contamination of crops by potentially toxic elements (PTEs). Therefore, this study was aimed to investigate the correlation between the accumulation of PTEs (Fe, Zn, Cr, Ni, Cu, Pb, As, Cd, and Se) in edible parts of spinach and radish plants and sewage irrigation by the aid of a meta-analysis. Moreover, the non-carcinogenic risk (N-CR) and carcinogenic risk (CR) for health risk assessment of consumers were assessed through actual total target hazard quotient (TTHQact) and carcinogenic risk (CRact). After the screening process, 51 articles with 75 studies were included. According to findings, the rank order of PTEs in spinach and radish were Fe > Zn > Cr > Cu > Ni > Pb > Cd > As > Se and Fe > Zn > Cr > Ni > Cu > Pb > As > Cd > Se, respectively. PTE adsorption by edible parts of spinach (leafy vegetable) was higher than radish. The health risk assessment shows that residents in Iran, India, and China are at N-CR while the population of Iran, India, and Pakistan are facing CR.
Collapse
Affiliation(s)
- Ali Atamaleki
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Yazdanbakhsh
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Atieh Salem
- School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Ghorbanian
- School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
15
|
Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. WATER 2021. [DOI: 10.3390/w13020215] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wastewater generation and treatment is an ever-increasing concern in the current century due to increased urbanization and industrialization. To tackle the situation of increasing environmental hazards, numerous wastewater treatment approaches are used—i.e., physical, chemical, and biological (primary to tertiary treatment) methods. Various treatment techniques being used have the risks of producing secondary pollutants. The most promising technique is the use of different materials as adsorbents that have a higher efficacy in treating wastewater, with a minimal production of secondary pollutants. Biosorption is a key process that is highly efficient and cost-effective. This method majorly uses the adsorption process/mechanism for toxicant removal from wastewater. This review elaborates the major agricultural and non-agricultural materials-based sorbents that have been used with their possible mechanisms of pollutant removal. Moreover, this creates a better understanding of how the efficacy of these sorbents can be enhanced by modification or treatments with other substances. This review also explains the re-usability and mechanisms of the used adsorbents and/or their disposal in a safe and environmentally friendly way, along with highlighting the major research gaps and potential future research directions. Additionally, the cost benefit ratio of adsorbents is elucidated.
Collapse
|
16
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Kaganovich M, Zhang W, Freger V, Bernstein R. Effect of the membrane exclusion mechanism on phosphate scaling during synthetic effluent desalination. WATER RESEARCH 2019; 161:381-391. [PMID: 31226537 DOI: 10.1016/j.watres.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Calcium phosphate scaling is one of the main limitations in effluent desalination using membranes. This may be overcome by tailoring membranes with lower rejection of the scalant ions. In this study, we systematically examined the use of negatively and positively charged membranes, rejecting ions mainly based on Donnan exclusion, as a low-scaling alternative to dielectric-exclusion-dominated polyamide NF membranes for effluent desalination. The two charged membranes exhibited a lower calcium and especially phosphate rejection than the polyamide membrane. Consequently, the calcium phosphate supersaturation and then the propensity to scaling of the charged membranes were much lower than the polyamide membrane. This also allowed filtering at a much higher recovery ratio with the charged membranes. It was also found that, despite the fact that the charged membranes had an opposite fixed charge, their scaling behavior was similar. Apparently, although these membranes showed opposite selectivity towards scalant ions (phosphate and calcium) in single salt solutions, the rejection pattern in mixed salt solutions resulted in similar saturation indices, much lower than for polyamide membrane. The scale formed on all three membranes was identified as amorphous calcium phosphate (ACP), although its saturation index was lower than its solubility factor. This was explained by concentration polarization which increases the saturation index in the solution adjacent to the membrane surface. Tests in absence of permeate flux showed a much slower precipitation that took a few days compared with filtration conditions (few hours). In addition, under these conditions, the effect of the scaling on the membrane permeability was generally reduced and the scale contained crystalline calcium phosphate products, different from ACP. The results indicate that the ion rejection and resulting polarization next to the membrane surface plays a crucial role in scaling. Thus, tuning ion selectivity of NF membranes towards scalant ions presents a promising alternative for scaling mitigation during effluent desalination.
Collapse
Affiliation(s)
- Michaela Kaganovich
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Wei Zhang
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Roy Bernstein
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel.
| |
Collapse
|
18
|
Atamaleki A, Yazdanbakhsh A, Fakhri Y, Mahdipour F, Khodakarim S, Mousavi Khaneghah A. The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: A systematic review; meta-analysis and health risk assessment. Food Res Int 2019; 125:108518. [PMID: 31554079 DOI: 10.1016/j.foodres.2019.108518] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Nowadays, vegetable irrigation with wastewater in developing countries has become a serious issue. In this regard, the current investigation was performed to collect the related data regarding the concentration of potentially toxic elements (PTEs) including Fe, Zn, Cu, Cr, Pb, Ni, and Cd in onion and tomato samples irrigated with wastewater by the aid of a systematic review among the Scopus, Medline and Embase databases between 1/January/1983 to 31/January/2019. Also, the health risk assessment for consumers due to PTEs ingestion via the consumption of onion and tomato was estimated by using target hazard quotient (THQ). In this context, 35 articles with 64 studies out of 779 retrieved citations were included in the meta-analysis. The ranking of different parts of tomato based on Pb, Cd, and Cu concentration was shoot > root > leave > edible part; Fe, leave > shoot > root > edible part; Cr, root > leave > shoot > edible part; Zn, shoot > leave > root > edible part; and Ni, leave > edible part > root > shoot. Moreover, the ratio concentration of Pb, Cd, Cu, Fe, Cr, Zn and Ni in the edible part to leave of onion was 2.92, 6.01, 1.29, 4.17, 0.84, and 3.55, 10.10, respectively. According to findings, the rank order of PTEs in the onion was Fe (43.09 mg/kg-dry weight) > Zn (34.3 mg/ kg-dry weight) > Pb (18.54 mg/ kg-dry weight) > Cu (14.9 mg/ kg-dry weight) > Ni (11.92 mg/ kg-dry weight) > Cr (7.24 mg/ kg-dry weight) > Cd (0.23 mg/ kg-dry weight) and tomato; Fe (139.12 mg/ kg-dry weight) > Zn (29.81 mg/ kg-dry weight) > Cu (25.04 mg/ kg-dry weight) > Cr (14.28 mg/ kg-dry weight) > Pb (9.58 mg/ kg-dry weight) > Ni (9.23 mg/ kg-dry weight) > Cd (4.64 mg/kg-dry weight). However, the concentration of PTEs investigated in the edible part of onion was higher than leaves; their concentrations in the edible part of the tomato were lower than other parts. The health risk assessment indicated that consumers groups are at significant non-carcinogenic risk due to the ingestion of PTEs via consumption of the onion and tomato vegetable wastewater irrigated (THQ > 1). Therefore, the irrigation of vegetables with wastewater should be monitored and controlled by some prevention plans.
Collapse
Affiliation(s)
- Ali Atamaleki
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Yazdanbakhsh
- Workplace Health Promotion Reseach Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yadolah Fakhri
- School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Fayyaz Mahdipour
- Workplace Health Promotion Reseach Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Khodakarim
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|