1
|
Lacourt C, Mukherjee K, Garthoff J, O'Sullivan A, Meunier L, Fattori V. Recent and emerging food packaging alternatives: Chemical safety risks, current regulations, and analytical challenges. Compr Rev Food Sci Food Saf 2024; 23:e70059. [PMID: 39602345 PMCID: PMC11606704 DOI: 10.1111/1541-4337.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Food contact materials should not release their constituent substances into food at levels harmful to human health nor change the food composition, taste, or odor unacceptably. The historical evolution of food packaging shows that the use of plastics has increased dramatically, because of its convenience, lightweight, and cost effectiveness, but carries a significant environmental impact. Influenced by trends such as growing awareness of the environmental footprint and stricter safety requirements, conventional packaging is now progressively evolving toward new alternatives. All stakeholders in the agrifood system are involved in the journey to transform food packaging to more sustainable alternatives, while maintaining the important functionalities of suitable food packaging. The current most promising food packaging alternatives are presented in this review with their benefits, limitations, and associated potential safety hazards, with a focus on chemical hazards. Although some potential hazards are common to conventional packaging, others are specific to the new alternatives. Identification of potential chemical hazards associated with these new packaging alternatives is important to anticipate any risks posed to consumer safety. With much diversity in packaging types and rules aimed at ensuring safety drastically varying between jurisdictions, it is not always easy to determine the best way to assess the safety of food packaging. International guidance on principles for safe food packaging could help drive global harmonization and would play a crucial role in ensuring a consistent and science-based framework for the safety and compliance of new and emerging food packaging.
Collapse
Affiliation(s)
- Charlene Lacourt
- Danone, Food Safety CenterDanone Nutricia Research B.V.UtrechtThe Netherlands
| | - Keya Mukherjee
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Jossie Garthoff
- Danone, Food Safety CenterDanone Nutricia Research B.V.UtrechtThe Netherlands
| | - Aaron O'Sullivan
- Danone, Food Safety CenterDanone Nutricia Research B.V.UtrechtThe Netherlands
| | - Leo Meunier
- Danone, Food Safety CenterDanone Nutricia Research B.V.UtrechtThe Netherlands
| | - Vittorio Fattori
- Food and Agriculture Organization of the United NationsRomeItaly
| |
Collapse
|
2
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
3
|
Kasza G, Veflen N, Scholderer J, Münter L, Fekete L, Csenki EZ, Dorkó A, Szakos D, Izsó T. Conflicting Issues of Sustainable Consumption and Food Safety: Risky Consumer Behaviors in Reducing Food Waste and Plastic Packaging. Foods 2022; 11:3520. [PMID: 36360133 PMCID: PMC9655145 DOI: 10.3390/foods11213520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/12/2024] Open
Abstract
Food-related consumer decisions have an impact on the environment. However, trending patterns of sustainable consumption often pose a challenge for food-safety authorities: these initiatives may unintentionally compromise food safety. The objective of this review is to support public agencies in the integration of sustainability issues into food-safety risk communication schemes. Environmentally conscious but risky behaviors aimed at the reduction of food waste and plastic packaging were chosen for discussion and scrutinized based on expert opinions. Those expert opinions clearly indicated that a significant part of environmentally conscious behaviors, such as removing mold, eating expired perishable food, overstoring leftovers, avoiding single-use plastic packaging even when cross-contamination is a threat, and using reusable bags without cleaning for a long time, often contribute to food-safety risks. Short, easy-to-remember messages were collected for each recognized risky behavior; they concentrated on prevention or providing an alternative that was still environmentally sensible but kept food-safety risks low (such as planning ahead to avoid leftovers, freezing leftovers in time, and sanitizing reusable bags). The identified challenges and solutions might encourage authorities to rethink their risk-communication practices and integrate a sustainability aspect in them.
Collapse
Affiliation(s)
- Gyula Kasza
- National Food Chain Safety Office, Department of Risk Prevention and Education, 1024 Budapest, Hungary
- University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Nina Veflen
- Department of Consumer and Sensory Sciences, Nofima, NO-1431 Ås, Norway
- Department of Marketing, BI Norwegian Business School, NO-0484 Oslo, Norway
| | - Joachim Scholderer
- Department of Informatics and Sustainability Research, University of Zurich, CH-8050 Zurich, Switzerland
| | - Lars Münter
- Rådet for Bedre Hygiejne, 2100 Copenhagen, Denmark
| | - László Fekete
- Hungarian University of Agriculture and Life Sciences (MATE), 2100 Gödöllő, Hungary
| | - Eszter Zita Csenki
- National Food Chain Safety Office, Department of Risk Prevention and Education, 1024 Budapest, Hungary
| | - Annamária Dorkó
- National Food Chain Safety Office, Department of Risk Prevention and Education, 1024 Budapest, Hungary
| | - Dávid Szakos
- University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Tekla Izsó
- National Food Chain Safety Office, Department of Risk Prevention and Education, 1024 Budapest, Hungary
| |
Collapse
|
4
|
Shareefdeen Z, Geara E, Khan H, Rahman NA, AlNimran S. Pollution Prevention Methods and Related Regulations. HAZARDOUS WASTE MANAGEMENT 2022:95-111. [DOI: 10.1007/978-3-030-95262-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
López-Gálvez F, Gómez PA, Artés F, Artés-Hernández F, Aguayo E. Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain. Foods 2021; 10:foods10071655. [PMID: 34359525 PMCID: PMC8307063 DOI: 10.3390/foods10071655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Improving the environmental sustainability of the food supply chain will help to achieve the United Nations Sustainable Development Goals (SDGs). This environmental sustainability is related to different SDGs, but mainly to SDG 2 (Zero Hunger), SDG 12 (Responsible Production and Consumption), SDG 13 (Climate Action), and SDG 15 (Life on Land). The strategies and measures used to improve this aspect of the food supply chain must remain in balance with other sustainability aspects (economic and social). In this framework, the interactions and possible conflicts between food supply chain safety and sustainability need to be assessed. Although priority must be given to safety aspects, food safety policies should be calibrated in order to avoid unnecessary deleterious effects on the environment. In the present review, a number of potential tensions and/or disagreements between the microbial safety and environmental sustainability of the fresh produce supply chain are identified and discussed. The addressed issues are spread throughout the food supply chain, from primary production to the end-of-life of the products, and also include the handling and processing industry, retailers, and consumers. Interactions of fresh produce microbial safety with topics such as food waste, supply chain structure, climate change, and use of resources have been covered. Finally, approaches and strategies that will prove useful to solve or mitigate the potential contradictions between fresh produce safety and sustainability are described and discussed. Upon analyzing the interplay between microbial safety and the environmental sustainability of the fresh produce supply chain, it becomes clear that decisions that are taken to ensure fresh produce safety must consider the possible effects on environmental, economic, and social sustainability aspects. To manage these interactions, a global approach considering the interconnections between human activities, animals, and the environment will be required.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Perla A. Gómez
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Francisco Artés
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (F.A.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
- Correspondence:
| |
Collapse
|
6
|
The 2019 global pandemic and plastic pollution prevention measures: Playing catch-up. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMCID: PMC8529585 DOI: 10.1016/j.scitotenv.2021.145806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The early 2000's encompassed a rising awareness by the scientific community, the general public and policy makers of the impending environmental catastrophe caused by the increasing prevalence of plastics in the environment. Soon thereafter, a slew of regulatory initiatives and policies and actions targeting plastic pollution were put forth by governments, international institutions, non-governmental organizations, companies and even by citizen groups. However, the 2020 COVID19 pandemic has disrupted this momentum, and, presently, many fear that plastic pollution will increase, not only due to the increased consumption of single-use plastic items, but also due to the ever growing need of personal protective equipment. Many plastic pollution reduction policies have been suspended, cancelled or postponed. Herein, some of these delayed policies and initiatives are overviewed and, based on publicly available data, the questions as to whether, at a global level, increased government action to address plastic pollution will continue, or will the pandemic change this paradigm, are tentatively answered, as well as whether the pandemic will affect plastic production, in particular, single-use plastics, and what the potential routes to overcome these tendencies may be. As such, the dynamics of the interaction between the restrictive measures adopted in the wake of this pandemic and plastic pollution are examined, as are the roles of different legislative and regulatory bodies, whether at the local, regional or international levels.
Collapse
|
7
|
Bu Y, Liu Y, Li J, Liu T, Gong P, Zhang L, Wang Y, Yi H. Analyses of plantaricin Q7 synthesis by Lactobacillus plantarum Q7 based on comparative transcriptomics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cheng T, Xu J, Li Y, Zhao Y, Bai Y, Fu X, Gao X, Mao X. Effect of gum ghatti on physicochemical and microstructural properties of biodegradable sodium alginate edible films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Abstract
Since the beginning of the first cases of the new coronavirus, opinions and laws on the use of plastic materials have been questioned around the world. Their importance in the manufacture of hospital devices and personal protective equipment (PPE) is unquestionable, as they contribute largely to the reduction of the virus spread, helping health systems from all edges of the world and, most importantly, saving lives. However, the same material that is a protector, becomes a polluter when inadequately disposed of in the environment, generating or worsening socio-environmental problems, such as pollution of water bodies by plastic. A critical overview of the role of plastic during the COVID-19 pandemic is provided in this paper. A future panorama is attempted to be outlined. The real possibility of the virus spread from the use of plastic is discussed, as well as the recycling of plastic during the pandemic, correlating its use with problems that it may cause.
Collapse
|
10
|
Hale RC, Song B. Single-Use Plastics and COVID-19: Scientific Evidence and Environmental Regulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7034-7036. [PMID: 32510208 PMCID: PMC7291777 DOI: 10.1021/acs.est.0c02269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 05/21/2023]
Affiliation(s)
- R. C. Hale
- Virginia Institute of Marine
Science, William and Mary, Gloucester Point, Virginia 23062, United States
| | - B. Song
- Virginia Institute of Marine
Science, William and Mary, Gloucester Point, Virginia 23062, United States
| |
Collapse
|
11
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
12
|
Zhou SYD, Wei MY, Giles M, Neilson R, Zheng F, Zhang Q, Zhu YG, Yang XR. Prevalence of Antibiotic Resistome in Ready-to-Eat Salad. Front Public Health 2020; 8:92. [PMID: 32269985 PMCID: PMC7109403 DOI: 10.3389/fpubh.2020.00092] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Ready-to-eat salad harbors microorganisms that may carry various antibiotic resistance genes (ARGs). However, few studies have focused on the prevalence of ARGs on salad, thus underestimating the risk of ARGs transferring from salad to consumers. In this small-scale study, high-throughput quantitative PCR was used to explore the presence, prevalence and abundance of ARGs associated with serving salad sourced from two restaurant types, fast-food chain and independent casual dining. A total of 156 unique ARGs and nine mobile genetic elements (MGEs) were detected on the salad items assessed. The abundance of ARGs and MGEs were significantly higher in independent casual dining than fast-food chain restaurants. Absolute copies of ARGs in salad were 1.34 × 107 to 2.71 × 108 and 1.90 × 108 to 4.87 × 108 copies per g salad in fast-food and casual dining restaurants, respectively. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were the dominant bacterial phyla detected from salad samples. Pseudomonas, Acinetobacter, Exiguobacterium, Weissella, Enterobacter, Leuconostoc, Pantoea, Serratia, Erwinia, and Ewingella were the 10 most dominant bacterial genera found in salad samples. A significant positive correlation between ARGs and MGEs was detected. These results integrate knowledge about the ARGs in ready-to-eat salad and highlight the potential impact of ARGs transfer to consumers.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Meng-Yun Wei
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Madeline Giles
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|