1
|
Antonino C, Difonzo G, Faccia M, Caponio F. Effect of edible coatings and films enriched with plant extracts and essential oils on the preservation of animal-derived foods. J Food Sci 2024; 89:748-772. [PMID: 38161278 DOI: 10.1111/1750-3841.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Edible coatings and films for food preservation are becoming more popular thanks to their environmentally friendly properties and active ingredient-carrying ability. Their application can be effective in contrasting quality decay by limiting oxidation and deterioration of foods. Many reviews analyze the different compounds with which films and coatings can be created, their characteristics, and the effect when applied to food. However, the possibility of adding plant extracts and essential oils in edible coatings and films to preserve processed animal-derived products has been not exhaustively explored. The aim of this review is to summarize how edible coatings and films enriched with plant extracts (EXs) and essential oils (EOs) influence the physico-chemical and sensory features as well as the shelf-life of cheese, and processed meat and fish. Different studies showed that various EXs and EOs limited both oxidation and microbial growth after processing and during food preservation. Moreover, encapsulation has been found to be a valid technology to improve the solubility and stability of EOs and EXs, limiting strong flavor, controlling the release of bioactive compounds, and maintaining their stability during storage. Overall, the incorporation of EXs and EOs in edible coating and film to preserve processed foods can offer benefits for improving the shelf-life, limiting food losses, and creating a food sustainable chain.
Collapse
Affiliation(s)
- Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kulawik P, Jamróz E, Kruk T, Szymkowiak A, Tkaczewska J, Krzyściak P, Skóra M, Guzik P, Janik M, Vlčko T, Milosavljević V. Active edible multi-layer chitosan/furcellaran micro/nanoemulsions with plant essential oils and antimicrobial peptides: Biological properties and consumer acceptance. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Khoshkalampour A, Ghorbani M, Ghasempour Z. Cross-linked gelatin film enriched with green carbon quantum dots for bioactive food packaging. Food Chem 2023; 404:134742. [DOI: 10.1016/j.foodchem.2022.134742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
|
5
|
Sáez-Orviz S, Rendueles M, Díaz M. Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings- a review. Food Res Int 2023; 164:112381. [PMID: 36737965 DOI: 10.1016/j.foodres.2022.112381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Nowadays, conventional packaging materials made using non-renewable sources are being replaced by more sustainable alternatives such as natural biopolymers (proteins, polysaccharides, and lipids). Within edible packaging, one can differentiate between edible films or coatings. This packaging can be additivated with bioactive compounds to develop functional food packaging, capable of improving the consumer's state of health. Among the bioactive compounds that can be added are probiotics and prebiotics. This review novelty highlighted recent research on edible films and coatings additivated with probiotics and prebiotics, the interactions between them and the matrix and the changes in their physic, chemical and mechanical properties. When bioactive compounds are added, critical factors must be considered when selecting the most suitable production processes. Particularly, as probiotics are living microorganisms, they are more sensitive to certain factors, such as pH or temperature, while prebiotic compounds are less problematic. The interactions that occur inside the matrix can be divided into two main groups: covalent bonding (-NH2, -NHR, -OH, -CO2H, etc) and non-covalent interactions (van der Waals forces, hydrogen bonding, hydrophobic and electrostatic interactions). When probiotics and prebiotics are added, covalent and non-covalent interactions are modified. The physical and mechanical properties of films and coatings depend directly on the interactions that take place between the biopolymers that form their matrix. Greater knowledge about the influence of these compounds on the interactions that occur inside the matrix will allow better control of these properties and better understanding of the behaviour of edible packaging additivated with probiotics and prebiotics.
Collapse
Affiliation(s)
- S Sáez-Orviz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - M Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - M Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Kruk J, Tkaczewska J, Szuwarzyński M, Mazur T, Jamróz E. Influence of storage conditions on functional properties of multilayer biopolymer films based on chitosan and furcellaran enriched with carp protein hydrolysate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Li Y, Zhao N, Li Y, Zhang D, Sun T, Li J. Dynamics and diversity of microbial community in salmon slices during refrigerated storage and identification of biogenic amine-producing bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Tkaczewska J, Jamróz E, Kasprzak M, Zając M, Pająk P, Grzebieniarz W, Nowak N, Juszczak L. Edible Coatings Based on a Furcellaran and Gelatin Extract with Herb Addition as an Active Packaging for Carp Fillets. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
This is the first such study in which a gelatin extract obtained from carp skins enriched with dry herbs (thyme or rosemary) has been prepared. Extracts prepared in such a manner were added to furcellaran coatings. Coatings were tested for their mechanical properties and the obtained results showed that the control coatings, and those with the addition of rosemary, had the best strength-related parameters. A new ready-to-cook product was evaluated with regard to the preservative effects of carp skin gelatin coatings containing rosemary and thyme extracts in terms of pH, biogenic amine formulation, microbial changes and sensorial characteristics. The coatings with added rosemary proved effective in inhibiting the formation of biogenic amines, and slowing down the microbial deterioration of carp fillets (reduction by 0.53 and 0.29 log cfu/g). The evaluated herb coatings changed the characteristic taste of fish. Interestingly, the coatings emphasized the natural saltiness of fish meat.
Collapse
|
9
|
Derbew Gedif H, Tkaczewska J, Jamróz E, Zając M, Kasprzak M, Pająk P, Grzebieniarz W, Nowak N. Developing Technology for the Production of Innovative Coatings with Antioxidant Properties for Packaging Fish Products. Foods 2022; 12:foods12010026. [PMID: 36613241 PMCID: PMC9818252 DOI: 10.3390/foods12010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effects of furcellaran−gelatine (FUR/GEL) coatings incorporated with herb extracts on the quality retention of carp fish during refrigeration. Nutmeg, rosemary, thyme, milfoil, marjoram, parsley, turmeric, basil and ginger were subjected to water and ethanol extraction methods (10% concentration of herbs). The water extractions of the rosemary and thyme (5%) were used for the further development of coatings due to their high 2,2-Diphenyl-1-picrylhydrazyl (DPPH: 85.49 and 83.28%) and Ferric Reducing Antioxidant Power Assay values (FRAP: 0.46 and 0.56 mM/L) (p < 0.05), respectively. A new, ready-to-cook product with the coatings (carp fillets) was evaluated regarding quality in terms of colour parameters, texture profile, water activity, Thiobarbituric Acid Reactive Substances (TBARSs) and sensory analyses during 12 days of storage at 4 °C. The results show that the colour of the carp fillets treated with the rosemary and thyme extracts became slightly darker and had a propensity towards redness and yellowness. In contrast to the control group, the carp fillets stored in the coatings with the rosemary extract effectively slowed the lipid oxidation processes. Therefore, the innovative coatings produced from carp processing waste may have high potential as components in convenience food products and could extend the shelf-life of carp fillets during refrigerated storage. However, further research is needed to assess the microbiological stability of the obtained food products.
Collapse
Affiliation(s)
- Hana Derbew Gedif
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Department of Food Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar 26, Ethiopia
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence:
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Paulina Pająk
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
10
|
Orqueda ME, Méndez DA, Martínez-Abad A, Zampini C, Torres S, Isla MI, López-Rubio A, Fabra MJ. Feasibility of active biobased films produced using red chilto wastes to improve the protection of fresh salmon fillets via a circular economy approach. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Kulawik P, Jamróz E, Janik M, Tkaczewska J, Krzyściak P, Skóra M, Guzik P, Milosavljević V, Tadele W. Biological activity of biopolymer edible furcellaran-chitosan coatings enhanced with bioactive peptides. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Cui H, Yang M, Shi C, Li C, Lin L. Application of Xanthan-Gum-Based Edible Coating Incorporated with Litsea cubeba Essential Oil Nanoliposomes in Salmon Preservation. Foods 2022; 11:foods11111535. [PMID: 35681285 PMCID: PMC9180108 DOI: 10.3390/foods11111535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/22/2023] Open
Abstract
Salmon is prone to be contaminated by Vibrio parahaemolyticus (V. parahaemolyticus), leading to the deterioration of salmon quality and the occurrence of food-borne diseases. In this study, we aimed to develop a novel xanthan-gum-based edible coating embedded with nano-encapsulated Litsea cubeba essential oil (LC-EO) for salmon preservation at 4 °C. First, the results of the growth curves and scanning electron microscopy (SEM) showed that LC-EO displayed potent antibacterial activity against V. parahaemolyticus; the optimal concentration of LC-EO in the liposomes was 5 mg/mL, and the maximal encapsulation efficiency (EE) was 37.8%. The particle size, polydispersity coefficient (PDI), and zeta potential of the liposomes were 168.10 nm, 0.250, and −32.14 mV, respectively. The rheological test results of xanthan-gum-based edible coatings incorporating liposomes showed that the prepared coating was suitable for applying on food surfaces. The results in the challenge test at 4 °C demonstrated that the treatment of 1:3 (liposome: xanthan gum, v/v) coating performed the best preservative properties, the coating treatment delayed the oxidation of salmon, and controlled the growth of V. parahaemolyticus. These findings suggest that the coatings formulated in this study could be used as a promising approach to control V. parahaemolyticus contamination and maintain salmon quality.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Mei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
- Correspondence: (C.L.); (L.L.)
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
- Correspondence: (C.L.); (L.L.)
| |
Collapse
|
13
|
Consumer Attitudes towards Food Preservation Methods. Foods 2022; 11:foods11091349. [PMID: 35564072 PMCID: PMC9099755 DOI: 10.3390/foods11091349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The development and scope of using various food preservation methods depends on the level of consumers’ acceptance. Despite their advantages, in the case of negative attitudes, producers may limit their use if it determines the level of sales. The aim of this study was to evaluate the perception of seven different food processing methods and to identify influencing factors, such as education as well as living area and, at the same time, to consider whether consumers verify this type of information on the labels. Additionally, the study included the possibility of influencing consumer attitudes by using alternative names for preservation methods, on the example of microwave treatment. The results showed that conventional heat treatments were the most preferred preservation methods, whereas preservatives, irradiation, radio waves and microwaves were the least favored, suggesting that consumers dislike methods connected with “waves” to a similar extent as their dislike for preservatives. The control factors proved to significantly modify the evaluation of the methods. The analysis of alternative names for microwave treatment showed that “dielectric heating” was significantly better perceived. These research findings are important as the basis for understanding consumer attitudes. Implications for business and directions of future research are also indicated.
Collapse
|
14
|
Jamróz E, Tkaczewska J, Juszczak L, Zimowska M, Kawecka A, Krzyściak P, Skóra M. The influence of lingonberry extract on the properties of novel, double-layered biopolymer films based on furcellaran, CMC and a gelatin hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Sørbø S, Lerfall J. Effect of edible coating and modified atmosphere packaging on the microbiological and physicochemical stability of retail maki sushi. J Food Sci 2022; 87:1211-1229. [PMID: 35137419 DOI: 10.1111/1750-3841.16065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
The effect of pH, packaging atmosphere (100% air, 40%, or 70% CO2 balanced with N2 ), and an edible chitosan coating was tested on the retail maki Sushi's microbiological and physiochemical stability. In two experiments, maki sushi was studied using sushi rice with an initial pH of 4.2 ± 0.05 and 4.8 ± 0.05. In the first experiment (lower pH), no apparent effect of neither modified atmosphere packaging (MAP) nor coating on bacterial growth was observed. However, raising the pH showed an apparent effect of low-CO2 MAP and chitosan coating (p < 0.05). Both MAP and coating partly affected the maki sushi cross-section's visual perception, but no significant adverse effects were observed. An important observation was the improved stability of the pink salmon color in chitosan-coated maki sushi stored in low-CO2 MAP compared to other groups. It is concluded that storage of Maki sushi at 4°C gives acceptable microbial stability and appropriate quality. However, an edible chitosan coating, especially in combination with low-CO2 MAP, increases the microbiological stability and preserves the colorimetric properties of maki sushi stored at 8°C. Notably, this combination could work as a safety measure against temperature abuse in the food cold chain. PRACTICAL APPLICATION: Using an edible coating with active packaging can improve retail maki sushi's temperature tolerance and preserve its colorimetric properties. It is a fast and cost-effective technology with a substantial industrial potential easy to implement.
Collapse
Affiliation(s)
- Simen Sørbø
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
17
|
Ashfaq F, Bilal A, Butt MS, Tehseen S, Akhtar MN, Suleria HAR. Comparing the application of conventional and supercritical CO
2
extracts of green tea; storage stability and sensory acceptance of coriander sauce. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Faiza Ashfaq
- Department of Food Science and Technology Faculty of Science and Technology Government College Women University Faisalabad Faisalabad Pakistan
| | - Ahmad Bilal
- University Institute of Diet and Nutritional Sciences Faculty of Allied Health Sciences The University of Lahore Lahore Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology Faculty of Food, Nutrition & Home Sciences University of Agriculture Faisalabad Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology Faculty of Science and Technology Government College Women University Faisalabad Faisalabad Pakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional Sciences Faculty of Allied Health Sciences The University of Lahore Lahore Pakistan
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
18
|
Zając M, Pająk P, Skowyra G. Characterization of edible collagen casings in comparison with the ovine casing and their effect on sausage quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6001-6009. [PMID: 33856057 DOI: 10.1002/jsfa.11254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bovine hide underlayer is used to manufacture collagen casings for sausage production. Edible collagen casings and natural ovine casing (as a reference) were chosen for analysis. The collagen casings (intended for: A - breakfast sausages, B - scalded sausages and C - dried sausages) were manufactured with the use of glyoxal as a cross-linking agent. The casings properties along with the quality of the sausages manufactured in those casings was analyzed. RESULTS Casing A had a higher swelling capacity and water solubility, a* and b* color parameters, and wet elongation at break values, as well as a lower shrinking temperature. The remaining mechanical and water parameters were comparable to other collagen casings. The ovine casing contained more water, and was redder and less yellow compared to the collagen casings, whereas swelling, solubility and water vapor permeability were higher. The sausages in casing A were the softest and had the highest a* and b* color parameters. The results of the sensory analysis indicate that the sausages in casing B exhibited the highest quality on a three-point scale among the tested sausages and were also the most acceptable for judges. The ovine casing was graded as the hardest during cutting and also when in the mouth. CONCLUSION By contrast to the producer's descriptions, the collagen casings were similar with respect to many properties. The differences between sausages in collagen casings were not so distinct as might be expected. Despite our expectations, the sausages in the natural casing were not rated as the best compared to sausages in collagen casings in the sensory analysis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland
| | - Paulina Pająk
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland
| | - Gabriela Skowyra
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland
| |
Collapse
|
19
|
Abstract
In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.
Collapse
|
20
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Incorporation of salmon bone gelatine with chitosan, gallic acid and clove oil as edible coating for the cold storage of fresh salmon fillet. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Zając M, Jamróz E, Guzik P, Kulawik P, Tkaczewska J. Active biopolymer films based on furcellaran, whey protein isolate and Borago officinalis extract: characterization and application in smoked pork ham production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2884-2891. [PMID: 33159331 DOI: 10.1002/jsfa.10920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The meat industry is determined to find biodegradable packaging with properties similar to plastic. Furcellaran (FUR) and whey protein isolate (WPI) were used as a film matrix in which Borago officinalis extract (BOE) was incorporated as an antioxidant compound. The film's mechanical properties, water behavior, surface color, and antioxidant power were analyzed.Smoked hams were manufactured using two different types of film application: cured meat covered with film, smoked and cooked or hamsafter smoking, cooking and cooling. Smoked, vacuum packed ham was used as a control sample. The products were stored at 4 °C for 21 days and analyzed every 7 days. RESULTS The elongation at break (EAB) and tensile strength (TS) of FUR/WPI films without the extract were 6.30% and 20.59 MPa, respectively, and after incorporating BOE, the EAB and TS were 24.30% and 15.33 MPa, respectively. The films with BOE were darker and had greater antioxidant capacity. The water content and activity in the products with films decreased along with storage time while the control remained stable. The results of microbiological, oxidation product accumulation, and sensory analysis were comparable in all the products. CONCLUSIONS The smoking time can be reduced due to the dark color of the hams covered with BOE film. The barrier properties of those films should be increased. Other parameters were comparable to plastic packaging. The films therefore have the potential to be used instead of plastic packaging in the meat industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Paulina Guzik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| |
Collapse
|
23
|
Application of Furcellaran Nanocomposite Film as Packaging of Cheese. Polymers (Basel) 2021; 13:polym13091428. [PMID: 33925252 PMCID: PMC8124633 DOI: 10.3390/polym13091428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
There is a serious need to develop and test new biodegradable packaging which could at least partially replace petroleum-based materials. Therefore, the objective of this work was to examine the influence of the recently developed furcellaran nanocomposite film with silver nanoparticles (obtained by an in situ method) on the quality properties of two cheese varieties: a rennet-curd (gouda) and an acid-curd (quark) cheese. The water content, physicochemical properties, microbiological and organoleptic quality of cheese, and migration of silver nanoparticles were examined. Both the number of Lactococcus and total bacteria count did not differ during storage of gouda regardless of the packaging applied. The number of Lactococcus decreased in analogous quark samples. The use of the film slowed down and inhibited the growth of yeast in gouda and quark, respectively. An inhibitory effect of this film on mold count was also observed; however, only regarding gouda. The level of silver migration was found to be lower in quark than in gouda. The film improved the microbiological quality of cheeses during storage. Consequently, it is worth continuing research for the improvement of this film in order to enable its use in everyday life.
Collapse
|
24
|
|
25
|
Characterization of Furcellaran-Whey Protein Isolate Films with Green Tea or Pu-erh Extracts and Their Application as Packaging of an Acid-Curd Cheese. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02570-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
27
|
Chaijan S, Panpipat W, Panya A, Cheong LZ, Chaijan M. Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Kulawik P, Dordević D. Sushi processing: microbiological hazards and the use of emerging technologies. Crit Rev Food Sci Nutr 2020; 62:1270-1283. [PMID: 33124887 DOI: 10.1080/10408398.2020.1840332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sushi meal has been adapting to different countries and traditions ever since it was invented. Recently there is a growing popularity of ready-to-eat sushi meals, with new sushi production plants emerging in many countries. This relatively new sushi industry is facing many challenges, one of which is the microbiological hazard related to sushi consumption. The aim of this review was to summarize the most significant aspects with regard to microbiological quality of sushi, reported cases of sushi-related poisoning, as well as the potential of modern innovative and emerging technologies to inhibit microbiological growth. Although there is a limited amount of studies in relation to sushi shelf-life extension, the existing data shows potential of using novel minimal processing technologies to improve the shelf-life and quality of sushi meals. Those technologies include the use of cold plasma, plasma activated water and electrolyzed water, as well as the use of innovative packaging and edible coatings. Based on the collected data, the possible microbiological hazards in the production process of sushi, with possible use of emerging technologies to reduce or eliminate those risks, are also emphasized.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland
| | - Dani Dordević
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic.,Department of Technology and Organization of Public Catering, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
29
|
Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02528-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
The effects of active double-layered furcellaran/gelatin hydrolysate film system with Ala-Tyr peptide on fresh Atlantic mackerel stored at -18 °C. Food Chem 2020; 338:127867. [PMID: 32829293 DOI: 10.1016/j.foodchem.2020.127867] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
This is the first time that active double-layered furcellaran/gelatin hydrolysate films containing Ala-Tyr peptide were developed and characterised for their properties. Afterwards, films were used on Atlantic mackerel stored at -18 °C for 4 months and samples were analysed for changes in their microbiological quality, TVB-N, biogenic amine content, fatty acid composition and TBARS. Active films had higher TS (13.4 MPa) and lower WS (62.8%). The films showed no DPPH radical scavenging properties but high FRAP (6.6 mMol Trolox/mg). No significant effects on the oxidation of fish samples were observed with TBARS increasing from 12.04 to 22.50 mg/kg. Freezing successfully inhibited the growth of microorganisms and no differences in microbiological growth or biogenic amine formation were observed. However, the application of films inhibited the formation of TVB-N. Antimicrobiological properties of the film should be further investigated during storage of perishable food products at temperatures above 0 °C.
Collapse
|
31
|
Active edible furcellaran/whey protein films with yerba mate and white tea extracts: Preparation, characterization and its application to fresh soft rennet-curd cheese. Int J Biol Macromol 2020; 155:1307-1316. [DOI: 10.1016/j.ijbiomac.2019.11.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023]
|
32
|
Pop OL, Pop CR, Dufrechou M, Vodnar DC, Socaci SA, Dulf FV, Minervini F, Suharoschi R. Edible Films and Coatings Functionalization by Probiotic Incorporation: A Review. Polymers (Basel) 2019; 12:E12. [PMID: 31861657 PMCID: PMC7022843 DOI: 10.3390/polym12010012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Edible coatings and films represent an alternative packaging system characterized by being more environment- and customer-friendly than conventional systems of food protection. Research on edible coatings requires multidisciplinary efforts by food engineers, biopolymer specialists and biotechnologists. Entrapment of probiotic cells in edible films or coatings is a favorable approach that may overcome the limitations linked with the use of bioactive compounds in or on food products. The recognition of several health advantages associated with probiotics ingestion is worldwide accepted and well documented. Nevertheless, due to the low stability of probiotics in the food processing steps, in the food matrices and in the gastrointestinal tract, this kind of encapsulation is of high relevance. The development of new and functional edible packaging may lead to new functional foods. This review will focus on edible coatings and films containing probiotic cells (obtaining techniques, materials, characteristics, and applications) and the innovative entrapment techniques use to obtained such packaging.
Collapse
Affiliation(s)
- Oana L. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania (C.R.P.); (D.C.V.); (S.A.S.)
| | - Carmen R. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania (C.R.P.); (D.C.V.); (S.A.S.)
| | - Marie Dufrechou
- USC 1422 GRAPPE, INRA, Ecole Supérieur d’Agriculture, SFR 4207 QUASAV, 55 rue Rabelais, BP 30748, 4900 Agnes Cedex 01, France;
| | - Dan C. Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania (C.R.P.); (D.C.V.); (S.A.S.)
| | - Sonia A. Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania (C.R.P.); (D.C.V.); (S.A.S.)
| | - Francisc V. Dulf
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania (C.R.P.); (D.C.V.); (S.A.S.)
| |
Collapse
|
33
|
Jamróz E, Kopel P, Tkaczewska J, Dordevic D, Jancikova S, Kulawik P, Milosavljevic V, Dolezelikova K, Smerkova K, Svec P, Adam V. Nanocomposite Furcellaran Films-the Influence of Nanofillers on Functional Properties of Furcellaran Films and Effect on Linseed Oil Preservation. Polymers (Basel) 2019; 11:E2046. [PMID: 31835441 PMCID: PMC6960603 DOI: 10.3390/polym11122046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Faculty of Electrical Engineering and Communication, Department of Microelectronics, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122 Street, PL-30-149 Cracow, Poland; (J.T.); (P.K.)
| | - Dani Dordevic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, CZ-612 42 Brno, Czech Republic; (D.D.); (S.J.)
- Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
| | - Simona Jancikova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, CZ-612 42 Brno, Czech Republic; (D.D.); (S.J.)
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122 Street, PL-30-149 Cracow, Poland; (J.T.); (P.K.)
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
34
|
Biao Y, Yuxuan C, Qi T, Ziqi Y, Yourong Z, McClements DJ, Chongjiang C. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105197] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Jamróz E, Kulawik P, Guzik P, Duda I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105211] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Milosavljevic V, Jamroz E, Gagic M, Haddad Y, Michalkova H, Balkova R, Tesarova B, Moulick A, Heger Z, Richtera L, Kopel P, Adam V. Encapsulation of Doxorubicin in Furcellaran/Chitosan Nanocapsules by Layer-by-Layer Technique for Selectively Controlled Drug Delivery. Biomacromolecules 2019; 21:418-434. [DOI: 10.1021/acs.biomac.9b01175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vedran Milosavljevic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Cracow, Poland
| | - Milica Gagic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Hana Michalkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Radka Balkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Brno University of Technology, Purkynova 464/118, Kralovo Pole, 61200 Brno, Czech Republic
| | - Barbora Tesarova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavel Kopel
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
37
|
Zhaleh S, Shahbazi Y, Shavisi N. Shelf-Life Enhancement in Fresh and Frozen Rainbow Trout Fillets by the Employment of a Novel Active Coating Design. J Food Sci 2019; 84:3691-3699. [PMID: 31710092 DOI: 10.1111/1750-3841.14851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023]
Abstract
The goal of this study was to determine the effect of incorporating ethanolic Prosopis farcta extract (PFE, 0 and 0.5%) and curcumin nanoparticles (CCM, 0, 0.1 and 0.2%) into sodium alginate (SA) coating on shelf-life of refrigerated and frozen rainbow trout fillets during storage lasting for 12 days and 6 months, respectively. Antioxidant and antibacterial properties of designated coatings were examined using 2, 2-diphenyl-1-picrylhydrazyl hydrate free radical scavenging activity and broth microdilution methods, respectively. The highest antioxidant and antibacterial activities were found in CCM 0.2% + PFE 0.5% and CCM 0.1% + PFE 0.5%. The CCM 0.2% + PFE 0.5% and CCM 0.1% + PFE 0.5% treatments could significantly extend the shelf-life of fresh trout fillets for 12 days during refrigerated storage evidenced by the 3.6 to 4.3 and 3 to 3.7 log CFU/g decrease in the microbial population in comparison with the untreated group, respectively. At the end of refrigerated storage time, the chemical change in all treated fillets was significantly lower than the untreated group (P < 0.05). The treatments of frozen trout fillets with SA + different concentrations of PFE and CCM resulted in better microbial and chemical properties than of the untreated group at the end of storage period (P < 0.05). PRACTICAL APPLICATION: Antimicrobial edible coatings from natural renewable resources have been found to be very useful in the food preservation field owing to the increasing consumer interest for the improvement of shelf-life property and appearance of fresh foodstuffs. Rainbow trout fillets without chemical preservatives have a limited shelf-life due to its biological properties. This study indicates the possibility of application of sodium alginate coatings containing Prosopis farcta extract and curcumin nanoparticles to increase shelf-life and maintain the quality of refrigerated trout fillets.
Collapse
Affiliation(s)
- Saba Zhaleh
- Dept. of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Razi Univ., Kermanshah, Iran
| | - Yasser Shahbazi
- Dept. of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Razi Univ., Kermanshah, Iran
| | - Nassim Shavisi
- Dept. of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Razi Univ., Kermanshah, Iran
| |
Collapse
|
38
|
Goulas V, Hadjivasileiou L, Primikyri A, Michael C, Botsaris G, Tzakos AG, Gerothanassis IP. Valorization of Carob Fruit Residues for the Preparation of Novel Bi-Functional Polyphenolic Coating for Food Packaging Applications. Molecules 2019; 24:molecules24173162. [PMID: 31480264 PMCID: PMC6749202 DOI: 10.3390/molecules24173162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
The food industry has become interested in the development of innovative biomaterials with antioxidant and antimicrobial properties. Although several biopolymers have been evaluated for food packaging, the use of polyphenolic coatings has been unexplored. The purpose of this work was to develop an antioxidant and antimicrobial coating for food packaging through the polymerization of carob phenolics. At first, the polyphenolic coatings were deposited in glass surfaces polymerizing different concentrations of carob extracts (2 and 4 mg mL−1) at three pH values (7, 8 and 9). Results demonstrated that the coating produced at pH 8 and at a concentration of 4 mg mL−1 had the most potent antioxidant and antimicrobial potential. Then, the coating was applied directly on the salmon fillet (coating) and on the plastic container (active packaging). Peroxide and thiobarbituric acid-reactive substances (TBARS) methods were used to measure the potency to inhibit lipid oxidation in salmon fillets. Furthermore, the anti-Listeria activity of coatings was also assessed. Results showed a significant decrease of lipid oxidation during cold storage of salmon fillets for both treatments; the superiority of applied coating directly on the salmon fillets was also highlighted. Regarding the antimicrobial potency, the polyphenolic coating depleted the growth of Listeria monocytogenes after 10 days storage; while the active packaging had no effect on Listeria monocytogenes. Overall, we describe the use of low-cost carob polyphenols as precursors for the formation of bifunctional coatings with promising applications in food packaging.
Collapse
Affiliation(s)
- Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3603, Cyprus.
| | - Loukas Hadjivasileiou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3603, Cyprus
| | | | - Christodoulos Michael
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3603, Cyprus
| | - George Botsaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3603, Cyprus
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece
| | | |
Collapse
|