1
|
Huang Q, Xie R, Wu X, Zhao K, Li H, Tang H, Du H, Peng X, Chen L, Zhang J. Insights into the Protein Differentiation Mechanism between Jinhua Fatty Ham and Lean Ham through Label-Free Proteomics. Foods 2023; 12:4348. [PMID: 38231787 DOI: 10.3390/foods12234348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Jinhua lean ham (LH), a dry-cured ham made from the defatted hind legs of pigs, has become increasingly popular among consumers with health concerns. However, the influence of fat removal on the quality of Jinhua ham is still not fully understood. Therefore, a label-free proteomics strategy was used to explore the protein differential profile between Jinhua fatty ham (FH) and lean ham (LH). Results showed that 179 differential proteins (DPs) were detected, including 82 up-regulated and 97 down-regulated DPs in LH vs. FH, among which actin, myosin, tropomyosin, aspartate aminotransferase, pyruvate carboxylase, and glucose-6-phosphate isomerase were considered the key DPs. GO analysis suggested that DPs were mainly involved in binding, catalytic activity, cellular process, and metabolic process, among which catalytic activity was significantly up-regulated in LH. Moreover, the main KEGG-enriched pathways of FH focused on glycogen metabolism, mainly including the TCA cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. However, amino acid metabolism and oxidative phosphorylation were the main metabolic pathways in LH. From the protein differentiation perspective, fat removal significantly promoted protein degradation, amino acid metabolism, and the oxidative phosphorylation process. These findings could help us to understand the effects of fat removal on the nutritional metabolism of Jinhua hams and provide theoretical supports for developing healthier low-fat meat products.
Collapse
Affiliation(s)
- Qicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruoyu Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China
| | - Lihong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Zhang L, Yu D, Xu Y, Jiang Q, Yu D, Xia W. The inhibition mechanism of nanoparticles-loading bilayer film on texture deterioration of refrigerated carp fillets from the perspective of protein changes and exudates. Food Chem 2023; 424:136440. [PMID: 37244181 DOI: 10.1016/j.foodchem.2023.136440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Herein, the protective pattern of bilayer film on the texture stability of fillets was discussed in terms of endogenous enzyme activity, as well as protein oxidation and degradation. The texture properties of fillets wrapped with nanoparticles (NPs) bilayer film were greatly improved. NPs film delayed protein oxidation by inhibiting the formation of disulfide bond and carbonyl group as evidenced by the increase of α-helix ratio (43.02%) and the decrease of random coil ratio (15.87%). The protein degradation degree of fillets treated with NPs film was lower than that of control group, specifically with a more regular protein structure. The exudates accelerated the degradation of protein, while NPs film effectively absorbed exudates to delay protein degradation. Overall, the active agents in the film were released into the fillets to play an antioxidant and antibacterial roles, and the inner layer of film could absorb exudates, thus maintaining the texture characteristics of fillets.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongxing Yu
- SoHao Fd-Tech Co., Ltd., QingDao, ShanDong 266700, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
iTRAQ-based proteomic analysis reveals the underlying mechanism of postmortem tenderization of refrigerated porcine Longissimus thoracis et lumborum muscle. Meat Sci 2023; 197:109068. [PMID: 36495834 DOI: 10.1016/j.meatsci.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The isobaric tags for relative and absolute quantitation (iTRAQ) technology was used for differential proteomic analysis of refrigerated porcine Longissimus thoracis et lumborum (LTL) muscle at different time points postmortem (45 min, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h) to mechanistically elucidate the postmortem tenderization. Compared with the proteins identified in porcine LTL muscle at 45 min postmortem (control), 862 proteins were significantly expressed at 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h postmortem. Moreover, clustering and path analysis showed that the quality traits of porcine LTL muscle, including pH, shear force, myofibril fragmentation index, correlated significantly with 2, 6 and 6 differentially expressed proteins, respectively, with the lowest or highest expression at 8 h or 12 h postmortem. Overall, the tenderness of refrigerated porcine LTL muscle might be significantly affected by changes in quality traits at 8 h and 12 h postmortem.
Collapse
|
4
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
5
|
Liu J, Hu Z, Zheng A, Ma Q, Liu D. Identification of exudate metabolites associated with quality in beef during refrigeration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Zhang J, Toldrá F, Zhang W. Insight into Ultrasound-Induced Modifications of the Proteome and Flavor-Related Proteins of Unsmoked Bacon by Applying Label-Free Quantitation Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10259-10270. [PMID: 35947788 DOI: 10.1021/acs.jafc.2c03605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the modifications of the proteome and flavor-related proteins in unsmoked bacon resulting from ultrasound treatment with the application of label-free quantitation technology together with bioinformatics analysis. Results showed that the expression levels of 137 proteins were markedly affected by ultrasound with most of them being significantly upregulated. The proteins distributed in the cytoplasm and the cytosol, the mitochondrion, and the nucleus were more susceptible to ultrasound treatment. Meanwhile, 20 flavor-related proteins, mostly myofibrillar proteins and metabolic enzymes mainly involved in the metabolic pathways of signaling and cellular processes and environmental information processing, were screened out. In addition, the differential expressions of flavor-related proteins induced by ultrasound were verified by western blotting. This study displayed insightful information from the proteomics perspective for a better understanding of the influential effect of ultrasound treatment on meat flavor.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
7
|
Guo J, Xu F, Xie Y, Chen B, Wang Y, Nie W, Zhou K, Zhou H, Xu B. Effect of Xuanwei Ham Proteins with Different Ripening Periods on Lipid Metabolism, Oxidative Stress and Gut Microbiota in Mice. Mol Nutr Food Res 2022; 66:e2101020. [DOI: 10.1002/mnfr.202101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Guo
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Feiran Xu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
- Anhui Qingsong Food Co., Ltd. No.28 Ningxi Road Hefei 231299 China
| | - Yong Xie
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Bo Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Ying Wang
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Wen Nie
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Kai Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Hui Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Baocai Xu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| |
Collapse
|
8
|
Proteomic and parallel reaction monitoring approaches to evaluate biomarkers of mutton tenderness. Food Chem 2022; 397:133746. [PMID: 35882166 DOI: 10.1016/j.foodchem.2022.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022]
Abstract
Intensive fattening usually results in the changes of meat quality. Tenderness is a central attribute for mutton sensory qualities and consumers' choice. Here, we reported that intensive fattening mutton was more tender than that of traditionally raised sheep. By proteomic approach, we found 49 differentially expressed proteins in longissimus dorsi muscle. After bioinformatics analysis, 5 cytoskeletal proteins, 3 protein binding proteins and 7 metabolic enzymes were identified as potential biomarkers for mutton tenderness. Finally, we verified the expression of these abundant proteins by parallel reaction monitoring (PRM). Collectively, our results reveal that the mutton of sheep raised by intensive fattening is more tender than that of traditionally raised sheep. Myosin-2, myosin-13, vimentin, carbonic anhydrase, carbonic anhydrase-2, Glutathione S-transferase and Microtubule-associated protein 4 isoform X1 can be candidate biomarkers for mutton tenderness. Our data also indicate a central role of cytoskeletal proteins and metabolic enzymes in determining mutton tenderness.
Collapse
|
9
|
Liu C, Wan J, Zhou Y, Hu K, Zhu Q, Tang P, Xu S, Song L. Proteome profile of glycrol-mediated salt-reduction cured meat reveals the formation mechanism of eating quality. Food Chem 2022; 382:132395. [DOI: 10.1016/j.foodchem.2022.132395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
|
10
|
Hu S, Zhou G, Xu X, Zhang W, Li C. Contribution of cathepsin B and L to endogenous proteolysis in the course of modern Jinhua ham processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Zhou CY, Xia Q, He J, Sun YY, Dang YL, Ou CR, Pan DD, Cao JX, Zhou GH. Improvement of ultrasound-assisted thermal treatment on organoleptic quality, rheological behavior and flavor of defective dry-cured ham. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Zhou CY, Pan DD, Cao JX, Zhou GH. A comprehensive review on molecular mechanism of defective dry-cured ham with excessive pastiness, adhesiveness, and bitterness by proteomics insights. Compr Rev Food Sci Food Saf 2021; 20:3838-3857. [PMID: 34118135 DOI: 10.1111/1541-4337.12779] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 02/01/2023]
Abstract
Excessive bitterness, pastiness, and adhesiveness are the main organoleptic and textural defects of dry-cured ham, which often cause a lot of financial losses to manufacturers and seriously damage the quality of the product. These sensory and textural defects are related to the protein degradation of dry-cured ham. Proteomics shows great potential to improve our understanding of the molecular mechanism of sensory and textural defects and identify biomarkers for monitoring their quality traits. This review presents some of the major achievements and considerations in organoleptic and textural defects of dry-cured ham by proteomics analysis in the recent decades and gives an overview about how to correct sensory and textural defects of dry-cured ham. Proteomics reveals that muscle proteins derived from myofibril and cytoskeleton and involved in metabolic enzymes and oxygen transport have been identified as potential biomarkers in defective dry-cured ham. Relatively high residual activities of cathepsin B and L are responsible for the excessive degradation of these protein biomarkers in defective dry-cured ham. Ultrasound-assisted mild thermal or high-pressure treatment shows a good correction for the organoleptic and textural defects of dry-cured ham by changing microstructure and conformation of muscle proteins by accelerating degradation of proteins and polypeptides into free amino acids.
Collapse
Affiliation(s)
- Chang-Yu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dao-Dong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Jin-Xuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Guang-Hong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
13
|
Yu D, Feng MQ, Sun J. Influence of mixed starters on the degradation of proteins and the formation of peptides with antioxidant activities in dry fermented sausages. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Application of artificial neural networks to predict multiple quality of dry-cured ham based on protein degradation. Food Chem 2020; 344:128586. [PMID: 33229149 DOI: 10.1016/j.foodchem.2020.128586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
This study investigated protein degradation and quality changes during the processing of dry-cured ham, and then established the multiple quality prediction model based on protein degradation. From the raw material to the curing period, proteolysis index of external samples were higher than that of internal samples, however, the difference gradually decreased from the drying period to the maturing period. Protein degradation can be used as indicators for controlling quality of the hams. With protein degradation index as input variables, the back propagation-artificial neural networks (BP-ANN) models were optimized, with training function of trainlm, transfer function of logsig in input-hidden layer and tansig in hidden-output layer, and 20 hidden layer neurons. Furthermore, the relative errors of predictive data and experimental data of 12 samples were approximately 0 with the BP-ANN model. Results indicated that the BP-ANN has great potential in predicting multiple quality of dry-cured ham based on protein degradation.
Collapse
|
15
|
Zhou CY, Wu JQ, Tang CB, Li G, Dai C, Bai Y, Li CB, Xu XL, Zhou GH, Cao JX. Comparing the proteomic profile of proteins and the sensory characteristics in Jinhua ham with different processing procedures. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Yu D, Feng MQ, Sun J, Xu XL, Zhou GH. Protein degradation and peptide formation with antioxidant activity in pork protein extracts inoculated with Lactobacillus plantarum and Staphylococcus simulans. Meat Sci 2019; 160:107958. [PMID: 31669862 DOI: 10.1016/j.meatsci.2019.107958] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
This study focused on sarcoplasmic and myofibrillar protein degradation and the formation of peptides with antioxidant activity by mixed starters (Lactobacillus plantarum CD101 and Staphylococcus simulans NJ201). Gel electrophoresis indicated that the mixed starters can hydrolyze both sarcoplasmic and myofibrillar proteins, and the concentration of peptides increased (P < .05). Compared with the control group, using mixed starters led to a significant increase (P < .05) in the DPPH radical scavenging activity, Fe2+ chelating activity, and ABTS radical scavenging activity of sarcoplasmic proteins, but demonstrated no significant difference in myofibrillar proteins. Two hydrophobic fractions (C2, C5) separated by RP-HPLC in the inoculation groups with sarcoplasmic proteins showed high DPPH radical scavenging activity (66.60%, 60.50%). Eighteen peptides were identified by LC-MS/MS, which mainly arose from triosephosphate isomerase, creatine kinase M-type, and glyceraldehyde-3-phosphate dehydrogenase. Hydrophobic amino acids accounted for a large proportion. Our results indicate that mixed starters affect proteolytic characterization and contribute to the formation of peptides with antioxidant capacity in sarcoplasmic proteins.
Collapse
Affiliation(s)
- Di Yu
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing 210095, PR China
| | - Mei-Qin Feng
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing 210038, PR China
| | - Jian Sun
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing 210095, PR China.
| | - Xing-Lian Xu
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing 210095, PR China
| | - Guang-Hong Zhou
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing 210095, PR China
| |
Collapse
|
17
|
Zhou CY, Wang C, Tang CB, Dai C, Bai Y, Yu XB, Li CB, Xu XL, Zhou GH, Cao JX. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Food Chem 2019; 297:125012. [DOI: 10.1016/j.foodchem.2019.125012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
|