1
|
Xiao J, Sheng L, Li M, Liu J, Liu D, Lu Y, Gao X. Simultaneous detection of multiple food allergens using high signal-to-background SERS probes. Food Chem 2025; 465:142098. [PMID: 39571445 DOI: 10.1016/j.foodchem.2024.142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Avoiding exposure to food allergens remains the most reliable way to protect allergic individuals. Therefore, it is essential to develop selective, sensitive, and rapid methods for detecting food allergens. Herein, we introduce a novel SERS-based sandwich immunoassay that utilizes three distinct types of SERS detection probes: Ag@CA NPs, AgAu@PB NPs, and Ag@MB NPs, along with magnetic capture probes, to simultaneously detect almond, lactoglobulin, and gliadin allergens. These SERS probes generate unique Raman peaks at 1987 cm-1, 2151 cm-1, and 2223 cm-1 in the Raman-silent region (1800-2800 cm-1), effectively avoiding interference from the Raman-fingerprint region (400-1800 cm-1) of potential food matrix substrates. This design ensures high signal-to-background ratios and detection accuracy, achieving limits of detection (LODs) of 7.4 pg/mL for almonds, 66 pg/mL for lactoglobulin, and 0.36 pg/mL for gliadin, with corresponding recoveries ranging from 83.7 % to 118.8 %, 98.9 % to 112.2 %, and 91.9 % to 109.5 %, respectively, demonstrating satisfactory analytical performance.
Collapse
Affiliation(s)
- Jinru Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingjie Sheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingmin Li
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Bai T, Liu Y, Liu Z, Teng Y, Liu P, Peng L, Wu D. Core-Satellite Gold Nanoparticle@Silver Nanocluster Nanohybrids for Milk Allergen β-Lactoglobulin Detection Using the Electrochemical Aptasensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3194-3203. [PMID: 39869095 DOI: 10.1021/acs.jafc.4c08948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity. Aptamer-cDNA-AuNPs conjugation was attached to the functionalized electrode with β-Lg as a "bridge" through the target-ligand interaction. Second, DNA-templated AgNCs were introduced via the hybridization of DNA templates oligonucleotide with cDNA anchored on AuNPs. The formed AuNPs@AgNCs nanohybrids showed enhanced catalytic performance toward the silver deposition reaction. This strategy is demonstrated by determining the oxidation current of produced silver nanoparticles (AgNPs) surrounding AuNPs by β-Lg. A detection limit of 0.87 fg/mL and a linear range of 0.001-1000 pg/mL were obtained. Finally, β-Lg content in food products was analyzed successfully, and RSD of 2.44-8.33% was obtained. The recovery of 87.54-113.70% and RSD of 0.95-9.29% was obtained for standard addition experiments. This proposed aptasensor exhibits excellent sensitivity, selectivity, reproducibility, and stability and has good practical application capability for complex food matrices.
Collapse
Affiliation(s)
- Tingting Bai
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Yanjia Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Zhien Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Yue Teng
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Pin Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Liusi Peng
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Daohong Wu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| |
Collapse
|
3
|
Aslam N, Fatima R, Altemimi AB, Ahmad T, Khalid S, Hassan SA, Aadil RM. Overview of industrial food fraud and authentication through chromatography technique and its impact on public health. Food Chem 2024; 460:140542. [PMID: 39079380 DOI: 10.1016/j.foodchem.2024.140542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Food fraud is widespread nowadays in the food products supply chain, from raw materials processing to the final product and during storage and transport. The most frequent fraud is practiced in staple food commodities like cereals. Their origin, variety, genotype, and bioactive compounds are altered to deceive consumers. Similarly, in various food sectors like beverage, baking, and confectionary, items like melamine, flour improver, and food colors are used in the market to temple consumers. To tackle food fraud and authentication, non-destructive techniques are being used. These techniques have limitations like lack of standardization, interference from multiple absorbing species, ambiguous results, and time-consuming to perform, depending on the type, size, and location of the system proved difficult to quantify the samples of adulteration. Chromatography has been introduced as an effective technique. It serves to safeguard public health due to its detection capabilities. Chromatography proved a crucial tool against fraudulent practices to preserve consumer trust.
Collapse
Affiliation(s)
- Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rida Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Talha Ahmad
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
4
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
5
|
Stachniuk A, Trzpil A, Czeczko R, Nowicki Ł, Ziomkowska M, Fornal E. Absolute quantification of targeted rabbit liver- and meat tissue-specific peptide markers in highly processed food products. Food Chem 2024; 438:138069. [PMID: 38007955 DOI: 10.1016/j.foodchem.2023.138069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
A highly sensitive and selective method for the simultaneous absolute quantification of peptides unique to rabbit meat- and liver-specific tissue was developed using liquid chromatography - triple quadrupole mass spectrometry. Two rabbit skeletal muscle-specific peptides (SSVFVADPK and PHSHPALTPEQK), three rabbit liver tissue-specific peptides (FNLEALVTHTLPFEK, AILNYVANK, and TELAEPTSTR) and one peptide specific to both rabbit offal and skeletal muscle tissue (AFFGHYLYEVAR) were monitored. Analyses were performed using peptides labelled with stable isotopes (13C and 15N) as internal standards. Fifteen food samples containing rabbit meat and/or liver were analysed to verify compliance of the rabbit meat and liver composition with product labelling. One sample was adulterated with undeclared rabbit liver. The limit of detection and limit of quantification for the selected peptides of interest were in the range of 0.17 to 0.35 ng/mg and 0.57 to 1.17 ng/mg, respectively. The method may be useful for the determination of rabbit meat and liver tissue in highly processed food samples.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Renata Czeczko
- Department of Chemistry, University of Live Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin, Poland
| | - Łukasz Nowicki
- Altium International Sp. z o.o, ul. Puławska 303, 02-785 Warszawa, Poland
| | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
6
|
Luan H, Lu J, Li Y, Xu C, Shi W, Lu Y. Simultaneous Identification and Species Differentiation of Major Allergen Tropomyosin in Crustacean and Shellfish by Infrared Spectroscopic Chemometrics. Food Chem 2023; 414:135686. [PMID: 36827779 DOI: 10.1016/j.foodchem.2023.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
To solve the lack of rapid and accurate methods for allergen identification and traceability, an infrared spectroscopic chemometric analytical model (IR-CAM) was established by combining infrared spectroscopy with principal component and cluster analysis. By comparing the second derivative infrared (SD-IR) spectra of 5 proteins and 14 crustaceans and shellfish tropomyosin (TM), 8 shared peaks and unique fingerprint peaks in the amide III region were found for crabs, shrimps, and shellfish. Based on the unique fingerprint peaks coexisting with shared peaks, allergen TM in crustaceans and shellfish could be identified within 10 min (cf. ELISA ∼ 4 h). Concurrently, the species differentiation of TM at the Class/Family level was achieved based on IR-CAM. Validation by fermented aquatic products TM (n = 60) demonstrated that the developed IR-CAM could simultaneously identify and differentiate TM in crustaceans and shellfish accurately. It could be applied for allergen detection and traceability of aquatic products on an antibody-free basis.
Collapse
Affiliation(s)
- Hongwei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| | - Jiada Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yaru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
7
|
Fu X, Hong J, Zhai Y, Liu K, Xu W. Deep Bottom-up Proteomics Enabled by the Integration of Liquid-Phase Ion Trap. Anal Chem 2023. [PMID: 37367992 DOI: 10.1021/acs.analchem.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In bottom-up proteomics, the complexity of the proteome requires advanced peptide separation and/or fractionation methods to acquire an in-depth understanding of protein profiles. Proposed earlier as a solution-phase ion manipulation device, liquid phase ion traps (LPITs) were used in front of mass spectrometers to accumulate target ions for improved detection sensitivity. In this work, an LPIT-reversed phase liquid chromatography-tandem mass spectrometry (LPIT-RPLC-MS/MS) platform was established for deep bottom-up proteomics. LPIT was used here as a robust and effective method for peptide fractionation, which also shows good reproducibility and sensitivity on both qualitative and quantitative levels. LPIT separates peptides based on their effective charges and hydrodynamic radii, which is orthogonal to that of RPLC. With excellent orthogonality, the integration of LPIT with RPLC-MS/MS could effectively increase the number of peptides and proteins being detected. When HeLa cells were analyzed, peptide and protein coverages were increased by ∼89.2% and 50.3%, respectively. With high efficiency and low cost, this LPIT-based peptide fraction method could potentially be used in routine deep bottom-up proteomics.
Collapse
Affiliation(s)
- Xinyan Fu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Hong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Kefu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Ku K, Frey C, Arad M, Ghafourifar G. Development of novel enzyme immobilization methods employing formaldehyde or triethoxysilylbutyraldehyde to fabricate immobilized enzyme microreactors for peptide mapping. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4053-4063. [PMID: 36196924 DOI: 10.1039/d2ay00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The digestion of proteins with proteolytic enzymes has expedited the analysis of peptide mapping. Here, we compared the digestion efficiency of soluble chymotrypsin (CT) with two immobilized CT preparations using bovine serum albumin (BSA) as the substrate. An efficient method of immobilizing chymotrypsin using formaldehyde (FA) was optimized and the conditions were applied to assess a novel immobilization reagent, triethoxysilylbutaraldehyde (TESB). Efforts to determine the best enzyme-to-substrate (E : S) ratios during digestion of denatured BSA with single-use FA-CT enzyme particles were performed by adjusting the amount of substrate used. An E : S ratio of 10 : 1 was found to be best based on the LC-MS/MS analysis data showing sequence coverage of 67%. Fabrication of immobilized enzyme microreactors (IMERs) was carried out using both (3-aminopropyl)triethoxysilane (APTES) with the idealized conditions with FA, as well as the novel procedure utilizing TESB for a proof of concept open-tubular IMER. It was found that the FA-APTES IMER had a sequence coverage of 6%, while the TESB IMER had 29% sequence coverage from MS analysis. The application of TESB in enzyme immobilization has the potential to facilitate a greater degree of enzymatic digestion with higher sequence coverage than traditional immobilization or crosslinking reagents for bottom-up proteomics.
Collapse
Affiliation(s)
- Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Maor Arad
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| |
Collapse
|
9
|
Xie Q, Xue W. IgE-Mediated food allergy: Current diagnostic modalities and novel biomarkers with robust potential. Crit Rev Food Sci Nutr 2022; 63:10148-10172. [PMID: 35587740 DOI: 10.1080/10408398.2022.2075312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food allergy (FA) is a serious public health issue afflicting millions of people globally, with an estimated prevalence ranging from 1-10%. Management of FA is challenging due to overly restrictive diets and the lack of diagnostic approaches with high accuracy and prediction. Although measurement of serum-specific antibodies combined with patient medical history and skin prick test is a useful diagnostic tool, it is still an imprecise predictor of clinical reactivity with a high false-positive rate. The double-blind placebo-controlled food challenge represents the gold standard for FA diagnosis; however, it requires large healthcare and involves the risk of acute onset of allergic reactions. Improvement in our understanding of the molecular mechanism underlying allergic disease pathology, development of omics-based methods, and advances in bioinformatics have boosted the generation of a number of robust diagnostic biomarkers of FA. In this review, we discuss how traditional diagnostic modalities guide appropriate diagnosis and management of FA in clinical practice, as well as uncover the potential of the latest biomarkers for the diagnosis, monitoring, and prediction of FA. We also raise perspectives for precise and targeted medical intervention to fill the gap in the diagnosis of FA.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
10
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Agregán R, Echegaray N, Nawaz A, Hano C, Gohari G, Pateiro M, Lorenzo JM. Foodomic-Based Approach for the Control and Quality Improvement of Dairy Products. Metabolites 2021; 11:818. [PMID: 34940577 PMCID: PMC8709215 DOI: 10.3390/metabo11120818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The food quality assurance before selling is a needed requirement intended for protecting consumer interests. In the same way, it is also indispensable to promote continuous improvement of sensory and nutritional properties. In this regard, food research has recently contributed with studies focused on the use of 'foodomics'. This review focuses on the use of this technology, represented by transcriptomics, proteomics, and metabolomics, for the control and quality improvement of dairy products. The complex matrix of these foods requires sophisticated technology able to extract large amounts of information with which to influence their aptitude for consumption. Thus, throughout the article, different applications of the aforementioned technologies are described and discussed in essential matters related to food quality, such as the detection of fraud and/or adulterations, microbiological safety, and the assessment and improvement of transformation industrial processes (e.g., fermentation and ripening). The magnitude of the reported results may open the door to an in-depth transformation of the most conventional analytical processes, with the introduction of new techniques that allow a greater understanding of the biochemical phenomena occurred in this type of food.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
12
|
Development of a novel trypsin affinity material using a recombinant buckwheat trypsin inhibitor mutant with enhanced activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Yang Y, Liu H, Zeng W, Yang Y, Zhang J, Yin J, Wu J, Lai K. Characterization and epitope prediction of phosphopyruvate hydratase from Penaeus monodon (black tiger shrimp). J Food Sci 2021; 86:3457-3466. [PMID: 34190352 DOI: 10.1111/1750-3841.15819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
Shellfish allergies constitute an important cause of food-induced anaphylactic reactions, which pose challenges to food safety and human health worldwide. In the present study, the specific IgE (sIgE) binding characteristics of different shrimp proteins of black tiger shrimp (Penaeus monodon) to the sera of eight shrimp-allergic patients from China were studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and nanoliquid chromatography time-of-flight mass spectrometry. According to the PLGS scores (>2000) and the sequence coverage (>40%), eight proteins with sIgE binding activity were identified, including myosin heavy chain type 1 (K4Q4N8), hemocyanin (G1AP69 and Q95V28), phosphopyruvate hydratase (O96656), arginine kinase (C7E3T4), tropomyosin (A1KYZ2), sarcoplasmic calcium binding protein (H7CHW2) and glyceraldehyde-3-phosphate dehydrogenase (A0A097BQP2). Among these eight proteins, phosphopyruvate hydratase was a prevalent IgE-binding protein among these Chinese patients with binding observed in 100% of sera. Moreover, 13 peptides were predicted as epitopes of phosphopyruvate hydratase. These new details help us to understand the crustacean IgE-binding proteins especially Penaeus monodon IgE-binding proteins, that would cause allergic reaction to Chinese patients. And our findings may provide essential information to improve allergy prevention and clinical treatment to shrimp allergy in China. PRACTICAL APPLICATION: This research may have diagnostic and therapeutic value for shrimp allergies in China.
Collapse
Affiliation(s)
- Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China.,School of Public Health and Family Medicine, Capital Medical University, Beijing, China.,Beijing Research Center for Preventive Medicine, Beijing, China
| | - Huiying Liu
- Qingdao Integrated Traditional Chinese and Western Medicine Hospital, Qingdao, China
| | - Wen Zeng
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jieling Wu
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Kefeng Lai
- Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
14
|
Xu J, Ye Y, Ji J, Sun J, Sun X. Advances on the rapid and multiplex detection methods of food allergens. Crit Rev Food Sci Nutr 2021; 62:6887-6907. [PMID: 33830835 DOI: 10.1080/10408398.2021.1907736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the gradually increasing prevalence of food allergy in recent years, food allergy has become a major public health problem worldwide. The clinical symptoms caused by food allergy seriously affect people's quality of life; there are unknown allergen components in novel food and hidden allergens caused by cross contamination in food processing, which pose a serious risk to allergy sufferers. Thus, rapid and multiplex detection methods are required to achieve on-site detection or examination of allergic components, so as to identify the risk of allergy in time. This paper reviews the progress of high-efficiency detection of food allergens, including enhanced traditional detection techniques and emerging detection techniques with the ability high-throughput detection or screening potential food allergen, such as xMAP, biosensors, biochips, etc. focusing on their sensitivity, applicability of each method in food, along with their pretreatment, advantages, limitation in the application of food analysis. This paper also introduces the challenges faced by these high-efficiency detection technologies, as well as the potential of customized allergen screening methods and rapid on-site detection technology as future research directions.
Collapse
Affiliation(s)
- Jiayuan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
15
|
Milk Ingredients in Meat Products: Can Autoclaving and In Vitro Gastroduodenal Digestion Mitigate Their IgE-Binding Capacity? Nutrients 2021; 13:nu13030931. [PMID: 33805703 PMCID: PMC8000631 DOI: 10.3390/nu13030931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
The food industry commonly uses milk ingredients as technological aids in an uncounted number of products. On the other hand, milk contains allergenic proteins causing adverse allergic reactions in sensitized/allergic individuals. This work intends to evaluate the effect of autoclaving and in vitro digestion on the allergenicity of milk proteins incurred in meat products. Protein profiles of raw and autoclaved sausages without and with the addition of 10% of milk protein concentrates were analyzed by gel electrophoresis and liquid chromatography–mass spectrometry. Additionally, residual IgE-reactivity was evaluated by immunoblot analysis using pooled sera of cow’s-milk-allergic individuals followed by bioinformatic analysis. Results showed that autoclaving led to an increase in protein fragmentation (higher number of short peptides) and consequently to a higher digestion rate, that was found to be more pronounced in β-casein. The IgE-binding capacity of milk proteins seems to be reduced after autoclaving prior to digestion, with a residual reactivity in caseins, but was eliminated following digestion. This study highlights the importance of autoclaving as a processing strategy to produce hypoallergenic formulas.
Collapse
|
16
|
Stachniuk A, Sumara A, Montowska M, Fornal E. Peptide markers for distinguishing guinea fowl meat from that of other species using liquid chromatography-mass spectrometry. Food Chem 2020; 345:128810. [PMID: 33601654 DOI: 10.1016/j.foodchem.2020.128810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
The inability to easily identify the animal species in highly processed meat products makes them highly susceptible to adulterations. Reliable methods for detecting the species origin of meat used in processed food are required to ensure adequate labelling and minimize food fraud and allergenic potential. Liquid chromatography high resolution mass spectrometry was employed to identify new heat-stable guinea-fowl-specific peptide markers that can differentiate guinea fowl meat from other commonly consumed animal species, including closely related poultry species, in highly processed food products. We identified 26 unique guinea-fowl-specific markers. The high stability of guinea-fowl-specific peptides was confirmed by analysing food products with guinea fowl meat content ranging from 4% to 100%. The findings indicate that sensitive and reliable LC-MS/MS methods can be developed for the targeted detection and quantification of guinea fowl meat in highly processed meat products.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
17
|
Development of a liquid chromatography-tandem mass spectrometry method for simultaneous quantification of hen's egg white allergens Gal d 1-4 in fresh and processed eggs. Food Chem 2020; 345:128022. [PMID: 33039190 DOI: 10.1016/j.foodchem.2020.128022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Hen's egg white allergens, namely Gal d 1-4, cause food allergies worldwide and their intake must be strictly controlled by allergic individuals. However, an efficient method for quantifying these allergens is currently unavailable. We aimed to develop an LC-MS/MS method for simultaneous Gal d 1-4 quantification. Purified Gal d 1-4 proteins were trypsin-digested and the resulting peptides used in LC-MS/MS analysis. The limits of quantification were 9.77-39.1 ng/mL. The Gal d 1-4 recovery in fresh and processed eggs was 68.3-121.3%, and intra- and interassay coefficients of variation were 1.5-15.7% and 2.4-38.1%, respectively, indicating high sensitivity, accuracy, and reproducibility. In addition, the high specificity of this method was confirmed by testing 27 other foods. This newly developed method could provide reliable information to the industrial food and clinical fields, facilitating improved quality of life for individuals with egg allergies.
Collapse
|
18
|
Current Trends in Proteomic Advances for Food Allergen Analysis. BIOLOGY 2020; 9:biology9090247. [PMID: 32854310 PMCID: PMC7563520 DOI: 10.3390/biology9090247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Food allergies are a global food challenge. For correct food labelling, the detection and quantification of allergens are necessary. However, novel product formulations and industrial processes produce new scenarios, which require much more technological developments. For this purpose, OMICS technologies, especially proteomics, seemed to be relevant in this context. This review summarises the current knowledge and studies that used proteomics to study food allergens. In the case of the allergenic proteins, a wide variety of isoforms, post-translational modifications and other structural changes during food processing can increase or decrease the allergenicity. Most of the plant-based food allergens are proteins with biological functions involved in storage, structure, and plant defence. The allergenicity of these proteins could be increased by the presence of heavy metals, air pollution, and pesticides. Targeted proteomics like selected/multiple reaction monitoring (SRM/MRM) have been very useful, especially in the case of gluten from wheat, rye and barley, and allergens from lentil, soy, and fruit. Conventional 1D and 2-DE immunoblotting have been further widely used. For animal-based food allergens, the widely used technologies are 1D and 2-DE immunoblotting followed by MALDI-TOF/TOF, and more recently LC-MS/MS, which is becoming useful to assess egg, fish, or milk allergens. The detection and quantification of allergenic proteins using mass spectrometry-based proteomics are promising and would contribute to greater accuracy, therefore improving consumer information.
Collapse
|
19
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
20
|
Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT, de la Escosura-Muñiz A, Marrazza G. Folding-Based Electrochemical Aptasensor for the Determination of β-Lactoglobulin on Poly-L-Lysine Modified Graphite Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2349. [PMID: 32326088 PMCID: PMC7219239 DOI: 10.3390/s20082349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, food allergy is a very important health issue, causing adverse reactions of the immune system when exposed to different allergens present in food. Because of this, the development of point-of-use devices using miniaturized, user-friendly, and low-cost instrumentation has become of outstanding importance. According to this, electrochemical aptasensors have been demonstrated as useful tools to quantify a broad variety of targets. In this work, we develop a simple methodology for the determination of β-lactoglobulin (β-LG) in food samples using a folding-based electrochemical aptasensor built on poly-L-lysine modified graphite screen-printed electrodes (GSPEs) and an anti-β-lactoglobulin aptamer tagged with methylene blue (MB). This aptamer changes its conformation when the sample contains β-LG, and due to this, the spacing between MB and the electrode surface (and therefore the electron transfer efficiency) also changes. The response of this biosensor was linear for concentrations of β-LG within the range 0.1-10 ng·mL-1, with a limit of detection of 0.09 ng·mL-1. The biosensor was satisfactorily employed for the determination of spiked β-LG in real food samples.
Collapse
Affiliation(s)
- Olaya Amor-Gutiérrez
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Giulia Selvolini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
| | - M. Teresa Fernández-Abedul
- BioNanoAnalytical Spectrometry and Electrochemistry Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
| |
Collapse
|
21
|
Sanchiz Á, Ballesteros I, López-García A, Ramírez A, Rueda J, Cuadrado C, Linacero R. Chestnut allergen detection in complex food products: Development and validation of a real-time PCR method. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Villa C, Costa J, Mafra I. Detection and Quantification of Milk Ingredients as Hidden Allergens in Meat Products by a Novel Specific Real-Time PCR Method. Biomolecules 2019; 9:biom9120804. [PMID: 31795410 PMCID: PMC6995640 DOI: 10.3390/biom9120804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Milk ingredients are often included in a wide range of meat products, such as cooked hams and sausages, to improve technological characteristics. However, milk proteins are also important food allergens. The aim of this study was the development of a highly sensitive and specific real-time PCR system targeting the 12S rRNA gene of Bos domesticus for the detection and quantification of milk as an allergenic ingredient in processed meat products. The method was able to achieve an absolute limit of detection (LOD) of 6 fg of milk DNA. Using a normalized approach (∆Ct method) for the detection of milk protein concentrate (MPC), it was possible to obtain sensitivities down to 0.01% (w/w) of MPC in model hams (raw and cooked) and autoclaved sausages, and 0.005% in raw sausage mixtures. The developed systems generally presented acceptable PCR performance parameters, being successfully validated with blind samples, applied to commercial samples, and further compared with an immunochemical assay. Trace amounts of milk material were quantified in two out of 13 samples, but the results mostly infer the excessive practice of the precautionary labeling.
Collapse
Affiliation(s)
| | - Joana Costa
- Correspondence: (J.C.); (I.M.); Tel.: +351-220-428-500 ext. 8848 (I.M.)
| | - Isabel Mafra
- Correspondence: (J.C.); (I.M.); Tel.: +351-220-428-500 ext. 8848 (I.M.)
| |
Collapse
|
23
|
Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Res Int 2019; 128:108747. [PMID: 31955787 DOI: 10.1016/j.foodres.2019.108747] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022]
Abstract
Peptide marker identification is one of the most important steps in the development of a mass spectrometry (MS) based method for allergen detection, since the robustness and sensitivity of the overall analytical method will strictly depend on the reliability of the proteotypic peptides tracing for each allergen. The European legislation in place issues the mandatory labelling of fourteen allergenic ingredients whenever used in different food formulations. Among these, six allergenic ingredients, namely milk, egg, peanut, soybean, hazelnut and almond, can be prioritized in light of their higher occurrence in food recalls for undeclared presence with serious risk decision. In this work, we described the results of a comprehensive evaluation of the current literature on MS-based allergen detection aiming at collecting all available information about proteins and peptide markers validated in independent studies for the six allergenic ingredients of interest. The main features of the targeted proteins were commented reviewing all details available about known isoforms and sequence homology particularly in plant-derived allergens. Several critical aspects affecting peptide markers reliability were discussed and according to this evaluation a final short-list of candidate markers was compiled likely to be standardized and implemented in MS methods for allergen analysis.
Collapse
|