1
|
Bai X, Park SH, McGorrin R, Zhao Y, Jung J. Evaluation of Aspergillus oryzae as a Surrogate of Aspergillus flavus and Radiofrequency Dielectric Heating to Control Aspergillus Mold in Inshell Hazelnuts. J Food Sci 2025; 90:e70211. [PMID: 40260787 DOI: 10.1111/1750-3841.70211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
This study evaluated the thermal inactivation properties of Aspergillus flavus (A. flavus) and Aspergillus oryzae (A. oryzae) in hazelnut kernels and shells to assess the suitability of using A. oryzae as a surrogate and explored the potential of radiofrequency (RF) dielectric heating to control Aspergillus mold. Both molds exhibited similar heat sensitivities at 45, 55, and 65°C, achieving complete inactivation at 65°C without holding time, though resistance persisted at 45°C even with prolonged heating. Notably, A. flavus was 5°C more heat-resistant and more sensitive to holding time compared with A. oryzae. The critical inactivation temperature was 55°C for A. oryzae and 60°C for A. flavus. At 50°C, A. oryzae displayed comparable thermal resistance in hazelnut shell and kernel powders, but its behavior diverged at 55°C. While A. oryzae reduction was observed in shells during inoculation, no reduction occurred in kernels. RF heating achieved a 0.48-log reduction in A. oryzae in inoculated in-shell hazelnuts when the kernel temperature reached 70°C, increasing to a 0.81-log reduction when the shell temperature reached 65°C. The incomplete inactivation on the shell surface might be attributed to the low moisture content and poor thermal conductivity of the shells. Lipid oxidation of RF-heated kernels was evaluated by fatty acid content and K values, and no significant differences were observed from the unheated samples. These findings highlight the potential of using A. oryzae as a surrogate of A. flavus and RF heating to inactivate Aspergillus to ensure hazelnut safety and prevent lipid deterioration.
Collapse
Affiliation(s)
- Xiaofang Bai
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Robert McGorrin
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jooyeoun Jung
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Javed M, Cao W, Tang L, Keener KM. A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma. Toxins (Basel) 2025; 17:129. [PMID: 40137902 PMCID: PMC11945501 DOI: 10.3390/toxins17030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25-30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the "working" gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment.
Collapse
Affiliation(s)
| | | | | | - Kevin M. Keener
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (M.J.); (W.C.); (L.T.)
| |
Collapse
|
3
|
Mlambo B, Kutu FR, Belay ZA, Mphahlele RR, Suinyuy T, Mokwena L, Caleb OJ. Low-pressure cold plasma pretreatment: Impact on quality attributes of "Fan Retief" guava and efficacy against Colletotrichum gloeosporioides. J Food Sci 2025; 90:e70058. [PMID: 39980270 PMCID: PMC11842952 DOI: 10.1111/1750-3841.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
This work investigated the impact of low-pressure cold plasma (CP) as a pretreatment with polyethylene terephthalate (PET) plastic trays or open corrugated cardboard (OCC) boxes on the overall quality of "Fan Retief" guava fruits stored for 28 days at 13°C. Untreated samples placed in PET and OCC served as control. Guava fruits followed typical climacteric responses, but CP-treated samples significantly slowed down respiration (RRCO2) and ethylene production rate during storage (p ≤ 0.05). On day 28, CP-treated samples retained the highest titratable acidity and total phenolics compared to untreated samples (p ≤ 0.05). Overall, CP pretreatment better maintained the relative abundance of characteristic volatile compounds for guava fruits during storage, effectively delayed decay incidence, and inhibited the growth of Colletotrichum gloeosporioides in vivo compared to control. PRACTICAL APPLICATION: This study demonstrated low-pressure cold plasma as a potential alternative phytosanitary tool for the postharvest handling of guava fruit.
Collapse
Affiliation(s)
- Bafana Mlambo
- School of Agricultural SciencesUniversity of MpumalangaMbombelaSouth Africa
- Agri‐Food Systems and Omics Laboratory, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (ARC) Infruitec‐NietvoorbijStellenboschSouth Africa
| | - Funso R. Kutu
- School of Agricultural SciencesUniversity of MpumalangaMbombelaSouth Africa
| | - Zinash A. Belay
- Agri‐Food Systems and Omics Laboratory, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (ARC) Infruitec‐NietvoorbijStellenboschSouth Africa
- Department of Food Science, Faculty of AgriSciencesStellenbosch UniversityStellenboschSouth Africa
| | | | - Terence Suinyuy
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa
| | - Lucky Mokwena
- Central Analytical FacilityStellenbosch UniversityMatielandSouth Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciencesStellenbosch UniversityStellenboschSouth Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciencesStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
4
|
de Oliveira ACD, Ali S, Corassin CH, Ullah S, Pereira KN, Walsh JL, Hojnik N, de Oliveira CAF. Application of cold atmospheric plasma for decontamination of toxigenic fungi and mycotoxins: a systematic review. Front Microbiol 2025; 15:1502915. [PMID: 39831113 PMCID: PMC11739521 DOI: 10.3389/fmicb.2024.1502915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as Aspergillus, Fusarium, Alternaria, and Penicillium. These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects. Notably, up to 50% of global cereal production is affected by mycotoxin contamination, leading to significant economic losses. Current research focuses on innovative technologies to mitigate mycotoxins, with cold atmospheric pressure plasma emerging as a promising decontamination method. Method This systematic review aimed at describing recent advances in the application of cold atmospheric plasma for the decontamination of toxigenic fungi and mycotoxins. Results and discussion Cold atmospheric plasma offers a sustainable and cost effective solution to preserve food quality while inactivating toxigenic fungi and degrading mycotoxins. Through the generation of reactive oxygen and nitrogen species, cold plasma disrupts fungal cell integrity, hinders spore germination, and inhibits toxin biosynthesis. Additionally, cold atmospheric plasma-driven degradation of mycotoxins involves structural modifications, breaking key molecular bonds that reduce toxicity. The effectiveness of cold plasma depends on operational parameters and the specific characteristics of the treated food, with notable efficacy in degrading aflatoxin B1 and deoxynivalenol by converting them into less toxic substances and inhibiting their spores and DNA responsible for their biosynthesis. While the data demonstrates that cold atmospheric plasma has minimal impact on food composition, further research is needed to fully assess the nature of the degradation products of mycotoxins, its influence on food quality attributes and to optimize application strategies for different products.
Collapse
Affiliation(s)
- Amanda Cristina Dias de Oliveira
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Sher Ali
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Humberto Corassin
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Sana Ullah
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Karina Nascimento Pereira
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - James Leon Walsh
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Nataša Hojnik
- Department for Gaseous Electronics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Carlos Augusto Fernandes de Oliveira
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
5
|
Mošovská S, Medvecká V, Valík Ľ, Mikulajová A, Zahoranová A. Modelling of inactivation kinetics of Escherichia coli, Salmonella Enteritidis and Bacillus subtilis treated with a multi-hollow surface dielectric barrier discharge plasma. Sci Rep 2023; 13:12058. [PMID: 37491486 PMCID: PMC10368620 DOI: 10.1038/s41598-023-38892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
The efficacy of multi-hollow surface dielectric barrier discharge treatment against Escherichia coli, Salmonella Enteritidis and Bacillus subtilis was studied. Ambient air, O2, and N2 were used as working gas with a flow rate of 6 l/m. Power delivered into plasma was 30 W over an area of 2 × 2 cm2. The active species in plasma generated in different gases participating in the inactivation of microorganisms were evaluated by optical emission spectroscopy and Fourier transform infrared spectroscopy. Inactivation curves were fitted to the Bigelow log-linear, the biphasic, and Geeraerd models. According to the results, all plasma treatments inactivated tested microorganisms, depending on a working gas. The most sensitivity of bacteria was observed to the ambient air plasma. Inactivation up to 5 log for E. coli and S. Enteritidis could be achieved within 15 s of plasma treatment. Air plasma exposure of 25 s also led to log10 CFU/ml of B. subtilis from 7.98 to 4.39. S. Enteritidis was slight resistance to plasma treatment with N2. Within 180 s nitrogen plasma treatment, a 2.04 log10 CFU/ml reduction was recorded.
Collapse
Affiliation(s)
- Silvia Mošovská
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, 811 07, Slovak Republic.
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Mlynská Dolina F1, Bratislava, 842 48, Slovak Republic
| | - Ľubomír Valík
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, 811 07, Slovak Republic
| | - Anna Mikulajová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, 811 07, Slovak Republic
| | - Anna Zahoranová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Mlynská Dolina F1, Bratislava, 842 48, Slovak Republic
| |
Collapse
|
6
|
Yao Q, Xu H, Zhuang J, Cui D, Ma R, Jiao Z. Inhibition of Fungal Growth and Aflatoxin B 1 Synthesis in Aspergillus flavus by Plasma-Activated Water. Foods 2023; 12:2490. [PMID: 37444228 DOI: 10.3390/foods12132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The gaseous reactive oxygen/nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can effectively inactivate Aspergillus flavus (A. flavus) and prolong the shelf-life of food. Plasma-activated water (PAW) is the extension of cold plasma sterilization technology. Without the limitation of a plasma device, PAW can be applied to more scenarios of food decontamination. However, the efficacy of PAW as a carrier of RONS for eradicating A. flavus or inhibiting its growth remains unclear. In this study, the immediate fungicidal effect and long-term inhibitory effect of PAW on A. flavus were investigated. The results demonstrated that 60-min instant-prepared PAW could achieve a 3.22 log reduction CFU/mL of A. flavus and the fungicidal efficacy of PAW gradually declined with the extension of storage time. Peroxynitrite (ONOO-/ONOOH) played a crucial role in this inactivation process, which could damage the cell wall and membrane structure, disrupt intracellular redox homeostasis, and impair mitochondrial function, ultimately leading to fungal inactivation. In addition to the fungicidal effect, PAW also exhibited fungistatic properties and inhibited the synthesis of aflatoxin B1 (AFB1) in A. flavus. By analyzing the cellular antioxidant capacity, energy metabolism, and key gene expression in the AFB1 synthesis pathway, it was discovered that PAW can significantly reduce ATP levels, while increasing SOD and CAT activity during 5-d cultivation. Meanwhile, PAW effectively suppressed the expression of genes related to AFB1 synthesis.
Collapse
Affiliation(s)
- Qihuan Yao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Dongjie Cui
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Dikmetas DN, Özer H, Karbancıoglu-Guler F. Biocontrol Potential of Antagonistic Yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB 1 Production. Toxins (Basel) 2023; 15:402. [PMID: 37368702 DOI: 10.3390/toxins15060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Aspergillus flavus is a major aflatoxin B1, posing significant health concerns to humans, crops, and producer fungi. Due to the undesirable consequences of the usage of synthetic fungicides, biological control using yeasts has gained more attention. In this study, eight isolates of epiphytic yeasts belonging to Moesziomyces sp., Meyerozyma sp. and Metschnikowia sp., which have been identified as antagonists, were isolated from different plants, including grapes, blueberries, hawthorns, hoşkıran, beans and grape leaf. While volatile organic compounds (VOCs) produced by Moesziomyces bullatus DN-FY, Metschnikowia aff. pulcherrima DN-MP and Metschnikowia aff. pulcherrima 32-AMM reduced in vitro A. flavus mycelial growth and sporulation, only VOCs produced by Metschnikowia aff. fructicola 1-UDM were found to be effective at reducing in vitro AFB1 production. All yeasts reduced the mycelial growth of A. flavus by 76-91%, while AFB1 production reduced to 1.26-10.15 ng/g and the control plates' growth was 1773 ng/g. The most effective yeast, Metschnikowia aff. Pulcherrima DN-HS, reduced Aspergillus flavus growth and aflatoxin B1 production on hazelnuts. The AFB1 content on hazelnuts reduced to 333.01 ng/g from 536.74 ng/g. To our knowledge, this is the first report of yeasts isolated from plants being tested as potential biological control agents to reduce AFB1 production on hazelnuts.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Hayrettin Özer
- The Scientific and Technological Research Council of Türkiye (TÜBİTAK), Marmara Research Center (MRC), 41470 Gebze, Türkiye
| | - Funda Karbancıoglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| |
Collapse
|
8
|
Akarca G, Atik A, Atik İ, Denizkara AJ. The use of cold plasma technology in solving the mold problem in Kashar cheese. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:752-760. [PMID: 36712224 PMCID: PMC9873875 DOI: 10.1007/s13197-022-05661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
In this study, the possibilities of using cold plasma technology in solving the mold problem, which is one of the most important problems in Kashar cheese, were investigated. For this purpose Kashar cheeses were exposed to cold plasma with different gas compositions. As a result of the study 3-4 log reduction was achieved for both Aspergillus flavus and Penicillium crysogenum. The pH and aw values of samples were decreased with cold plasma application. The b* values of samples increased while L* and a* values decreased. When all the results obtained are considered as a whole, it can be said that cold plasma technology improves the physicochemical properties of Kashar cheese and provides significant decrease in mold count of the product.
Collapse
Affiliation(s)
- Gökhan Akarca
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Azize Atik
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - İlker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ayşe Janseli Denizkara
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Reduction of Aspergillus flavus and aflatoxin on almond kernels using gaseous chlorine dioxide fumigation. Food Chem 2023; 402:134161. [DOI: 10.1016/j.foodchem.2022.134161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
|
10
|
Hoppanová L, Dylíková J, Kováčik D, Medvecká V, Ďurina P, Kryštofová S, Hudecová D, Kaliňáková B. Non-thermal plasma induces changes in aflatoxin production, devitalization, and surface chemistry of Aspergillus parasiticus. Appl Microbiol Biotechnol 2022; 106:2107-2119. [PMID: 35194655 DOI: 10.1007/s00253-022-11828-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
Non-thermal plasma (NTP) represents the fourth state of matter composed of neutral molecules, atoms, ions, radicals, and electrons. It has been used by various industries for several decades, but only recently NTPs have emerged in fields such as medicine, agriculture, and the food industry. In this work, we studied the effect of NTP exposure on aflatoxin production, conidial germination and mycelial vitality, morphological and surface changes of conidia and mycelium. When compared with colonies grown from untreated conidia, the colonies from NTP-treated conidia produced significantly higher levels of aflatoxins much earlier during development than colonies from untreated conidia. However, at the end of cultivation, both types of cultures yielded similar aflatoxin concentrations. The increase in the accumulation of aflatoxins was supported by high transcription levels of aflatoxin biosynthetic genes, which indicated a possibility that NTP treatment of conidia was having a longer-lasting effect on colony development and aflatoxins accumulation. NTP generated in the air at atmospheric pressure effectively devitalized Aspergillus parasiticus in conidia and hyphae within a few minutes of treatment. To describe devitalization kinetics, we applied Weibull and Hill models on sets of data collected at different exposure times during NTP treatment. The damage caused by NTP to hyphal cell wall structures was displayed by raptures visualized by scanning electron microscopy. Fourier transform infrared spectroscopy demonstrated that changes in cell envelope correlated with shifts in characteristic chemical bonds indicating dehydration, oxidation of lipids, proteins, and polysaccharides. Key points • Non-thermal plasma increases aflatoxin production shortly after treatment. • Non-thermal plasma rapidly devitalizes Aspergillus parasiticus. • Non-thermal plasma disrupts the cell surface and oxidizes biological components.
Collapse
Affiliation(s)
- Lucia Hoppanová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic. .,Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovak Republic.
| | - Juliana Dylíková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Dušan Kováčik
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Pavol Ďurina
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Daniela Hudecová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Mir SA, Shah MA, Mir MM, Sidiq T, Sunooj KV, Siddiqui MW, Marszałek K, Mousavi Khaneghah A. Recent developments for controlling microbial contamination of nuts. Crit Rev Food Sci Nutr 2022; 63:6710-6722. [PMID: 35170397 DOI: 10.1080/10408398.2022.2038077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, the consumption of nuts has shown an increasing trend worldwide. Nuts are an essential part of several countries' economies as an excellent source of nutrients and bioactive compounds. They are contaminated by environmental factors, improper harvesting practices, inadequate packaging procedures, improper storage, and transportation. The longer storage time also leads to the greater chances of contamination from pathogenic fungi. Nuts are infected with Aspergillus species, Penicillium species, Escherichia coli, Salmonella, and Listeria monocytogenes. Therefore, nuts are associated with a high risk of pathogens and mycotoxins, which demand the urgency of using techniques for enhancing microbial safety and shelf-life stability. Many techniques such as ozone, cold plasma, irradiation, radiofrequency have been explored for the decontamination of nuts. These techniques have different efficiencies for reducing the contamination depending on processing parameters, type of pathogen, and conditions of food material. This review provides insight into decontamination technologies for reducing microbial contamination from nuts.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Food Science & Technology, Government College for Women, Srinagar, Jammu & Kashmir, India
| | - Manzoor Ahamd Shah
- Department of Food Science & Technology, Government Degree College for Women, Anantnag, Jammu & Kashmir, India
| | - Mohammad Maqbool Mir
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Tahira Sidiq
- Department of Home Science, Government College for Women, Anantnag, Jammu & Kashmir, India
| | | | - Mohammed Wasim Siddiqui
- Department of Food Science & Postharvest Technology, Bihar Agricultural University, Sabour, India
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
- Department of General Food Technology and Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Rzeszow, Poland
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
12
|
Mošovská S, Medvecká V, Klas M, Kyzek S, Valík Ľ, Mikulajová A, Zahoranová A. Decontamination of Escherichia coli on the surface of soybean seeds using plasma activated water. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Sun D, Mao J, Wang Z, Li H, Zhang L, Zhang W, Zhang Q, Li P. Inhibition of Aspergillus flavus growth and aflatoxins production on peanuts over α-Fe 2O 3 nanorods under sunlight irradiation. Int J Food Microbiol 2021; 353:109296. [PMID: 34147839 DOI: 10.1016/j.ijfoodmicro.2021.109296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022]
Abstract
Peanut is an important resource of edible oil and digestible protein in daily life, which is rich in the nutriments and antioxidants such as vitamins, minerals and polyphenols. However, peanut is susceptible to the contamination of Aspergillus flavus (A. flavus), which can produce highly carcinogenic toxins that brings serious threats to human health and food safety. Exploring green and effective methods to control A. flavus is meaningful. Herein, a green and economical way to control A. flavus on peanuts was demonstrated. It was found that the growth of A. flavus hyphae and germination of its spores could be inhibited in the presence of α-Fe2O3 nanorods under sunlight irradiation according to the agar diffusion method, flat colony counting method and fluorescence-based live/dead test. The diameter of inhibition zone was 22.3 ± 0.2 mm and the inhibition rate of spores germination was about 60 ± 5%, when the concentration of α-Fe2O3 was 10 mg/mL for 7 h sunlight irradiation. Most important, α-Fe2O3 showed the photocatalytic inhibition of A. flavus on peanuts under sunlight irradiation with the inhibition rate of about 90 ± 5%, and the production of aflatoxin B1 and aflatoxin B2 were reduced by 90 ± 2% and 70 ± 3%, respectively. By comparing the fat contents, protein contents, acid value, peroxide value and antioxidative compositions of peanuts, it was found that there was no obvious effect on the quality of peanuts after inhibition treatment. The findings provide a green, safe and economical strategy to control A. flavus on peanuts, which may be as a promising way to be used in food and agro-food preservation.
Collapse
Affiliation(s)
- Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhijian Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
14
|
Elimination of Aspergillus flavus from Pistachio Nuts with Dielectric Barrier Discharge (DBD) Cold Plasma and Its Impacts on Biochemical Indices. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9968711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present research, the effects of different durations (0, 15, 30, 60, 90, 120, 150, and 180 sec) of dielectric barrier discharge (DBD) cold plasma on decontaminating Aspergillus flavus, detoxifying pure aflatoxin B1 (AFB1), and the quality attributes of pistachio nuts (total phenolic content, antioxidant activity, chlorophylls, total carotenoids, instrumental color, total soluble protein, and malondialdehyde determination) were studied. The results showed that the viable spore population reduced with the increase of plasma treatment duration, so that after 180 s of the treatment, a decrease by 4 logs was observed in the spore population. Chlorophyll a and b, as well as total carotenoid levels and color parameters, decreased, which led to darker pistachio samples and intensity reduction in soluble protein content and protein bands. Plasma treatment did not alter the total phenolic content but slightly increased the antioxidant activity of pistachio nuts samples. The malondialdehyde values significantly increased all the plasma treatment durations. The maximum reduction of AFB1 was observed after 180 s of the treatment, which was 64.63% and 52.42% for glass slides and pistachio nut samples, respectively. The present findings demonstrated that cold plasma could be used as an efficient decontamination method of food products without inducing undesirable quality changes in nuts.
Collapse
|
15
|
The Effect of Non-Thermal Plasma on the Structural and Functional Characteristics of Human Spermatozoa. Int J Mol Sci 2021; 22:ijms22094979. [PMID: 34067102 PMCID: PMC8124443 DOI: 10.3390/ijms22094979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Significant antibacterial properties of non-thermal plasma (NTP) have converted this technology into a promising alternative to the widespread use of antibiotics in assisted reproduction. As substantial data available on the specific in vitro effects of NTP on male reproductive cells are currently missing, this study was designed to investigate selected quality parameters of human spermatozoa (n = 51) exposed to diffuse coplanar surface barrier discharge NTP for 0 s, 15 s, 30 s, 60 s and 90 s. Sperm motility characteristics, membrane integrity, mitochondrial activity, production of reactive oxygen species (ROS), DNA fragmentation and lipid peroxidation (LPO) were investigated immediately following exposure to NTP and 2 h post-NTP treatment. Exposure to NTP with a power input of 40 W for 15 s or 30 s was found to have no negative effects on the sperm structure or function. However, a prolonged NTP treatment impaired all the sperm quality markers in a time- and dose-dependent manner. The most likely mechanism of action of high NTP doses may be connected to ROS overproduction, leading to plasma membrane destabilization, LPO, mitochondrial failure and a subsequent loss of motility as well as DNA integrity. As such, our findings indicate that appropriate plasma exposure conditions need to be carefully selected in order to preserve the sperm vitality, should NTP be used in the practical management of bacteriospermia in the future.
Collapse
|
16
|
Peťková M, Švubová R, Kyzek S, Medvecká V, Slováková Ľ, Ševčovičová A, Gálová E. The Effects of Cold Atmospheric Pressure Plasma on Germination Parameters, Enzyme Activities and Induction of DNA Damage in Barley. Int J Mol Sci 2021; 22:ijms22062833. [PMID: 33799521 PMCID: PMC8000243 DOI: 10.3390/ijms22062833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Climate change, environmental pollution and pathogen resistance to available chemical agents are part of the problems that the food industry has to face in order to ensure healthy food for people and livestock. One of the promising solutions to these problems is the use of cold atmospheric pressure plasma (CAPP). Plasma is suitable for efficient surface decontamination of seeds and food products, germination enhancement and obtaining higher yields in agricultural production. However, the plasma effects vary due to plasma source, treatment conditions and seed type. In our study, we tried to find the proper conditions for treatment of barley grains by diffuse coplanar surface barrier discharge, in which positive effects of CAPP, such as enhanced germination or decontamination effects, would be maximized and harmful effects, such as oxidation and genotoxic potential, minimized. Besides germination parameters, we evaluated DNA damage and activities of various germination and antioxidant enzymes in barley seedlings. Plasma exposure resulted in changes in germination parameters and enzyme activities. Longer exposures had also genotoxic effects. As such, our findings indicate that appropriate plasma exposure conditions need to be carefully optimized in order to preserve germination, oxidation balance and genome stability, should CAPP be used in agricultural practice.
Collapse
Affiliation(s)
- Mária Peťková
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia; (M.P.); (A.Š.); (E.G.)
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia; (R.Š.); (Ľ.S.)
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia; (M.P.); (A.Š.); (E.G.)
- Correspondence:
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia;
| | - Ľudmila Slováková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia; (R.Š.); (Ľ.S.)
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia; (M.P.); (A.Š.); (E.G.)
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia; (M.P.); (A.Š.); (E.G.)
| |
Collapse
|
17
|
|
18
|
Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Evaluation of the Impact of Cold Atmospheric Pressure Plasma on Soybean Seed Germination. PLANTS 2021; 10:plants10010177. [PMID: 33477930 PMCID: PMC7833387 DOI: 10.3390/plants10010177] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
The present study aims to define the effects of Cold Atmospheric Pressure Plasma (CAPP) exposure on seed germination of an agriculturally important crop, soybean. Seed treatment with lower doses of CAPP generated in ambient air and oxygen significantly increased the activity of succinate dehydrogenase (Krebs cycle enzyme), proving the switching of the germinating seed metabolism from anoxygenic to oxygenic. In these treatments, a positive effect on seed germination was documented (the percentage of germination increased by almost 20% compared to the untreated control), while the seed and seedling vigour was also positively affected. On the other hand, higher exposure times of CAPP generated in a nitrogen atmosphere significantly inhibited succinate dehydrogenase activity, but stimulated lactate and alcohol dehydrogenase activities, suggesting anoxygenic metabolism. It was also found that plasma exposure caused a slight increment in the level of primary DNA damage in ambient air- and oxygen-CAPP treatments, and more significant DNA damage was found in nitrogen-CAPP treatments. Although a higher level of DNA damage was also detected in the negative control (untreated seeds), this might be associated with the age of seeds followed by their lower germination capacity (with the germination percentage reaching only about 60%).
Collapse
|
20
|
Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment. COATINGS 2020. [DOI: 10.3390/coatings10111102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For release-liner preparation, coating stabilization of the silicone layer on base paper often requires pre- and post-treatment. In this study, we used atmospheric pressure diffuse coplanar surface barrier discharge in roll-to-roll configuration. The results of prepared coating showed that the A4 size clay-coated paper sprayed with silicone oil (0.25–0.50 mL) gradually decreased the tape peeling force (180°) with prolonged and repeated air plasma post-treatment. Best results showing increased hydrophobicity and significantly enhanced release factor of the coating were obtained after the plasma treatment in a nitrogen atmosphere. The silicone coating on the clay-coated paper reduced the reference release force from 5.5 N/cm to less than 1.5 N/cm after the repeated silicone spraying and short nitrogen plasma post-treatment. The results of X-ray photoelectron spectroscopy and scanning electron microscopy indicate silicone curing by plasma post-treatment and pore-closing of base paper without changes of the bulk material. The aging test lasting 3 months revealed the stability of the prepared coating.
Collapse
|
21
|
Charoux CMG, Patange A, Lamba S, O'Donnell CP, Tiwari BK, Scannell AGM. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. J Appl Microbiol 2020; 130:325-340. [PMID: 32797725 DOI: 10.1111/jam.14823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
Cold plasma technology is an efficient, environmental-friendly, economic and noninvasive technology; and in recent years these advantages placed this novel technology at the centre of diverse studies for food industry applications. Dried food ingredients including spices, herbs, powders and seeds are an important part of the human diet; and the growing demands of consumers for higher quality and safe food products have led to increased research into alternative decontamination methods. Numerous studies have investigated the effect of nonthermal plasma on dried food ingredients for food safety and quality purposes. This review provides critical review on potential of cold plasma for disinfection of dried food surfaces (spices, herbs and seeds), improvement of functional and rheological properties of dried ingredients (powders, proteins and starches). The review further highlights the benefits of plasma treatment for enhancement of seeds performance and germination yield which could be applied in agricultural sector in near future. Different studies applying plasma technology for control of pathogens and spoilage micro-organisms and modification of food quality and germination of dried food products followed by benefits and current challenges are presented. However, more systemic research needs to be addressed for successful adoption of this technology in food industry.
Collapse
Affiliation(s)
- C M G Charoux
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A Patange
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - S Lamba
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - C P O'Donnell
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - B K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Kováčová M, Bodík M, Mičušík M, Humpolíček P, Šiffalovič P, Špitálsky Z. Increasing the effectivity of the antimicrobial surface of carbon quantum dots-based nanocomposite by atmospheric pressure plasma. CLINICAL PLASMA MEDICINE 2020. [DOI: 10.1016/j.cpme.2020.100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P. Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study. Appl Environ Microbiol 2020; 86:e02619-19. [PMID: 32086309 PMCID: PMC7170485 DOI: 10.1128/aem.02619-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Atmospheric cold plasma (ACP) treatment is an emerging food technology for product safety and quality retention, shelf-life extension, and sustainable processing. The activated chemical species of ACP can act rapidly against microorganisms without leaving chemical residues on food surfaces. The main objectives of this study were to investigate the efficiency and mechanisms of inactivation of fungal spores and biofilms by ACP and to understand the effects of the gas-mediated and liquid-mediated modes of application against important fungal contaminants. Aspergillus flavus was selected as the model microorganism. A. flavus spores were exposed to either gas plasma (GP) or plasma-activated water (PAW), whereas gas plasma alone was used to treat A. flavus biofilms. This study demonstrated that both GP and PAW treatments independently resulted in significant decreases of A. flavus metabolic activity and spore counts, with maximal reductions of 2.2 and 0.6 log10 units for GP and PAW, respectively. The characterization of the reactive oxygen and nitrogen species in PAW and spore suspensions indicated that the concentration of secondary reactive species was an important factor influencing the antimicrobial activity of the treatment. The biofilm study showed that GP had detrimental effects on biofilm structure; however, the initial inoculum concentration prior to biofilm formation can be a crucial factor influencing the fungicidal effects of ACP.IMPORTANCE The production of mycotoxin-free food remains a challenge in both human and animal food chains. A. flavus, a mycotoxin-producing contaminant of economically important crops, was selected as the model microorganism to investigate the efficiency and mechanisms of ACP technology against fungal contaminants of food. Our study directly compares the antifungal properties of gas plasma (GP) and plasma-activated water (PAW) against fungi as well as reporting the effects of ACP treatment on biofilms produced by A. flavus.
Collapse
Affiliation(s)
- Agata Los
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Patrick J Cullen
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|