1
|
Alves JM, Silva FA, Silveira DR, Massaut KB, Fiorentini ÂM, Lopes GV, Magnani M. Understanding the potential of fresh produce as vehicles of Salmonella enterica. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:133-180. [PMID: 40023560 DOI: 10.1016/bs.afnr.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter presents an overview of Salmonella enterica as a contaminant in fresh produce, exploring outbreaks and recalls linked to them. It also provides information on potential sources of S. enterica contamination throughout the entire production chain of these products and presents food safety tools and new approaches for controlling this pathogen. S. enterica is recognized worldwide as a pathogen responsible for foodborne outbreaks, and there has been an increase in reported cases of salmonellosis linked to fresh produce. These products are susceptible to contamination throughout various stages of the farm-to-fork process. The potential sources of contamination are present from pre-harvest and harvest stages (e.g., soil, blossoms, seeds, irrigation water and gray/blackwater, wild and domestic animals/organic fertilizers, and distinctive traits of the plant) to post-harvest stages (e.g., processing, packaging, storage/retail, and preparing for consumption). Thus, controlling S. enterica contamination is extremely important for ensuring the safe consumption of fresh produce. However, obtaining practical, efficient, low-cost, and sustainable solutions that ensure the products' sensorial, nutritional, and food quality is still a challenge. As an alternative to conventional methods, recent studies report the use of new technologies, such as neutral, acidic or low chlorine electrolyzed oxidizing water, ultraviolet light, ultrasound, microemulsion of essential oils, cold plasma, irradiation, bacteriophages, and other methods, which can be used alone or in combination with the conventional ones. Therefore, understanding the main sources of S. enterica contamination in fresh produce and the effective approach for controlling this pathogen is crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Jade Morais Alves
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Débora Rodrigues Silveira
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Khadija Bezerra Massaut
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Graciela Volz Lopes
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
2
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Ben Hsouna A, Čmiková N, Ben Akacha B, Ben Saad R, Mnif W, Garzoli S, Kačániová M. Changes in inoculated Salmonella enterica subsp. enterica Serovar Enteritidis and other microbiological qualities of vacuum-packed carrot slices after treatment with aqueous extract of Lobularia maritima. Heliyon 2024; 10:e29065. [PMID: 38576551 PMCID: PMC10990898 DOI: 10.1016/j.heliyon.2024.e29065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
After harvesting, pathogens can infect fresh vegetables in different ways. Pathogenic bacteria associated with fresh vegetables can cause widespread epidemics associated with foodborne illness. The aim of this study was to assess the microbiological quality of carrot slices after treatment with aqueous extracts of Lobularia maritima (AELm) at different concentrations AELm1 (10 mg/mL), AELm2 (5 mg/mL), AELm3 (2.5 mg/mL) and AELm4 (1.25 mg/mL), and Salmonella enterica subsp. enterica serovar Enteritidis, along with vacuum packaging and storage of carrots for 7 days at 4 °C. On days 1. and 7., total viable counts (TVC), and coliforms bacteria (CB), and Salmonella count were all analysed. Microorganisms that were obtained from carrots were identified using MALDI-TOF MS Biotyper Mass Spectrometry. The total viable, coliform bacteria and Salmonella counts were varied by the group of treatment. Higher counts were found in the control group on both days. The most isolated species of bacteria were Salmonella enterica and Pantoea agglomerans on the 1. day and Klebsiella oxytoca on the 7. day. The current study adds useful information for a better understanding of how Salmonella enterica reacts to the effect of AELm and its potential use as a sustainable washing method to eliminate bacteria from freshly cut carrots.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, 5000, Tunisia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha, 61922, Saudi Arabia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185, Rome, Italy
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, Warszawa, 01 043, Poland
| |
Collapse
|
4
|
Ramos GLPA, Duarte MCKH, Nascimento JS, Cruz AG, Sant'Ana AS. Quantitative microbiological risk assessment for the occurrence of listeriosis in Brazil due to the consumption of milk processed by pasteurization or thermosonication. Int J Food Microbiol 2023; 407:110424. [PMID: 37806011 DOI: 10.1016/j.ijfoodmicro.2023.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to estimate the risk of listeriosis from the consumption of pasteurized milk in Brazil, comparing conventional treatment with the technology of thermosonication. The Quantitative Microbiological Risk Assessment (QMRA) model was developed, covering the entire milk production chain, from milking to the moment of consumption. In general, higher risks were observed in association with higher initial concentrations of the pathogen and the vulnerable population. The highest risk predicted (3.67 × 10-5) was related to the scenario considering the initial concentration range of L. monocytogenes between 4 and 6 log CFU/mL, with conventional treatment and considering the vulnerable population, resulting in one case of listeriosis every 27,248 servings. When considering thermosonication treatment, lower risks have been predicted. The scenario analysis indicated that the steps related to storage conditions in retail and at the consumer's home (post-processing steps) are the most influential in the associated risk, in all scenarios. The predictive parameters of inactivation related to the applied treatment also have a considerable influence on the risk. The results point to the influence of the stages of the dairy production chain and the thermosonication treatment applied in the food safety of milk, subsidizing information for industrial application and for regulatory agencies.
Collapse
Affiliation(s)
- Gustavo Luis P A Ramos
- Fluminense Federal University (UFF), Faculty of Veterinary Medicine, Niterói, RJ, Brazil; Federal Institute of Education, Science, and Technology of Rio de Janeiro (IFRJ), Food Department, Rio de Janeiro, RJ, Brazil.
| | | | - Janaína S Nascimento
- Federal Institute of Education, Science, and Technology of Rio de Janeiro (IFRJ), Food Department, Rio de Janeiro, RJ, Brazil
| | - Adriano G Cruz
- Federal Institute of Education, Science, and Technology of Rio de Janeiro (IFRJ), Food Department, Rio de Janeiro, RJ, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
5
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
6
|
Pakbin B, Brück WM, Brück TB, Allahyari S, Ashrafi Tamai I. A quantitative prevalence of Escherichia coliO157 in different food samples using real-time qPCR method. Food Sci Nutr 2023; 11:228-235. [PMID: 36655112 PMCID: PMC9834875 DOI: 10.1002/fsn3.3055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli serogroup O157 is the main causative agent of several intestinal and extra-intestinal foodborne diseases in humans through consumption of low-dose contaminated foods such as milk, beef, and vegetables. To date, studies regarding the quantitative prevalence of E. coli O157 in foods are so limited. Therefore, this study aimed to evaluate the quantitative prevalence rate of E. coli serogroup O157 in raw milk (n = 144), vegetable salad (n = 174), and minced beef samples (n = 108) using the real-time qPCR SYBR green melting curve method targeting the rfbA gene. First, we evaluated the method and found a sensitive and specific qPCR assay with 1 log of CFU/ml detection limit to detect E. coli O157 (Tm = 80.3 ± 0.1°C). About 2.77%, 10.18%, and 9.19% of raw milk, minced beef, and vegetable salad samples, respectively, were contaminated with E. coli O157. Minced beef and vegetable salad samples were significantly more contaminated than raw milk samples. Population average of E. coli O157 in raw milk, minced beef, and vegetable salad samples were 2.22 ± 0.57, 3.30 ± 0.40, and 1.65 ± 0.44 log CFU/ml or gr, respectively. Significantly higher levels of population of E. coli O157 were observed in minced beef samples. Minced beef can be regarded as the main food in the transmission of this foodborne pathogen. Routine quantitative rapid monitoring is strongly suggested to be carried out to prevent foodborne diseases caused by E. coli O157.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSion 2Switzerland
- Department of Chemistry, Werner Siemens Chair of Synthetic BiotechnologyTechnical University of Munich (TUM)MünchenGermany
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Wolfram Manuel Brück
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSion 2Switzerland
| | - Thomas B. Brück
- Department of Chemistry, Werner Siemens Chair of Synthetic BiotechnologyTechnical University of Munich (TUM)MünchenGermany
| | - Samaneh Allahyari
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Iradj Ashrafi Tamai
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
7
|
Wang Y, Yang H. Metabolomics elucidating the effect of water activity on the thermal resistance of Salmonella in wheat flour. Food Res Int 2022; 162:112203. [DOI: 10.1016/j.foodres.2022.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
8
|
Lu L, Guo H, Kang N, He X, Liu G, Li J, He X, Yan X, Yu H. Application of electrolysed water in the quality and safety control of fruits and vegetables: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hongyan Guo
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoguang He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Guishan Liu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Juan Li
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
9
|
Antimicrobial effects of thymol-loaded phytoglycogen/zein nanocomplexes against foodborne pathogens on fresh produce. Int J Biol Macromol 2022; 209:1188-1196. [PMID: 35452703 DOI: 10.1016/j.ijbiomac.2022.04.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022]
Abstract
In this study, thymol-loaded hydrophobically modified phytoglycogen/zein nanocomplexes with a particle size around 100 nm were developed for improving microbial safety of fresh produce. The antimicrobial activities, including the determination of minimum inhibitory and bactericidal concentration, growth kinetic curves, and inhibition zone of the nanocomplexes against foodborne pathogens (Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli) were evaluated. The results showed that the antimicrobial activities of the nanocomplexes were significantly stronger than that of free thymol control (without encapsulation), and the antimicrobial efficacy remained unchanged after storage at 4 °C for 60 days. The morphological results from atomic force microscope revealed that small micellar blebs were formed at the surface of bacteria after treatment with nanocomplexes and the gradual disappearance of the cell boundary indicated the occurrence of cytolysis. The potential applications of this nanocomplex as disinfectant agent in wash water were evaluated on different types of fresh produce (lettuce, cantaloupe, and strawberries). Notably, the nanocomplexes also demonstrated efficacy in biofilm removal. Findings from this study clearly demonstrated that the thymol-loaded nanocomplexes hold promising potential for the disinfection of fresh produce to improve their microbial safety and quality.
Collapse
|
10
|
Stearns R, Xue J, Freshour N, Matak K, Luo Y, Shen C. The Efficacy of Conventional Spray, Electrostatic Spray, and Dip with a Combination of Hydrogen Peroxide and Peroxyacetic Acid To Inactivate Listeria monocytogenes on Apples. J Food Prot 2022; 85:828-834. [PMID: 35146513 DOI: 10.4315/jfp-21-448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study aimed to evaluate the efficacy of a hydrogen peroxide (H2O2) and peroxyacetic acid (PAA) mixer delivered by conventional garden spray (GS), electrostatic spray (ES), and dip methods to inactivate Listeria monocytogenes on apples. Organic Honeycrisp, Fuji, and Pink Lady apples were dip inoculated with L. monocytogenes (two strains, serotype 1/2b), which were then kept untreated (control), sprayed with water only, or treated with the H2O2-PAA mixer (0.0064, 0.1, 0.25, and 0.50%) for 20 s via GS, ES, or dip, followed by draining (for 2 min) on aluminum foil. Surviving bacteria were recovered on modified Oxford agar. Atomic force microscopy was used to detect the structural changes of inactivation of L. monocytogenes in broth medium by the H2O2-PAA mixer solution. Data (two replicates, with six samples per replicate) were analyzed using the mixed model procedure of SAS (P = 0.05). Initial counts of L. monocytogenes on untreated apples were 6.80 to 6.90 log CFU per apple. The dip method was the most effective treatment (P < 0.05) for pathogen reductions (2.31 to 2.41 log CFU per apple), followed by GS (1.44 to 1.70 log CFU per apple) and then ES (0.84 to 1.20 log CFU per apple). Reductions of L. monocytogenes were greatest (P < 0.05) when apples were treated with H2O2-PAA mixer -0.25 and -0.50%. Atomic force microscopy analyses indicated that inactivation of L. monocytogenes cells in H2O2-PAA mixer solutions resulted from disruption of the outer membrane. The H2O2-PAA mixer-treated cells had increased width and height and decreased roughness compared with the untreated cells. Results suggested that applying a H2O2-PAA mixer by dip or GS methods is better for pathogen reduction than ES on apples. HIGHLIGHTS
Collapse
Affiliation(s)
- Rebecca Stearns
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Nettie Freshour
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
11
|
Selection of Microbial Targets for Treatments to Preserve Fresh Carrot Juice. BEVERAGES 2022. [DOI: 10.3390/beverages8010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Fresh carrot juice presents nutritional and organoleptic qualities which have to be preserved. However, it is a fast perishable beverage, and its low-acidic pH promotes the development of foodborne pathogens and spoilage microorganisms. This study aims to assess the modification and variability of physicochemical and microbial indicators during storage of carrot juice, and to isolate and select microorganisms to be used as promoters of spoilage to quantify the effect of preservation treatments. To achieve that, 10 batches of carrot Daucus carota cv. Maestro juice were prepared independently, stored up to 14 days at 4 °C and analyzed. Volatile compound composition differed mainly according to the analyzed batch. During storage, an increase of the content of ethanol, ethyl acetate or 2-methoxyphenol, which are produced by different microorganisms, was noticed. Isolation of bacteria revealed Pseudomonas, lactic acid bacteria, and enterobacteria, some of them provoking odor modification of carrot juice at 4 °C. Assays in carrot juice with isolated yeasts and molds showed the ability of Meyerozyma guillermondii to induce texture modification and some isolates, e.g., Pichia guillermondii, resulted in gas production. Selected isolates able to induce spoilage are useful to test preservative treatments of fresh carrot juice under controlled conditions.
Collapse
|
12
|
Metabolic Responses of "Big Six" Escherichia coli in Wheat Flour to Thermal Treatment Revealed by Nuclear Magnetic Resonance Spectroscopy. Appl Environ Microbiol 2022; 88:e0009822. [PMID: 35285244 DOI: 10.1128/aem.00098-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli outbreaks linked to wheat flour consumption have kept emerging in recent years, which necessitated an antimicrobial step being incorporated into the flour production process. The objectives of this in vivo study were to holistically evaluate the sanitizing efficacy of thermal treatment at 60 and 70°C against the "big six" E. coli strains (O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) in wheat flour and to assess the strain-specific metabolic responses using nuclear magnetic resonance (NMR) spectroscopy. The 70°C treatment temperature indiscriminatingly inactivated all strains by over 4.3-log CFU/g within 20 min, suggesting the high sanitization effectiveness of this treatment temperature, whereas the treatment at 60°C inactivated the strains to various degrees during the 1-h process. The most resistant strains at 60°C, O26 and O45, were characterized by amino acid and sugar depletion, and their high resistance was attributed to the dual effects of activated heat shock protein (HSP) synthesis and promoted glycolysis. O121 also demonstrated these metabolic changes, yet its thermal resistance was largely impaired by the weakened membrane structure and diminished osmotic protection due to phosphorylcholine exhaustion. In contrast, O111, O145, and O103 presented a substantial elevation of metabolites after stress at 60°C; their moderate thermal resistance was mainly explained by the accumulation of amino acids as osmolytes. Overall, the study enhanced our understanding of the metabolic responses of big six E. coli to heat stress and provided a model for conducting NMR-based metabolomic studies in powdered food matrices. IMPORTANCE "Big six" Escherichia coli strains have caused several outbreaks linked to wheat flour consumption in the last decade, revealing the vital importance of adopting an antimicrobial treatment during the flour production process. Therefore, the present study was carried out to evaluate the efficacy of a typical sanitizing approach, thermal treatment, against the big six strains in wheat flour along with the underlying antimicrobial mechanisms. Findings showed that thermal treatment at 60 and 70°C could markedly mitigate the loads of all strains in wheat flour. Moreover, activated heat shock protein synthesis combined with expedited glycolysis and enhanced osmotic protection were identified as two major metabolic alteration patterns in the E. coli strains to cope with the heat stress. With the responses of big six in wheat flour to thermal treatment elucidated, scientific basis for incorporating a thermal inactivation step in wheat flour production was provided.
Collapse
|
13
|
Jafarpour D, Hashemi SMB, Mousavifard M, Sayadi M. The combined effect of different concentrations of Vitex pseudo-negundo extract and different temperatures against food-borne pathogens in chicken salad. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Sun J, Jiang X, Chen Y, Lin M, Tang J, Lin Q, Fang L, Li M, Hung YC, Lin H. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control. Food Chem 2022; 369:130873. [PMID: 34479004 DOI: 10.1016/j.foodchem.2021.130873] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022]
Abstract
With the growing demand for safe and nutritious foods, some novel food nonthermal sterilization technologies were developed in recent years. Electrolyzed oxidizing water (EOW) has the characteristics of strong antimicrobial ability, wide sterilization range, and posing no threat to the humans and environment. Furthermore, EOW can be used as a green disinfectant to replace conventional production water used in the food industry since it can be converted to the ordinary water after sterilization. This review summarizes recent developments of the EOW technology in food industry. It also reviews the preparation principles, physical and chemical characteristics, antimicrobial mechanisms of EOW, and inactivation of toxins using EOW. In addition, this study highlights the applications of EOW in food preservation and safety control, as well as the future prospects of this novel technology. EOW is a promising nonthermal sterilization technology that has great potential for applications in the food industry.
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, United States
| | - Jinyan Tang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qin Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Ling Fang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
16
|
Comparison of the metabolic responses of eight Escherichia coli strains including the “big six” in pea sprouts to low concentration electrolysed water by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
18
|
Luo S, Saadi A, Fu K, Taxipalati M, Deng L. Fabrication and characterization of dextran/zein hybrid electrospun fibers with tailored properties for controlled release of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6355-6367. [PMID: 33969891 DOI: 10.1002/jsfa.11306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In recent years, there has been considerable interest in the use of biopolymer electrospun nanofibers for various food applications due to the biocompatibility, biodegradability, and high loading capacity. Herein, we fabricated and characterized novel hybrid electrospun fibers from dextran (50%, w/v) and zein (0-30%, w/v) solutions, and the effects of various zein concentrations on the properties of the hybrid electrospun fibers were investigated. RESULTS When zein was added at low concentrations (5% and 10%), dextran and zein showed poor miscibility, as reflected by significantly decreased viscosity of the solutions, and the poor mechanical properties of the derived fiber membranes. When zein was added at medium concentrations (15-25%), hydrogen bonds were formed between dextran and zein molecules, as indicated by the red shift of Fourier-transform infrared bands and β-sheet to α-helix structural transformations. The fiber membranes electrospun from a solution with 25% zein showed the most hydrophobic surface, with a water contact angle of 116.9°. The homogenous dispersion of dextran and zein resulted in improved mechanical properties for fibers electrospun from a solution with 30% zein. Curcumin encapsulating dextran/zein electrospun fibers exhibited effective radical scavenging activity and ferric reducing power, along with the desired controlled release behavior for curcumin delivery. CONCLUSION Food grade dextran/zein hybrid electrospun fibers demonstrated tunable properties, and appear to be promising as delivery systems for bioactive and edible antimicrobial food packaging. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyuan Luo
- College of Biological Science and Technology, Hubei Key Laboratory of Biological Resources Protection and Utilization, Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, China
| | - Abdullah Saadi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kai Fu
- College of Biological Science and Technology, Hubei Key Laboratory of Biological Resources Protection and Utilization, Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, China
| | - Maierhaba Taxipalati
- Department of Modern Agriculture, Turpan Vocational and Technical College, Turpan, China
| | - Lingli Deng
- College of Biological Science and Technology, Hubei Key Laboratory of Biological Resources Protection and Utilization, Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, China
| |
Collapse
|
19
|
|
20
|
Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Liu F, Tang C, Wang D, Sun Z, Du L, Wang D. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Zhou L, Wang Y. Physical and antimicrobial properties of zein and methyl cellulose composite films with plasticizers of oleic acid and polyethylene glycol. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Wang J, Han R, Liao X, Ding T. Application of plasma-activated water (PAW) for mitigating methicillin-resistant Staphylococcus aureus (MRSA) on cooked chicken surface. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Nangul A, Bozkurt H, Gupta S, Woolf A, Phan-Thien KY, McConchie R, Fletcher GC. Decline of Listeria monocytogenes on fresh apples during long-term, low-temperature simulated international sea-freight transport. Int J Food Microbiol 2021; 341:109069. [PMID: 33508582 DOI: 10.1016/j.ijfoodmicro.2021.109069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/01/2021] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes has caused outbreaks of foodborne illness from apples in the USA, and is also a major issue for regulatory compliance worldwide. Due to apple's significance as an important export product from New Zealand, we aimed to determine the effect of long-term, low-temperature sea-freight from New Zealand to the USA (July) and Europe (March-April), two key New Zealand markets, on the survival and/or growth of L. monocytogenes on fresh apples. Temperature and humidity values were recorded during a shipment to each market (USA and Europe), then the observed variations around the 0.5 °C target temperature were simulated in laboratory trials using open ('Scired') and closed ('Royal Gala' for the USA and 'Cripps Pink' for Europe) calyx cultivars of apples inoculated with a cocktail of 107-108 cells of seven strains of L. monocytogenes. Samples were analysed for L. monocytogenes quantification at various intervals during the simulation and on each occasion, an extra set was analysed after a subsequent 8 days at 20 °C. When both the sea-freight simulations concluded, L. monocytogenes showed 5 log reductions on the equatorial surface of skin of apples, but only about 2.5 log reduction for USA and about 3.3 log reduction for Europe in the calyx. Cultivar type had no significant effect on the survival of L. monocytogenes for both sea-freight simulations, either in the calyx or on the skin (P > 0.05). Most of the reduction in the culturable cells on the skin occurred during the initial 2 weeks of the long-term storage simulations. There was also no significant difference in the reduction of L. monocytogenes at 0.5 or 20 °C. No correlation was observed between firmness or total soluble solids and survival of L. monocytogenes. Because the inoculated bacterial log reduction was lower in the calyx than on the skin, it is speculated that the risk of causing illness is higher if contaminated apple cores are eaten. The result suggested that the international sea-freight transportation does not result in the growth of L. monocytogenes irrespective of time and temperature. The results of this study provide useful insights into the survival of L. monocytogenes on different apple cultivars that can be used to develop effective risk mitigation strategies for fresh apples during long-term, low-temperature international sea-freight transportation.
Collapse
Affiliation(s)
- Agam Nangul
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Sravani Gupta
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Allan Woolf
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| |
Collapse
|
25
|
Pires RPS, Guimarães JT, Barros CP, Balthazar CF, Chincha AIA, Freitas MQ, Duarte MCKH, Silva PHF, Pimentel TC, Abud YKD, Sant'Anna C, Sant'Ana AS, Silva MC, Nascimento JS, Cruz AG. Ohmic heating increases inactivation and morphological changes of Salmonella sp. and the formation of bioactive compounds in infant formula. Food Microbiol 2021; 97:103737. [PMID: 33653516 DOI: 10.1016/j.fm.2021.103737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
The effect of ohmic heating (OH) (50, 55, and 60 °C, 6 V/cm) on the inactivation kinetics (Weibull model) and morphological changes (scanning electron microscopy and flow cytometry) of Salmonella spp. in infant formula (IF) was evaluated. In addition, thermal load indicators (hydroxymethylfurfural and whey protein nitrogen index, HMF, and WPNI) and bioactive compounds (DPPH, total phenolics, ACE, α-amylase, and α-glucosidase inhibitory activities) were also studied. OH presented a more intense inactivation rate than conventional heating, resulting in a reduction of about 5 log CFU per mL at 60 °C in only 2.91 min, being also noted a greater cell membrane deformation, higher formation of bioactive compounds, and lower values for the thermal load parameters. Overall, OH contributed to retaining the nutritional value and improve food safety in IF processing.
Collapse
Affiliation(s)
- Roberto P S Pires
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021, Rio de Janeiro, Brazil
| | - Jonas T Guimarães
- Universidade Federal Fluminense (UFF), Faculty of Medicina Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Cássia P Barros
- Universidade Federal Fluminense (UFF), Faculty of Medicina Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Celso F Balthazar
- Universidade Federal Fluminense (UFF), Faculty of Medicina Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandra I A Chincha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Mônica Q Freitas
- Universidade Federal Fluminense (UFF), Faculty of Medicina Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Maria Carmela K H Duarte
- Universidade Federal Fluminense (UFF), Faculty of Medicina Veterinária, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Paulo H F Silva
- Universidade Federal de Juiz de Fora (UFJF), Departamento de Nutrição, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Tatiana C Pimentel
- Instituto Federal do Paraná (IFPR), 87703-536, Paranavaí, Paraná, Brazil
| | - Yuri K D Abud
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (Inmetro), Duque de Caxias, 25250-020, Rio de Janeiro, Brazil
| | - Celso Sant'Anna
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (Inmetro), Duque de Caxias, 25250-020, Rio de Janeiro, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcia C Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021, Rio de Janeiro, Brazil
| | - Janaina S Nascimento
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021, Rio de Janeiro, Brazil
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Zhao L, Kristi N, Ye Z. Atomic force microscopy in food preservation research: New insights to overcome spoilage issues. Food Res Int 2020; 140:110043. [PMID: 33648269 DOI: 10.1016/j.foodres.2020.110043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
A higher level of food safety is required due to the fast-growing human population along with the increased awareness of healthy lifestyles. Currently, a large percentage of food is spoiled during storage and processing due to enzymes and microbial activity, causing huge economic losses to both producers and consumers. Atomic force microscopy (AFM), as a powerful scanning probe microscopy, has been successfully and widely used in food preservation research. This technique allows a non-invasive examination of food products, providing high-resolution images of surface structure and individual polymers as well as the physical properties and adhesion of single molecules. In this paper, detailed applications of AFM in food preservation are reviewed. AFM has been used to provide comprehensive information in food preservation by evaluating the spoilage with its related structure modification. By utilizing AFM imaging and force measurement function, the main mechanisms involved in the loss of food quality and preservation technologies development can be further elucidated. It is also capable of exploring the activities of enzymes and microbes in influencing the quality of food products during storage. AFM provides comprehensive solutions to overcome spoilage issues with its versatile functions and high-throughput outcomes. Further research and development of this novel technique in order to solve integrated problems in food preservation are necessary.
Collapse
Affiliation(s)
- Leqian Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China.
| |
Collapse
|
27
|
Wang J, Zhu K, Wang Y, Dai B, Liu S, Li Y. Moisture diffusion and shrinkage characteristics of broad bean during low-temperature vacuum drying. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1849277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jinshan Wang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Kai Zhu
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Yabo Wang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Baomin Dai
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Shengchun Liu
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Yanjie Li
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
28
|
Active packaging based on swim bladder gelatin/galangal root oil nanofibers: Preparation, properties and antibacterial application. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Yang G, Shi Y, Zhao Z, Zhong M, Jin T, Shi C, Zhang C, Xia X. Comparison of Inactivation Effect of Slightly Acidic Electrolyzed Water and Sodium Hypochlorite on Bacillus cereus Spores. Foodborne Pathog Dis 2020; 18:192-201. [PMID: 33121277 DOI: 10.1089/fpd.2020.2811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacillus cereus spores are concerns for food spoilage and foodborne disease in food industry due to their high resistance to heat and various disinfectants. The aim of this study was to investigate the inactivation of B. cereus spores by slightly acidic electrolyzed water (SAEW) in comparison to sodium hypochlorite (NaClO) with same available chlorine content (ACC). In this study, the efficacy of SAEW with different concentrations of ACC (40, 60, 80, 100, and 120 mg/L) on the inactivation of B. cereus spores, and the effect of SAEW combined with mild heat treatment (60°C), was examined in pure culture suspensions. Heat resistance and pyridine-2,6-dicarboxylic acid (DPA) release of the spores were also determined. The results showed that the sporicidal effect of the SAEW was significantly higher compared with the NaClO with the same concentration of ACC. Furthermore, the inactivation efficacy was largely dependent on ACC and treatment time. Moreover, the sporicidal activity of the SAEW was significantly improved when combined with a mild heat treatment (60°C). The majority of the DPA was released from spores, and the spores exhibited less resistance to heat after SAEW treatment for 30 min. These findings indicate that SAEW could effectively inactivate B. cereus spores, making it a promising and environmentally friendly decontamination technology for application in the food industry.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yiqi Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhiyi Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyao Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.,Technical Center, Jiangsu Ecolovo Food Group Co., Ltd., Suqian, China
| |
Collapse
|
30
|
Potential of protein-prebiotic as protective matrices on the storage stability of vacuum-dried probiotic Lactobacillus casei. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Sun X, Zhang D, Zhao L, Shi B, Xiao J, Shi J, Zou X. Development of differential pulse voltammetric method for rapid quantification of total hydroxyl-sanshools in Sichuan Pepper. Lebensm Wiss Technol 2020; 130:109640. [DOI: 10.1016/j.lwt.2020.109640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Pereira MO, Guimarães JT, Ramos GL, do Prado-Silva L, Nascimento JS, Sant’Ana AS, Franco RM, Cruz AG. Inactivation kinetics of Listeria monocytogenes in whey dairy beverage processed with ohmic heating. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Deng L, Li Y, Zhang A, Zhang H. Characterization and physical properties of electrospun gelatin nanofibrous films by incorporation of nano-hydroxyapatite. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105640] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Wang H, Zhang Q, Mujumdar A, Fang XM, Wang J, Pei YP, Wu W, Zielinska M, Xiao HW. High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Zhao Q, Yu X, Zhou C, Yagoub AEA, Ma H. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109192] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Liu Q, Chen L, Laserna AKC, He Y, Feng X, Yang H. Synergistic action of electrolyzed water and mild heat for enhanced microbial inactivation of Escherichia coli O157:H7 revealed by metabolomics analysis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107026] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Wang P, Li Y, Zhang C, Feng F, Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem 2020; 308:125599. [DOI: 10.1016/j.foodchem.2019.125599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
|
39
|
Pellegrini M, Rossi C, Palmieri S, Maggio F, Chaves-López C, Lo Sterzo C, Paparella A, De Medici D, Ricci A, Serio A. Salmonella enterica Control in Stick Carrots Through Incorporation of Coriander Seeds Essential Oil in Sustainable Washing Treatments. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
40
|
Chen L, Zhao X, Wu J, Liu Q, Pang X, Yang H. Metabolic characterisation of eight Escherichia coli strains including "Big Six" and acidic responses of selected strains revealed by NMR spectroscopy. Food Microbiol 2019; 88:103399. [PMID: 31997756 DOI: 10.1016/j.fm.2019.103399] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022]
Abstract
The metabolic diversity of Escherichia coli strains (non-pathogenic E. coli ATCC 25922, and pathogenic E. coli O157:H7, O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) was tested using nuclear magnetic resonance. Based on two representative two-dimensional 1H-13C spectra, 38 metabolites were identified in E. coli intracellular samples. Principal component analysis indicated that metabolites including lysine, arginine, α-ketoglutaric acid, adenosine, and fumaric acid were responsible for the separation of E. coli ATCC 25922. Relatively large metabolic differences between ATCC 25922 and the pathogenic strains were recoded. The most varied pairwise group (ATCC 25922 vs. O26:H11) was further analysed. The screened metabolites and enrichment pathway tests revealed different amino acid metabolism and higher requirement for energy production in the pathogenic strains. The acidic responses of the selected strains were further tested. The in vitro and in vivo inactivation kinetics, morphological changes, and protein leakage showed higher acid tolerance of E. coli O26:H11. Metabolic analysis of the two strains under acidic stress revealed alternative metabolites and pathways in the two groups. Pathogenic O26:H11 was characterised by higher energy production and amino acid metabolism (lysine and glutamic acid). Real-time PCR tests confirmed that glutamic acid dependent decarboxylase/antiporter system was the major acid resistance mechanism.
Collapse
Affiliation(s)
- Lin Chen
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China
| | - Xue Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China
| | - Ji'en Wu
- Setsco Services Pte., Ltd., Singapore, 608925, Singapore
| | - Qin Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China
| | - Xinyi Pang
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
41
|
Zhao L, Zhao X, Wu J, Lou X, Yang H. Comparison of metabolic response between the planktonic and air-dried Escherichia coli to electrolysed water combined with ultrasound by 1H NMR spectroscopy. Food Res Int 2019; 125:108607. [PMID: 31554111 DOI: 10.1016/j.foodres.2019.108607] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/28/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
The antimicrobial effects of electrolysed water and ultrasound have been well reported; however, little attention was paid to their effects on the metabolite changes of bacteria in different states. In this study, the metabolomic variations of Escherichia coli ATCC 25922 in planktonic and adherent state (air-dried on stainless steel coupons) after the combination treatment of low-concentration acidic electrolysed water (AEW, free available chlorine (FAC): 4 mg/L) and ultrasound were characterised, by conducting multivariate data analysis based on nuclear magnetic resonance (NMR) spectroscopy. Overall, 43 metabolites were identified in two states of E. coli, including a wide range of amino acids, organic acids, nucleotides and their derivatives. The quantification of whole-cell metabolism in planktonic and air-dried cultures was quite different: air-dried E. coli exhibited more resistance to ultrasound and AEW treatments due to initiating a protective response against oxidative and acid stresses, which was not observed in planktonic E. coli, whose levels of all identified metabolites were decreased significantly after the combined treatment. Further pathway analysis revealed that alanine, aspartate and glutamate metabolism, glycolysis, pyruvate metabolism and tricarboxylic acid (TCA) cycle were changed significantly in planktonic culture, but to a less extent in air-dried culture, in which some shifts in glutamate decarboxylase (GAD) system and some shunts like mixed acid fermentation and pentose phosphate pathway were observed for maintaining metabolic balance. These findings suggest that NMR-based metabolomics strategy is promising in identifying different metabolic shifts in different states of bacteria. They also provide some guidance for food equipment sanitisation, especially for organic food processing.
Collapse
Affiliation(s)
- Lin Zhao
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xue Zhao
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Ji'en Wu
- Setsco Services Pte Ltd, 18 Teban Gardens Crescent, Singapore 608925, Singapore
| | - Xiaowei Lou
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|