1
|
Lu W, Wang H, Ge L, Wang S, Zeng X, Mao Z, Wang P, Liang J, Xue J, Cui Y, Zhao Q, Cheng K, Shen Q. Comparative evaluating laser ionization and iKnife coupled with rapid evaporative ionization mass spectrometry and machine learning for geographical authentication of Larimichthys crocea. Food Chem 2024; 460:140532. [PMID: 39053283 DOI: 10.1016/j.foodchem.2024.140532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Larimichthys crocea (LYC) holds significant economic value as a marine fish species. However, inaccuracies in labeling its origin can adversely affect consumer interests. Herein, a laser assisted rapid evaporative ionization mass spectrometry (LA-REIMS) and machine learning (ML) was developed for geographical authentication. When compared to iKnife, the LA demonstrated to be superior owing to reduced thermal damage to sample tissue, enhanced automation, and ease of use. Analysis of LYC from six distinct geographical origins across China revealed a total of 798 ions, which were then subjected to six classifiers to establish ML models. Following hyperparameter optimization and feature engineering, the Chi2(15%)-KNN model exhibited the highest training and testing accuracy, achieving 98.4 ± 0.9% and 98.5 ± 1.4%, respectively. This LA-REIMS/ML methodology offers a rapid, accurate, and intelligent solution for tracing the origin of LYC, thereby providing valuable technical support for the establishment of traceability systems in the aquatic product industry.
Collapse
Affiliation(s)
- Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Siwei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Xixi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Yiwei Cui
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China.
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China..
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China..
| |
Collapse
|
2
|
Suhandy D, Al Riza DF, Yulia M, Kusumiyati K, Telaumbanua M, Naito H. Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods 2024; 13:3648. [PMID: 39594063 PMCID: PMC11593938 DOI: 10.3390/foods13223648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Indonesian stingless bee honey (SBH) of Geniotrigona thoracica is popular and traded at an expensive price. Brown rice syrup (RS) is frequently used as a cheap adulterant for an economically motivated adulteration (EMA) in SBH. In this study, authentic Indonesian Geniotrigona thoracica SBH of Acacia mangium (n = 100), adulterated SBH (n = 120), fake SBH (n = 100), and RS (n = 200) were prepared. In short, 2 mL of each sample was dropped directly into an innovative sample holder without any sample preparation including no dilution. Fluorescence intensity was acquired using a fluorescence spectrometer. This portable instrument is equipped with a 365 nm LED lamp as the fixed excitation source. Principal component analysis (PCA) was calculated for the smoothed spectral data. The results showed that the authentic SBH and non-SBH (adulterated SBH, fake SBH, and RS) samples could be well separated using the smoothed spectral data. The cumulative percentage variance of the first two PCs, 98.4749% and 98.4425%, was obtained for calibration and validation, respectively. The highest prediction accuracy was 99.5% and was obtained using principal component analysis-linear discriminant analysis (PCA-LDA). The best partial least square (PLS) calibration was obtained using the combined interval with R2cal = 0.898 and R2val = 0.874 for calibration and validation, respectively. In the prediction, the developed model could predict the adulteration level in the adulterated honey samples with an acceptable ratio of prediction to deviation (RPD) = 2.282, and range error ratio (RER) = 6.612.
Collapse
Affiliation(s)
- Diding Suhandy
- Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia;
| | - Dimas Firmanda Al Riza
- Department of Biosystems Engineering, Faculty of Agricultural Technology, University of Brawijaya, Jl. Veteran, Malang 65145, Indonesia;
| | - Meinilwita Yulia
- Department of Agricultural Technology, Lampung State Polytechnic, Jl. Soekarno Hatta No. 10, Rajabasa, Bandar Lampung 35141, Indonesia;
| | - Kusumiyati Kusumiyati
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Mareli Telaumbanua
- Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia;
| | - Hirotaka Naito
- Graduate School of Bioresources, Department of Environmental Science and Technology, Mie University, 1577 Kurima-machiya-cho, Tsu 514-8507, Mie, Japan;
| |
Collapse
|
3
|
Cafarella C, Mangraviti D, Rigano F, Dugo P, Mondello L. Rapid evaporative ionization mass spectrometry: A survey through 15 years of applications. J Sep Sci 2024; 47:e2400155. [PMID: 38772742 DOI: 10.1002/jssc.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
Rapid evaporative ionization mass spectrometry (REIMS) is a relatively recent MS technique explored in many application fields, demonstrating high versatility in the detection of a wide range of chemicals, from small molecules (phenols, amino acids, di- and tripeptides, organic acids, and sugars) to larger biomolecules, that is, phospholipids and triacylglycerols. Different sampling devices were used depending on the analyzed matrix (liquid or solid), resulting in distinct performances in terms of automation, reproducibility, and sensitivity. The absence of laborious and time-consuming sample preparation procedures and chromatographic separations was highlighted as a major advantage compared to chromatographic methods. REIMS was successfully used to achieve a comprehensive sample profiling according to a metabolomics untargeted analysis. Moreover, when a multitude of samples were available, the combination with chemometrics allowed rapid sample differentiation and the identification of discriminant features. The present review aims to provide a survey of literature reports based on the use of such analytical technology, highlighting its mode of operation in different application areas, ranging from clinical research, mostly focused on cancer diagnosis for the accurate identification of tumor margins, to the agri-food sector aiming at the safeguard of food quality and security.
Collapse
Affiliation(s)
- Cinzia Cafarella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, former Veterinary School, University of Messina, Messina, Italy
| | - Domenica Mangraviti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, former Veterinary School, University of Messina, Messina, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, former Veterinary School, University of Messina, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, former Veterinary School, University of Messina, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Chromaleont s.r.l., former Veterinary School, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, former Veterinary School, University of Messina, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Chromaleont s.r.l., former Veterinary School, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Cui Y, Lu W, Xue J, Ge L, Yin X, Jian S, Li H, Zhu B, Dai Z, Shen Q. Machine learning-guided REIMS pattern recognition of non-dairy cream, milk fat cream and whipping cream for fraudulence identification. Food Chem 2023; 429:136986. [PMID: 37516053 DOI: 10.1016/j.foodchem.2023.136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The illegal adulteration of non-dairy cream in milk fat cream during the manufacturing process of baked goods has significantly hindered the robust growth of the dairy industry. In this study, a method based on rapid evaporative ionization mass spectrometry (REIMS) lipidomics pattern recognition integrated with machine learning algorithms was established. A total of 26 ions with importance were picked using multivariate statistical analysis as salient contributing features to distinguish between milk fat cream and non-dairy cream. Furthermore, employing discriminant analysis, decision trees, support vector machines, and neural network classifiers, machine learning models were utilized to classify non-dairy cream, milk fat cream, and minute quantities of non-dairy cream adulterated in milk fat cream. These approaches were enhanced through hyperparameter optimization and feature engineering, yielding accuracy rates at 98.4-99.6%. This artificial intelligent method of machine learning-guided REIMS pattern recognition can accurately identify adulteration of whipped cream and might help combat food fraud.
Collapse
Affiliation(s)
- Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuelian Yin
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haihong Li
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou 311113, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiyuan Dai
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
5
|
Oroian M, Dranca F, Ropciuc S, Pauliuc D. A comparative study regarding the adulteration detection of honey: Physicochemical parameters vs. impedimetric data. Curr Res Food Sci 2023; 7:100642. [PMID: 38115897 PMCID: PMC10728335 DOI: 10.1016/j.crfs.2023.100642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Honey adulteration is a major issue for European Union and its members because of an unfair practice of different producers and beekeepers, many adulterations involve the addition of sweet, concentrated syrups which may appear like honey. In our study we analysed the influence of adulteration of tilia honey with different syrups (such as corn, rice, inverted sugar, agave, maple syrups) in different percentages (5%, 10%, and 20% respectively) on physicochemical parameters (moisture content, L*, hab,cab, pH, free acidity, electrical conductivity (EC), 5-hydroxymetilfurfural (HMF), fructose, glucose, sucrose, turanose, trehalose, melesitose and raffinose) and impedimetric properties using electrochemical impedance spectroscopy. The impedimetric sensing was made using an electrochemical cell composed of two gold electrodes, and the frequency ranged between 0.1 kHz and 100 kHz. The impedimetric parameters (Z', Z″ and phase) and Randal circuit parameters can distinguish the authentic honeys from the adulterated ones (based on the adulteration agent and adulteration percentage, respectively). The partial least squares - discriminant analysis (PLS-DA) and support vector machines (SVM) were used in a binary mode to separate the authentic honeys from the adulterated ones, and the SVM proved to separate much better than PLS-DA.
Collapse
Affiliation(s)
- Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Florina Dranca
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Sorina Ropciuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| |
Collapse
|
6
|
Arena K, Trovato E, Mangraviti D, Occhiuto C, Rigano F, Occhiuto F, Cacciola F, Mondello L. Metabolomic profiling and antianginal activity of the bark of Sterculia setigera from Mali. J Pharm Biomed Anal 2023; 230:115399. [PMID: 37084664 DOI: 10.1016/j.jpba.2023.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The present work focuses on the phytochemical characterization and evaluation of antianginal activity of the bark of Sterculia setigera. It was collected and authenticated in the African region of Mali, where the local population largely employs this plant for the treatment of several diseases. In the context of traditional or folk medicine and recent progresses in alternative medicine practices, it is essential to expand the knowledge about the chemical composition of such medicinal plants. In this research, a direct-Mass Spectrometry (MS) technique, known as Rapid Evaporative Ionization Mass Spectrometry (REIMS) was used for the identification of the main constituents of the Sterculia setigera bark. The REIMS source is here coupled with an electroknife as sampling device, so that the dried and pulverized bark was directly cut through the electroknife to generate a vapor, which was online transferred to the source via a Venture tube. In this way, an ambient MS approach was realized, which avoids any sample preparation procedure or pretreatment; the sample was analyzed in its native state according to a time-saving analytical process. A quadrupole-time of flight MS/MS analyzer was exploited for the identification process, based on mass accuracy data and MS/MS experiments for structure elucidation purposes. Lipids, including triterpenes, fatty acids, γ-sitosterol and α-tocopherol, and phenolic compounds were identified, some of them reported for the first time in a plant of the Sterculia genus and further confirmed through a gas chromatography-mass spectrometry analysis. The obtained metabolomic profile was successfully correlated to the antianginal activity of this plant.
Collapse
Affiliation(s)
- Katia Arena
- Foundation A. Imbesi c/o University of Messina, I-98168 Messina, Italy; Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Domenica Mangraviti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Cristina Occhiuto
- Foundation A. Imbesi c/o University of Messina, I-98168 Messina, Italy; Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Francesco Occhiuto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128, Rome, Italy
| |
Collapse
|
7
|
Limm W, Karunathilaka SR, Mossoba MM. Fourier transform infrared spectroscopy and chemometrics for the rapid screening of economically motivated adulteration of honey spiked with corn or rice syrup. J Food Prot 2023; 86:100054. [PMID: 37005034 DOI: 10.1016/j.jfp.2023.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Due to its high price, increased consumption, and limited production, honey has been a main target for economically motivated adulteration (EMA). An approach combining Fourier-Transform infrared spectroscopy (FTIR) and chemometrics was evaluated to develop a rapid screening tool to detect potential EMA of honey with either rice or corn syrup. A single-class soft independent modeling of class analogy (SIMCA) model was developed using a diverse set of commercial honey products and an authentic set of honey samples collected at four different U.S. Department of Agriculture (USDA) honey sample collection locations. The SIMCA model was externally validated with a set of calibration-independent authentic honey, typical commercial honey control samples, and those spiked with rice and corn syrups in the 1-16% concentration range. The authentic honey and typical commercial honey test samples were correctly predicted with an 88.3% classification rate. High accuracy was found in predicting the rice and corn syrup spiked samples above the 7% concentration range, yielding 97.6% and 94.8% correct classification rates, respectively. This study demonstrated the potential for a rapid and accurate infrared and chemometrics method that can be used to rapidly screen for either rice or corn adulterants in honey in less than 5 min.
Collapse
Affiliation(s)
- William Limm
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA.
| | - Sanjeewa R Karunathilaka
- University of Maryland, Joint Institute for Food Safety and Applied Nutrition, 2134 Patapsco Building, College Park, MD 20742, USA
| | - Magdi M Mossoba
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA
| |
Collapse
|
8
|
Inactivation of Clostridium Spores in Honey with Supercritical CO2 and in Combination with Essential Oils. Processes (Basel) 2022. [DOI: 10.3390/pr10112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of tens of Clostridium botulinum spores per gram of honey can cause infantile botulism. Thermal treatment is insufficient to inactivate these resistant forms. This study explored the effectiveness of supercritical CO2 (scCO2) on its own and combined with lemon (LEO), clove (CLEO), and cinnamon (CEO) essential oils on the inactivation of Clostridium sporogenes (CECT 553) as a surrogate of Clostridium botulinum. In water, the degree of inactivation at 10 MPa after 60 min increased with the increasing temperature, reducing the population by 90% at 40 °C and by 99.7% at 80 °C. In contrast, when applied to honey, scCO2 did not inactivate Clostridium spores satisfactorily at temperatures below 70 °C, which was related to the protective effect of honey. Meanwhile, scCO2 modified with CEO (<0.4% mass) improved the inactivation degree, with a 1.3-log reduction achieved at 60 °C. With this same mixture, a reduction of 3.7 logs was accomplished in a derivative with 70% moisture. Honey was very sensitive to the temperature of the applied CO2. The obtained product could be used as a novel food, food ingredient, cosmetic, or medicine.
Collapse
|
9
|
Liu T, Wang W, He M, Chen F, Liu J, Yang M, Guo W, Zhang F. Real-time traceability of sorghum origin by soldering iron-based rapid evaporative ionization mass spectrometry and chemometrics. Electrophoresis 2022; 43:1841-1849. [PMID: 35562841 DOI: 10.1002/elps.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Sorghum is an important grain with a high economic value for liquor production. Tracing the geographical origin of sorghum is vital to guarantee the liquor flavor. Soldering iron-based rapid evaporative ionization mass spectrometry (REIMS) combined with chemometrics was developed for the real-time discrimination of the sorghum's geographical origin. The working conditions of soldering iron-based ionization were optimized, and then the obtained MS profiling data were processed using chemometrics analysis methods, including principal component analysis-linear discriminant analysis and orthogonal projection to latent structures discriminant analysis (OPLS-DA). A recognition model was established, and discriminations of sorghum samples from 10 provinces in China were achieved with a correct rate higher than 90%. On the basis of OPLS-DA, the specific ions of m/z 279.2327, 281.2479, and 283.2639 had relatively strong discrimination power for the geographical origins of sorghum. The developed method was successfully applied in the discrimination of sorghum origins. The results indicated that the soldering iron-based REIMS technique combined with chemometrics is a useful tool for direct, fast, and real-time ionization of poor conductivity samples and acquisition of metabolic profiling data.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Wei Wang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, P. R. China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Jialing Liu
- Food Inspection Branch, Guangxi-ASEAN Food Inspection Center, Nanning, P. R. China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
10
|
|
11
|
Cui Y, Ge L, Lu W, Wang S, Li Y, Wang H, Huang M, Xie H, Liao J, Tao Y, Luo P, Ding YY, Shen Q. Real-Time Profiling and Distinction of Lipids from Different Mammalian Milks Using Rapid Evaporative Ionization Mass Spectrometry Combined with Chemometric Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7786-7795. [PMID: 35696488 DOI: 10.1021/acs.jafc.2c01447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The price of mammalian milk from different animal species varies greatly due to differences in their yield and nutritional value. Therefore, the authenticity of dairy products has become a hotspot issue in the market due to the replacement or partial admixture of high-cost milk with its low-cost analog. Herein, four common commercial varieties of milk, including goat milk, buffalo milk, Holstein cow milk, and Jersey cow milk, were successfully profiled and differentiated from each other by rapid evaporative ionization mass spectrometry (REIMS) combined with chemometric analysis. This method was developed as a real-time lipid fingerprinting technique. Moreover, the established chemometric algorithms based on multivariate statistical methods mainly involved principal component analysis, orthogonal partial least squares-discriminant analysis, and linear discriminant analysis as the screening and verifying tools to provide insights into the distinctive molecules constituting the four varieties of milk. The ions with m/z 229.1800, 243.1976, 257.2112, 285.2443, 299.2596, 313.2746, 341.3057, 355.2863, 383.3174, 411.3488, 439.3822, 551.5051, 577.5200, 628.5547, 656.5884, 661.5455, 682.6015, and 684.6146 were selected as potential classified markers. The results of the present work suggest that the proposed method could serve as a reference for recognizing dairy fraudulence related to animal species and expand the application field of REIMS technology.
Collapse
Affiliation(s)
- Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Shitong Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Yunyan Li
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Min Huang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Hujun Xie
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Jie Liao
- Zhejiang Huacai Testing Technology Co., Ltd., Shaoxing, Zhejiang 311800, China
| | - Ye Tao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yin-Yi Ding
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
12
|
Kelis Cardoso VG, Sabin GP, Hantao LW. Rapid evaporative ionization mass spectrometry (REIMS) combined with chemometrics for real-time beer analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1540-1546. [PMID: 35302124 DOI: 10.1039/d2ay00063f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The beer industry plays an important role in the economy since this is the third most consumed beverage worldwide. Efficient analytical methods must be developed to ensure the quality of the product. Rapid evaporative ionization mass spectrometry (REIMS) can provide molecular-level information, while enabling fast analysis. REIMS requires minimal sample preparation and it is ideal for the analysis of homogeneous liquid samples, such as beers, within only five seconds. In this article, 32 different beers were analyzed by REIMS in positive and negative ionization modes using a hybrid quadrupole time-of-flight mass spectrometer. The positive and negative MS spectrum blocks were augmented for data fusion. A predictive model by partial least squares discriminant analysis (PLS-DA) was used to discriminate the samples (i) by their brands and (ii) by the beer type (Premium and Standard American lagers). The results showed that REIMS provided a rich fingerprint of beers, which was successfully used to discriminate the brands and types with 96.9% and 97.9% accuracy, respectively. We believe that this proof-of-concept has great potential to be applied on a larger scale for industrial purposes due to its high-throughput.
Collapse
Affiliation(s)
| | - Guilherme Post Sabin
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, São Paulo, 13083-862, Brazil.
- OpenScience, Office 916, 233 Conceição Street, Campinas, São Paulo, 13010-050, Brazil
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
13
|
Chang Y, Chan LY, Kong F, Zhang G, Peng H. An innovative approach for real-time authentication of cocoa butter using a combination of rapid evaporative ionization mass spectrometry and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Loh LX, Lee HH, Stead S, Ng DH. Manuka honey authentication by a compact atmospheric solids analysis probe mass spectrometer. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Song G, Zhao Q, Dai K, Shui R, Liu M, Chen X, Guo S, Wang P, Wang D, Gong J, Feng J, Shen Q. In Situ Quality Assessment of Dried Sea Cucumber ( Stichopus japonicus) Oxidation Characteristics during Storage by iKnife Rapid Evaporative Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14699-14712. [PMID: 34843234 DOI: 10.1021/acs.jafc.1c05143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sea cucumber (Stichopus japonicus) is one of the most luxurious and nutritious seafoods in Asia. It is always processed into dried products to prevent autolysis, but its quality is easily destructed during storage. Herein, an extremely simplified workflow was established for real-time and in situ quality assessment of dried sea cucumbers (DSCs) during storage based on the lipid oxidation characteristics using an intelligent surgical knife (iKnife) coupled with rapid evaporative ionization mass spectrometry (REIMS). The lipidomic phenotypes of DSCs at different storage times were acquired successfully, which were then processed by multivariate statistical analysis. The results showed that the discrepancy in the characteristic ions in different DSCs was significant (p < 0.05) with high R2(Y) and Q2 values (0.975 and 0.986, respectively). The receiver operating characteristic curve revealed that the ions of m/z 739.5, m/z 831.5, m/z 847.6, and m/z 859.6 were the most specific and characteristic candidate biomarkers for quality assessment of DSCs during accelerated storage. Finally, this method was validated to be qualified in precision (RSDintraday ≤ 9.65% and RSDinterday ≤ 9.36%). In conclusion, the results showed that the well-established iKnife-REIMS method was high-throughput, rapid, and reliable in the real-time quality assessment of DSCs.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 Zhejiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Kanghui Dai
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 Zhejiang, China
| | - Ruofan Shui
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 Zhejiang, China
| | - Miao Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 Zhejiang, China
| | - Xi Chen
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Shunyuan Guo
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 Zhejiang, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023 Zhejiang, China
| | - Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
16
|
Droplet digital polymerase chain reaction (ddPCR) for rapid screening of adulterants in honey: A case study on acacia honey adulterated with canola honey. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Murphy F, Gathercole J, Lee E, Homewood I, Ross AB, Clerens S, Maes E. Discrimination of milk fermented with different starter cultures by MALDI-TOF MS and REIMS fingerprinting. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
He Q, Yang M, Chen X, Yan X, Li Y, He M, Liu T, Chen F, Zhang F. Differentiation between Fresh and Frozen-Thawed Meat using Rapid Evaporative Ionization Mass Spectrometry: The Case of Beef Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5709-5724. [PMID: 33955749 DOI: 10.1021/acs.jafc.0c07942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An intelligent surgical knife (iKnife) coupled with rapid evaporative ionization mass spectrometry (REIMS) was employed for the lipidomic profiling of fresh and frozen-thawed beef muscle. The data were obtained by REIMS and then processed using multivariate statistical analysis methods including principal component analysis-linear discriminant analysis (PCA-LDA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). The discrimination of fresh and frozen-thawed meat has been achieved, and the real-time identification accuracy was 92-100%. Changes in the composition and content of fatty acids and phospholipids were statistically analyzed by OPLS-DA, and the ions of m/z 279.2317, m/z 681.4830, and m/z 697.4882 were selected as differential compounds/metabolites. The developed method was also successfully applied in the discrimination of fresh and frozen-thawed meat samples. These results showed that REIMS as a high-throughput, rapid, and real-time mass spectrometry detection technology can be used for the identification of fresh and frozen-thawed meat samples.
Collapse
Affiliation(s)
- Qichuan He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250014, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250014, China
| | - Xiaoting Yan
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
19
|
Gao H, Lin J, Jia X, Zhao Y, Wang S, Bai H, Ma Q. Real-time authentication of animal species origin of leather products using rapid evaporative ionization mass spectrometry and chemometric analysis. Talanta 2021; 225:122069. [PMID: 33592787 DOI: 10.1016/j.talanta.2020.122069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
Increasing accounts of fraud and persistent labeling problems have brought the authenticity of leather products into question. In this study, we developed an extremely simplified workflow for real-time, in situ, and unambiguous authentication of leather samples using rapid evaporative ionization mass spectrometry (REIMS) coupled with an electric soldering iron. Initially, authentic leather samples from cattle, sheep, pig, deer, ostrich, crocodile, and snake were used to create a chemometric model based on principal component analysis and linear discriminant analysis algorithms. The validated multivariate statistical model was then used to analyze and generate live classifications of commercial leather samples. In addition to REIMS analysis, the microstructures of leathers were characterized by scanning electron microscopy to provide complementary information. The current study is expected to provide a high-throughput tool with superior efficiency and accuracy for authenticating the identity of leathers and other consumer products of biogenic origin.
Collapse
Affiliation(s)
- Haiyan Gao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Inner Mongolia Autonomous Region Institute of Product Quality Inspection, Huhhot 010070, China
| | - Jihong Lin
- Waters Corporation, Beijing 100176, China
| | | | - Yang Zhao
- National Quality Supervision and Testing Center for Leather Products, Beijing 100015, China
| | - Songying Wang
- Inner Mongolia Autonomous Region Institute of Product Quality Inspection, Huhhot 010070, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
20
|
Barlow RS, Fitzgerald AG, Hughes JM, McMillan KE, Moore SC, Sikes AL, Tobin AB, Watkins PJ. Rapid Evaporative Ionization Mass Spectrometry: A Review on Its Application to the Red Meat Industry with an Australian Context. Metabolites 2021; 11:171. [PMID: 33804276 PMCID: PMC8000567 DOI: 10.3390/metabo11030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The red meat supply chain is a complex network transferring product from producers to consumers in a safe and secure way. There can be times when fragmentation can arise within the supply chain, which could be exploited. This risk needs reduction so that meat products enter the market with the desired attributes. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) is a novel ambient mass spectrometry technique originally developed for rapid and accurate classification of biological tissue which is now being considered for use in a range of additional applications. It has subsequently shown promise for a range of food provenance, quality and safety applications with its ability to conduct ex vivo and in situ analysis. These are regarded as critical characteristics for technologies which can enable real-time decision making in meat processing plants and more broadly throughout the sector. This review presents an overview of the REIMS technology, and its application to the areas of provenance, quality and safety to the red meat industry, particularly in an Australian context.
Collapse
Affiliation(s)
- Robert S. Barlow
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Adam G. Fitzgerald
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Joanne M. Hughes
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Kate E. McMillan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Sean C. Moore
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Werribee, VIC 3030, Australia; (S.C.M.); (P.J.W.)
| | - Anita L. Sikes
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Aarti B. Tobin
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Peter J. Watkins
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Werribee, VIC 3030, Australia; (S.C.M.); (P.J.W.)
| |
Collapse
|
21
|
Mangraviti D, Rigano F, Arigò A, Dugo P, Mondello L. Differentiation of Italian extra virgin olive oils by rapid evaporative ionization mass spectrometry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Wang Y, Zhang M, Wang D, Zhang Y, Jiao X, Liu Y. Development of a real-time LAMP assay for monofloral honey authentication using rape honey. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1749135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Meng Zhang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Yongqing Zhang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Xuexue Jiao
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, USA
| |
Collapse
|
23
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Xue J, Shen Q. Real-time assessing the lipid oxidation of prawn (Litopenaeus vannamei) during air-frying by iKnife coupling rapid evaporative ionization mass spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Song G, Wang H, Zhang M, Zhang Y, Wang H, Yu X, Wang J, Shen Q. Real-Time Monitoring of the Oxidation Characteristics of Antarctic Krill Oil ( Euphausia superba) during Storage by Electric Soldering Iron Ionization Mass Spectrometry-Based Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1457-1467. [PMID: 31931568 DOI: 10.1021/acs.jafc.9b07370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antarctic krill oil (AKO) is susceptible to oxidation due to the high unsaturation degree of bioactive substances. Herein, a lipidomics method for in situ monitoring of the dynamic oxidation characteristics in AKO was explored based on electric soldering iron ion source (ESII) coupling with rapid evaporative ionization mass spectrometry (REIMS). The lipidomics profiles of AKO at different storage periods were successfully acquired. On the basis of principal component analysis and orthogonal partial least-squares analysis, the obtained REIMS data were employed to build a multivariate recognition model. The ions of m/z 707.50, 721.50, 833.49, and 837.54 contributed the most significant effect on the multivariate data model for the authentication of different AKO samples. Besides, the variation of viscosity, astaxanthin, and volatile compounds were also evaluated to corroborate the oxidation characteristics. The results indicated that the ESII-REIMS technology could be applied as an advanced rapid detection method to secure oil and fat quality during storage.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Mengna Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Yanping Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Jie Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| |
Collapse
|
25
|
Miao LL, Zhou QM, Peng C, Meng CW, Wang XY, Xiong L. Discrimination of the Geographical Origin of the Lateral Roots of Aconitum carmichaelii Using the Fingerprint, Multicomponent Quantification, and Chemometric Methods. Molecules 2019; 24:E4124. [PMID: 31739601 PMCID: PMC6891363 DOI: 10.3390/molecules24224124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022] Open
Abstract
Fuzi is a well-known traditional Chinese medicine developed from the lateral roots of Aconitum carmichaelii Debx. It is rich in alkaloids that display a wide variety of bioactivities, and it has a strong cardiotoxicity and neurotoxicity. In order to discriminate the geographical origin and evaluate the quality of this medicine, a method based on high-performance liquid chromatography (HPLC) was developed for multicomponent quantification and chemical fingerprint analysis. The measured results of 32 batches of Fuzi from three different regions were evaluated by chemometric analysis, including similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA), and linear discriminant analysis (LDA). The content of six representative alkaloids of Fuzi (benzoylmesaconine, benzoylhypaconine, benzoylaconine, mesaconitine, hypaconitine, and aconitine) were varied by geographical origin, and the content ratios of the benzoylmesaconine/mesaconitine and diester-type/monoester-type diterpenoid alkaloids may be potential traits for classifying the geographical origin of the medicine. In the HPLC fingerprint similarity analysis, the Fuzi from Jiangyou, Sichuan, was distinguished from the Fuzi from Butuo, Sichuan, and the Fuzi from Yunnan. Based on the HCA and PCA analyses of the content of the six representative alkaloids, all of the batches were classified into two categories, which were closely related to the plants' geographical origins. The Fuzi samples from Jiangyou were placed into one category, while the Fuzi samples from Butuo and Yunnan were put into another category. The LDA analysis provided an efficient and satisfactory prediction model for differentiating the Fuzi samples from the above-mentioned three geographical origins. Thus, the content of the six representative alkaloids and the fingerprint similarity values were useful markers for differentiating the geographical origin of the Fuzi samples.
Collapse
Affiliation(s)
- Lu-Lin Miao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.-L.M.); (Q.-M.Z.); (C.-W.M.); (X.-Y.W.)
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin-Mei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.-L.M.); (Q.-M.Z.); (C.-W.M.); (X.-Y.W.)
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.-L.M.); (Q.-M.Z.); (C.-W.M.); (X.-Y.W.)
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Wang Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.-L.M.); (Q.-M.Z.); (C.-W.M.); (X.-Y.W.)
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Ya Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.-L.M.); (Q.-M.Z.); (C.-W.M.); (X.-Y.W.)
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.-L.M.); (Q.-M.Z.); (C.-W.M.); (X.-Y.W.)
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|