1
|
Aafria S, Sharma M. Next-generation electrochemical biosensors for acrylamide: Progress, challenges, and opportunities. Anal Biochem 2025; 700:115798. [PMID: 39894141 DOI: 10.1016/j.ab.2025.115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Acrylamide is a hazardous substance present in heat-processed food products and industrial wastewater. It is carcinogenic and neurotoxic and therefore emphasises the importance of monitoring its levels and the need for sensitive and accurate detection techniques. Electrochemical biosensing has emerged as a potential analytical method for detecting acrylamide. This article provides a comprehensive overview of the most recent developments in electrochemical biosensing methods, including amperometric, potentiometric, and impedimetric biosensors for acrylamide detection. The creation and use of novel biorecognition components, such as enzymes, antibodies, and molecularly imprinted polymers that enhance the sensitivity and specificity of acrylamide monitoring, are given special attention. Incorporating nanomaterials such as carbon-based nanomaterials and metallic nanoparticles was investigated for its potential to improve the sensors' electrochemical characteristics and overall efficacy. The potential of electrochemical biosensors for acrylamide detection is further illustrated, showcasing their effectiveness in a range of matrices in different food products. This review aims to inform researchers about the latest technological developments, trends, and future directions in electrochemical biosensing for acrylamide detection. The study highlights the significance of ongoing research and cooperation in creating efficient biosensing systems to protect public health and the environment by thoroughly examining current technology and pointing out areas for improvement.
Collapse
Affiliation(s)
- Shatrughan Aafria
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Bounegru AV, Bounegru I. Acrylamide in food products and the role of electrochemical biosensors in its detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2824-2839. [PMID: 38669134 DOI: 10.1039/d4ay00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In this review, the mechanisms of acrylamide formation in food, along with aspects related to its toxicity and associated consumption risks, are investigated, highlighting the potential impact on human health. European regulations regarding acrylamide content in food products are also addressed, emphasizing the importance of monitoring and detecting this substance in nutrition, by public health protection measures. The primary objective of the research is to explore and analyze innovative methods for detecting acrylamide in food, with a particular focus on electrochemical biosensors. This research direction is motivated by the need to develop rapid, sensitive, and efficient monitoring techniques for this toxic compound in food products, considering the associated consumption risks. The research has revealed several significant results. Studies have shown that electrochemical biosensors based on hemoglobin exhibited increased sensitivity and low detection limits, capable of detecting very low concentrations of acrylamide in processed foods. Additionally, it has been found that the use of functionalized nanomaterials, such as carbon nanotubes and gold nanoparticles, has led to the improvement of electrochemical biosensor performance in acrylamide detection. The integration of these technological innovations and functionalization strategies has enhanced the sensitivity, specificity, and stability of biosensors in measuring acrylamides. Thus, the results of this research offer promising perspectives for the development of precise and efficient methods for monitoring acrylamides in food, contributing to the improvement of food quality control and the protection of consumer health.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania.
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| |
Collapse
|
3
|
Govindaraju I, Sana M, Chakraborty I, Rahman MH, Biswas R, Mazumder N. Dietary Acrylamide: A Detailed Review on Formation, Detection, Mitigation, and Its Health Impacts. Foods 2024; 13:556. [PMID: 38397533 PMCID: PMC10887767 DOI: 10.3390/foods13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In today's fast-paced world, people increasingly rely on a variety of processed foods due to their busy lifestyles. The enhanced flavors, vibrant colors, and ease of accessibility at reasonable prices have made ready-to-eat foods the easiest and simplest choice to satiate hunger, especially those that undergo thermal processing. However, these foods often contain an unsaturated amide called 'Acrylamide', known by its chemical name 2-propenamide, which is a contaminant formed when a carbohydrate- or protein-rich food product is thermally processed at more than 120 °C through methods like frying, baking, or roasting. Consuming foods with elevated levels of acrylamide can induce harmful toxicity such as neurotoxicity, hepatoxicity, cardiovascular toxicity, reproductive toxicity, and prenatal and postnatal toxicity. This review delves into the major pathways and factors influencing acrylamide formation in food, discusses its adverse effects on human health, and explores recent techniques for the detection and mitigation of acrylamide in food. This review could be of interest to a wide audience in the food industry that manufactures processed foods. A multi-faceted strategy is necessary to identify and resolve the factors responsible for the browning of food, ensure safety standards, and preserve essential food quality traits.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Maidin Sana
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Rajib Biswas
- Department of Physics, Tezpur University, Tezpur 784028, Assam, India;
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| |
Collapse
|
4
|
Tajik S, Sharifi F, Aflatoonian B, Mohammadi SZ. An Efficient Electrochemical Sensor Based on NiCo 2O 4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen. BIOSENSORS 2023; 13:814. [PMID: 37622900 PMCID: PMC10452330 DOI: 10.3390/bios13080814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Based on the modification of carbon paste electrode with NiCo2O4 nanoplates and 1-hexyl-3-methylimidazolium tetrafluoroborate, a new electrochemical sensing platform for the sensing of favipiravir (a drug with potential therapeutic efficacy in treating COVID-19 patients) in the presence of acetaminophen was prepared. For determining the electrochemical behavior of favipiravir, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry have been utilized. When compared to the unmodified carbon paste electrode, the results of the cyclic voltammetry showed that the proposed NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had excellent catalytic activity for the oxidation of the favipiravir in phosphate buffer solution (pH = 7.0). This was due to the synergistic influence of 1-hexyl-3-methylimidazolium tetrafluoroborate (ionic liquid) and NiCo2O4 nanoplates. In the optimized conditions of favipiravir measurement, NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had several benefits, such as a wide dynamic linear between 0.004 and 115.0 µM, a high sensitivity of 0.1672 µA/µM, and a small limit of detection of 1.0 nM. Furthermore, the NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode sensor presented a good capability to investigate the favipiravir and acetaminophen levels in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran;
| |
Collapse
|
5
|
A dual-recognition-controlled electrochemical biosensor for selective and ultrasensitive detection of acrylamide in heat-treated carbohydrate-rich food. Food Chem 2023; 413:135666. [PMID: 36796261 DOI: 10.1016/j.foodchem.2023.135666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
A synergistic hybrid was fabricated for the electrochemical aptasensing of acrylamide (AAM) via molecularly imprinted technology. The aptasensor depends on the modification of glassy carbon electrode with AuNPs and reduced graphene oxide (rGO)/multiwalled carbon nanotubes (MWCNTs) {Au@rGO-MWCNTs/GCE}. The aptamer (Apt-SH) and AAM (template) were incubated with the electrode. After that, the monomer was electro-polymerized to fabricate molecular imprinted polymeric film (MIP) over the surface of Apt-SH/Au@rGO/MWCNTs/GCE. The modified electrodes were characterized using different morphological and electrochemical techniques. Under optimum conditions, the aptasensor exhibited a linear relationship between AAM concentration and anodic peak current difference (ΔIpa) in the range of 1-600 nM with a limit of quantitation (LOQ, S/N = 10) and a limit of detection (LOD, S/N = 3) of 0.346 and 0.104 nM, respectively. The aptasensor was successfully applied for the determination of AAM in potato fries samples with recoveries % in the range of 98.7-103.4 % and RSDs did not exceed 3.2 %. The advantages of MIP/Apt-SH/Au@rGO/MWCNTs/GCE are low detection limit, high selectivity, and satisfactory stability towards AAM detection.
Collapse
|
6
|
Xin T, Chen W, Wang NSZ. Synthesis of Poly(methacrylic acid)/functionalized Carbon Nanotubes Nanocomposite Modified Electrode for Electrochemical Sensitive Determination of Acrylamide in Food Sample. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Preparation and properties of hemoglobin (Hb)-imprinted poly (ionic liquid)s via seATRP in only 5 μL Volumes. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
9
|
Gan Z, Zhang W, Arslan M, Hu X, Zhang X, Li Z, Shi J, Zou X. Ratiometric Fluorescent Metal-Organic Framework Biosensor for Ultrasensitive Detection of Acrylamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10065-10074. [PMID: 35939824 DOI: 10.1021/acs.jafc.2c04756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acrylamide is a neurotoxin and carcinogen that forms during the thermal processing of food, inflicting irreversible harm to human health. Herein, a ratiometric fluorescence biosensor based on a 6-carboxyfluorescein-labeled aptamer (FAM-ssDNA) and porphyrin metal-organic framework (PCN-224) was developed. PCN-224 exhibits strong adsorption capacity for FAM-ssDNA and also quenches the fluorescence of FAM-ssDNA via fluorescence resonance energy transfer and photoinduced electron transfer. FAM-ssDNA hybridizes with complementary DNA to form double-stranded DNA (FAM-dsDNA), which is liberated from the PCN-224 surface, resulting in fluorescence recovery. However, the intrinsic fluorescence of the ligand remains unchanged. Acrylamide can create an adduct with FAM-ssDNA and inhibit the hybridization of FAM-dsDNA, thus realizing ratiometric sensing of acrylamide. The proposed biosensor displays excellent detection performance from 10 nM∼0.5 mM with a limit of detection of 1.9 nM. In conclusion, a fabricated biosensor was successfully applied to detect acrylamide in thermally processed food, and the results were consistent with those of high-performance liquid chromatography.
Collapse
Affiliation(s)
- Ziyu Gan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China
| |
Collapse
|
10
|
Liu Y, Meng S, Qin J, Zhang R, He N, Jiang Y, Chen H, Li N, Zhao Y. A fluorescence biosensor based on double-stranded DNA and a cationic conjugated polymer coupled with exonuclease III for acrylamide detection. Int J Biol Macromol 2022; 219:346-352. [PMID: 35934078 DOI: 10.1016/j.ijbiomac.2022.07.251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
As a toxic substance on human health produced in food thermal treatment, simple analytical approaches are highly desired for the detection of acrylamide (ACR) in foods. With the aid of exonuclease III (Exo III), a simple fluorescence sensor was proposed based on carboxyfluorescein-labeled double-stranded DNA (FAM-dsDNA) and a cationic conjugated polymer (PFP). Fluorescence resonance energy transfer (FRET) efficiency between FAM and PFP was changed with and without ACR. When ACR was present, ACR and single-stranded DNA (P1, ssDNA) formed an adduct, allowing free FAM-labeled complementarity strand DNA (P2, FAM-csDNA) to appear in the solution and avoiding the digestion of P2 by Exo III. After the addition of PFP, the interaction of PFP and FAM induced strong FRET. Under optimized conditions, ACR was detected with a limit of detection (LOD) of 0.16 μM. According to this biosensor, a LOD of 1.3 μM in water extract samples was observed with a good recovery rate (95-110 %).
Collapse
Affiliation(s)
- Yufei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Suyu Meng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jingjing Qin
- School of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453513, PR China
| | - Ruiying Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ningning He
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, PR China
| | - Yaoyao Jiang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hong Chen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Na Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang 453003, PR China
| |
Collapse
|
11
|
Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Tarahomi S, Rounaghi GH, Daneshvar L, Eftekhari M. A Carbon Ionic Liquid Paste Sensor Modified with Lanthanum Nanorods /MWCNTs/Nafion Hybrid Composite for Carbamazepine Screening in Biological and Pharmaceutical Media. ChemistrySelect 2021. [DOI: 10.1002/slct.202102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Somayeh Tarahomi
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | | | - Leili Daneshvar
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Eftekhari
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
13
|
Khalil S, El-Beltagy A, El-Sharnouby M. Potent Acrylamide Determination in Food Products Using Ion-Selective Electrode Technique. MEMBRANES 2021; 11:membranes11080645. [PMID: 34436408 PMCID: PMC8398482 DOI: 10.3390/membranes11080645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
A potent selective acrylamide liquid sensor based on the reaction of acrylamide with 2-(5-Bromo-2-pyridylazo)-5-[N-n-Propyl-N-(3-Sulfopropyl) amino] aniline reagent is successfully designed. The characteristics slope (52.33 mV/decade), linearity usable range from 1.0 × 10−7–1.0 × 10−1 molar, limit of detection (1.6 × 10−8) molar, selectivity attitude to several inorganic cations, amino acids and sugars, time of response (8 s), lifetime (four months), pH effect on the electrode potential and the basic validation parameters were studied. The desirable pH applicable range was 3.0–6.5, and the restraint of the developed sensor is independent on this working pH range. The deployed electrode was effectively applied for rapid inexpensive analysis of acrylamide cations in food products with comparison to high-performance liquid chromatographic method and the results were agreeable with each other. The obtained data by the suggested electrode were treated statistically and compared with the various recently published acrylamide sensors.
Collapse
Affiliation(s)
- Sabry Khalil
- Department of Food Nutrition Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: or
| | - Alaa El-Beltagy
- Department of Food Nutrition Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed El-Sharnouby
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
14
|
Rong Y, Ali S, Ouyang Q, Wang L, Wang B, Chen Q. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition. Food Chem 2021; 351:129215. [DOI: 10.1016/j.foodchem.2021.129215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
|
15
|
A simple and low-cost sample preparation for the effective extraction, purification and enrichment of aflatoxins in wheat by combining with ionic liquid-based dispersive liquid–liquid microextraction. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Rayappa MK, Viswanathan PA, Rattu G, Krishna PM. Nanomaterials Enabled and Bio/Chemical Analytical Sensors for Acrylamide Detection in Thermally Processed Foods: Advances and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4578-4603. [PMID: 33851531 DOI: 10.1021/acs.jafc.0c07956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrylamide, a food processing contaminant with demonstrated genotoxicity, carcinogenicity, and reproductive toxicity, is largely present in numerous prominent and commonly consumed food products that are produced by thermal processing methods. Food regulatory bodies such as the U.S. Food and Drug Administration (U.S. FDA) and European Union Commission regulations have disseminated various acrylamide mitigation strategies in food processing practices. Hence, in the wake of such food and public health safety efforts, there is a rising demand for economic, rapid, and portable detection and quantification methods for these contaminants. Since conventional quantification techniques like liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods are expensive and have many drawbacks, sensing platforms with various transduction systems have become an efficient alternative tool for quantifying various target molecules in a wide variety of food samples. Therefore, this present review discusses in detail the state of robust, nanomaterials-based and other bio/chemical sensor fabrication techniques, the sensing mechanism, and the selective qualitative and quantitative measurement of acrylamide in various food materials. The discussed sensors use analytical measurements ranging from diverse and disparate optical, electrochemical, as well as piezoelectric methods. Further, discussions about challenges and also the potential development of the lab-on-chip applications for acrylamide detection and quantification are entailed at the end of this review.
Collapse
Affiliation(s)
- Mirinal Kumar Rayappa
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Priyanka A Viswanathan
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Gurdeep Rattu
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - P Murali Krishna
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| |
Collapse
|
17
|
Esokkiya A, Sudalaimani S, Sanjeev Kumar K, Sampathkumar P, Suresh C, Giribabu K. Poly(methylene blue)-Based Electrochemical Platform for Label-Free Sensing of Acrylamide. ACS OMEGA 2021; 6:9528-9536. [PMID: 33869933 PMCID: PMC8047665 DOI: 10.1021/acsomega.0c06315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
The present work reports the electrochemical sensing of acrylamide (AM) using a poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) where PMB functions as an electrochemical reporter. PMB was prepared by electrochemical polymerization of methylene blue. Electrochemical sensing of AM was facilitated by the interaction between AM and PMB. Further the interaction between AM and PMB was investigated using ultraviolet-visible (UV-vis) spectroscopy and Raman analysis. The surface morphology was confirmed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) analyses. PMB/GCE was further characterized by X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was assessed using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry analysis showed a decrease in current at the redox center of PMB upon addition of AM. The association constant and binding number of AM with PMB/GCE were calculated using differential pulse voltammetry and found to be 8.9 × 106 M-1 and 0.64 (∼1), respectively. The results indicated a strong interaction of AM on the PMB/GCE surface. Further, chronocoulometry analysis of PMB/GCE in the presence of AM showed a decrease in charge due to the interaction of AM with PMB. Under optimized conditions, PMB/GCE exhibited a decrease in current proportional to the concentration of AM in the range of 0.025-16 μM with sensitivity and detection limit 0.252 μA nM-1 and 0.13 nM, respectively. Real sample analysis was carried out by the standard addition method using the solution extracted from potato chips.
Collapse
Affiliation(s)
- Anthonysamy Esokkiya
- Electrodics
and Electrocatalysis Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudalaimuthu Sudalaimani
- Electrodics
and Electrocatalysis Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kannan Sanjeev Kumar
- Electrodics
and Electrocatalysis Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prakasam Sampathkumar
- Electrodics
and Electrocatalysis Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinnathambi Suresh
- Electrodics
and Electrocatalysis Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishnan Giribabu
- Electrodics
and Electrocatalysis Division, Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- ,
| |
Collapse
|
18
|
Li Y, Li Y, Wang Y, Ma G, Liu X, Li Y, Soar J. Application of zeolitic imidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
A simple one-step transferred sample preparation for effective purification and extraction of auramine O in bean product by combining air-assisted ionic liquid-based dispersive liquid-liquid microextraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Zhao D, Zhang Y, Ji S, Lu Y, Bai X, Yin M, Huang C, Jia N. Molecularly imprinted photoelectrochemical sensing based on ZnO/polypyrrole nanocomposites for acrylamide detection. Biosens Bioelectron 2020; 173:112816. [PMID: 33221506 DOI: 10.1016/j.bios.2020.112816] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/21/2023]
Abstract
A highly sensitive quenching molecular imprinting (MIP) photoelectrochemical (PEC) sensor was proposed to detect acrylamide (AM) by using the photoactive composite of ZnO and polypyrrole (PPy) as the PEC signal probe. ZnO, with high electron mobility, excellent chemical and thermal stability as well as good biocompatibility, was selected as the photoelectrically active material. A polypyrrole film was formed on the nanodisk ZnO by electrochemical polymerization, and the recognition site of AM was left on the surface of the PPy film by elution, enabling the specific detection of AM. The transfer of electrons will be hindered when AM is adsorbed on the ZnO/PPy nanocomposites surface, which results in the decrease of photocurrent signal. The proposed molecularly imprinted PEC sensor exhibits significant detection performance of AM in the range of 10-1 M-2.5 × 10-9 M with a LOD of 2.147 × 10-9 M (S/N = 3). The use of photoelectrochemical technology combined with molecular imprinting technology enables the PEC sensor to have excellent selectivity, superior repeatability, preferable stability, low cost, and easy construction, providing a new method for the detection of AM. The high recovery rate in the detection of real samples of potato chips and biscuits indicates that the proposed PEC sensor has potential in monitoring the emerging food safety risks.
Collapse
Affiliation(s)
- Danyang Zhao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yao Zhang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Shaowei Ji
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yao Lu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Xinyu Bai
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Mengting Yin
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China.
| |
Collapse
|
21
|
Navarro KM, Silva JC, Ossick MV, Nogueira AB, Etchegaray A, Mendes RK. Low-Cost Electrochemical Determination of Acrylamide in Processed Food Using a Hemoglobin – Iron Magnetic Nanoparticle – Chitosan Modified Carbon Paste Electrode. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1795668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kamily M. Navarro
- Faculdade de Química, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Jocimara C. Silva
- Faculdade de Química, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Marina Vian Ossick
- Faculdade de Química, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Alessandra B. Nogueira
- Faculdade de Química, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Augusto Etchegaray
- Faculdade de Química, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Renata K. Mendes
- Faculdade de Química, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| |
Collapse
|
22
|
Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y, Boddula R, Huang Y. Electrochemical (bio) sensors go green. Biosens Bioelectron 2020; 163:112270. [PMID: 32568692 DOI: 10.1016/j.bios.2020.112270] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
Electrochemical (bio) sensors are now widely acknowledged as a sensitive detection tool for disease diagnosis as well as the detection of numerous species of pharmaceutical, clinical, industrial, food, and environmental origin. The term 'green' demonstrates the development of electrochemical (bio) sensing platforms utilizing biodegradable and sustainable materials. Development of green sensing platforms is one of the most active areas of research minimizing the use of toxic/hazardous reagents and solvent systems, thereby further reducing the production of chemical wastes in sensor fabrication. The present review includes green electrochemical (bio) sensors which are based on firstly, green sensors comprising natural and non-hazardous materials (e.g., paper/clay/zeolites/biowastes), secondly sensors based on nanomaterials synthesized by green methods and lastly sensors constituting green solvents (e.g., ionic liquids/deep eutectic solvents). Electrochemical performances of such green sensors and their benefits such as biodegradability, non-toxicity, sustainability, low-cost, sensitive surfaces, etc. Have been discussed for quantification of various target analytes. Associated challenges, possible solutions, and opportunities towards fabricating green electrochemical sensors and biosensors have been provided in the conclusion section.
Collapse
Affiliation(s)
- Pramod K Kalambate
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhixiang Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Dhanjai
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Alberta, T5B 4E4, Canada
| | - Jingyi Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yue Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Rajender Boddula
- Chinese Academy of Sciences (CAS), Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Centre for Nanoscience and Technology, Beijing, 100190, PR China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|