1
|
Wang P, Liang L, Peng X, Qu T, Zhao X, Ji Q, Chen Y. Sodium Deoxycholate-Propidium Monoazide Droplet Digital PCR for Rapid and Quantitative Detection of Viable Lacticaseibacillus rhamnosus HN001 in Compound Probiotic Products. Microorganisms 2024; 12:1504. [PMID: 39203347 PMCID: PMC11356422 DOI: 10.3390/microorganisms12081504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
As a famous probiotic, Lacticaseibacillus rhamnosus HN001 is widely added to probiotic products. Different L. rhamnosus strains have different probiotic effects, and the active HN001 strain is the key to exerting probiotic effects, so it is of great practical significance for realising the detection of L. rhamnosus HN001 at the strain level in probiotic products. In this study, strain-specific primer pairs and probes were designed. A combined treatment of sodium deoxycholate (SD) and propidium monoazide (PMA) inhibited the amplification of dead bacterial DNA, establishing a SD-PMA-ddPCR system and conditions for detecting live L. rhamnosus HN001 in probiotic powders. Specificity was confirmed using type strains and commercial strains. Sensitivity tests with spiked samples showed a detection limit of 10⁵ CFU/g and a linear quantification range of 1.42 × 10⁵-1.42 × 10⁹ CFU/g. Actual sample testing demonstrated the method's efficiency in quantifying HN001 in compound probiotic products. This method offers a reliable tool for the rapid and precise quantification of viable L. rhamnosus HN001, crucial for the quality monitoring of probiotic products.
Collapse
Affiliation(s)
- Ping Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| | - Lijiao Liang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinkai Peng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tianming Qu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiaomei Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| | - Qinglong Ji
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| |
Collapse
|
2
|
Hou Y, Liu X, Wang Y, Guo L, Wu L, Xia W, Zhao Y, Xing W, Chen J, Chen C. Establishment and application of a rapid visualization method for detecting Vibrio parahaemolyticus nucleic acid. INFECTIOUS MEDICINE 2024; 3:100111. [PMID: 38948389 PMCID: PMC11214178 DOI: 10.1016/j.imj.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 04/07/2024] [Indexed: 07/02/2024]
Abstract
Background Swift and accurate detection of Vibrio parahaemolyticus, which is a prominent causative pathogen associated with seafood contamination, is required to effectively combat foodborne disease and wound infections. The toxR gene is relatively conserved within V. parahaemolyticus and is primarily involved in the expression and regulation of virulence genes with a notable degree of specificity. The aim of this study was to develop a rapid, simple, and constant temperature detection method for V. parahaemolyticus in clinical and nonspecialized laboratory settings. Methods In this study, specific primers and CRISPR RNA were used to target the toxR gene to construct a reaction system that combines recombinase polymerase amplification (RPA) with CRISPR‒Cas13a. The whole-genome DNA of the sample was extracted by self-prepared sodium dodecyl sulphate (SDS) nucleic acid rapid extraction reagent, and visual interpretation of the detection results was performed by lateral flow dipsticks (LFDs). Results The specificity of the RPA-CRISPR/Cas13a-LFD method was validated using V. parahaemolyticus strain ATCC-17802 and six other non-parahaemolytic Vibrio species. The results demonstrated a specificity of 100%. Additionally, the genomic DNA of V. parahaemolyticus was serially diluted and analysed, with a minimum detectable limit of 1 copy/µL for this method, which was greater than that of the TaqMan-qPCR method (102 copies/µL). The established methods were successfully applied to detect wild-type V. parahaemolyticus, yielding results consistent with those of TaqMan-qPCR and MALDI-TOF MS mass spectrometry identification. Finally, the established RPA-CRISPR/Cas13a-LFD method was applied to whole blood specimens from mice infected with V. parahaemolyticus, and the detection rate of V. parahaemolyticus by this method was consistent with that of the conventional PCR method. Conclusions In this study, we describe an RPA-CRISPR/Cas13a detection method that specifically targets the toxR gene and offers advantages such as simplicity, rapidity, high specificity, and visual interpretation. This method serves as a valuable tool for the prompt detection of V. parahaemolyticus in nonspecialized laboratory settings.
Collapse
Affiliation(s)
- Yachao Hou
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing 100048, China
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Xinping Liu
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ya'nan Wang
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing 100048, China
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Liang Guo
- Bioinformatics Center, AMMS, Beijing 100089, China
| | - Lvying Wu
- Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Wenrong Xia
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jin Chen
- Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Changguo Chen
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing 100048, China
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
3
|
Wu S, Sheng L, Kou G, Tian R, Ye Y, Wang W, Sun J, Ji J, Shao J, Zhang Y, Sun X. Double phage displayed peptides co-targeting-based biosensor with signal enhancement activity for colorimetric detection of Staphylococcus aureus. Biosens Bioelectron 2024; 249:116005. [PMID: 38199079 DOI: 10.1016/j.bios.2024.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of simple, fast, sensitive, and specific strategies for the detection of foodborne pathogenic bacteria is crucial for ensuring food safety and promoting human health. Currently, detection methods for Staphylococcus aureus still suffer from issues such as low specificity and low sensitivity. To address this problem, we proposed a sensitivity enhancement strategy based on double phage-displayed peptides (PDPs) co-targeting. Firstly, we screened two PDPs and analyzed their binding mechanisms through fluorescent localization, pull-down assay, and molecular docking. The two PDPs target S. aureus by binding to specific proteins on its outer membrane. Based on this phenomenon, a convenient and sensitive double PDPs colorimetric biosensor was developed. Double thiol-modified phage-displayed peptides (PDP-SH) enhance the aggregation of gold nanoparticles (AuNPs), whereas the specific interaction between the double PDPs and bacteria inhibits the aggregation of AuNPs, resulting in an increased visible color change before and after the addition of bacteria. This one-step colorimetric approach displayed a high sensitivity of 2.35 CFU/mL and a wide detection range from 10-2 × 108 CFU/mL. The combination with smartphone-based image analysis improved the portability of this method. This strategy achieves the straightforward, highly sensitive and portable detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Shang Wu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Guocheng Kou
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jingdong Shao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
4
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
5
|
Di Salvo E, Panebianco F, Panebianco A, Ziino G. Quantitative Detection of Viable but Nonculturable Vibrio parahaemolyticus in Frozen Bivalve Molluscs. Foods 2023; 12:2373. [PMID: 37372584 DOI: 10.3390/foods12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Antonio Panebianco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Graziella Ziino
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
6
|
Hu YQ, Wang WY, Turmidzi F, Li FX, Fang LF, Zhou ZH, Zhang DF. Rapid and simultaneous detection of viable Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae by PMA-mPCR assay in aquatic products. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Zhou H, Liu X, Lu Z, Hu A, Ma W, Shi C, Bie X, Cheng Y, Wu H, Yang J. Quantitative detection of Vibrio parahaemolyticus in aquatic products by duplex droplet digital PCR combined with propidium monoazide. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zeng D, Qian B, Li Y, Zong K, Peng W, Liao K, Yu X, Sun J, Lv X, Ding L, Wang M, Zhou T, Jiang Y, Li J, Xue F, Wu X, Dai J. Prospects for the application of infectious virus detection technology based on propidium monoazide in African swine fever management. Front Microbiol 2022; 13:1025758. [PMID: 36246220 PMCID: PMC9563241 DOI: 10.3389/fmicb.2022.1025758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a hemorrhagic and often fatal disease occurring in domestic pigs and wild boars. ASF can potentially greatly impact the global trade of pigs and pork products and threaten global food security. Outbreaks of ASF must be notified to the World Organization for Animal Health. In this study, we analyzed the feasibility of applying propidium monoazide (PMA) pretreatment-based infectious virus detection technology to ASF prevention and control and investigated the prospects of applying this technology for epidemic monitoring, disinfection effect evaluation, and drug development. PMA as a nucleic acid dye can enter damaged cells and undergo irreversible covalent crosslinking with nucleic acid under halogen light to prevent its amplification. Although this technology has been widely used for the rapid detection of viable bacteria, its application in viruses is rare. Therefore, we analyzed the theoretical feasibility of applying this technology to the African swine fever virus (ASFV) in terms of gene and cell composition. Rapid infectious ASFV detection technology based on PMA pretreatment would greatly enhance all aspects of ASF prevention and control, such as epidemic monitoring, disinfection treatment, and drug development. The introduction of this technology will also greatly improve the ability to prevent and control ASF.
Collapse
Affiliation(s)
- Dexin Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
- Technical Center of Hefei Customs, Hefei, China
| | - Bingxu Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Yunfei Li
- Technical Center of Hefei Customs, Hefei, China
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, China
| | - Kai Zong
- Technical Center of Hefei Customs, Hefei, China
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, China
| | - Wanqing Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Kai Liao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Xiaofeng Yu
- Technical Center of Hefei Customs, Hefei, China
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, China
| | | | - Xiaying Lv
- Technical Center of Hefei Customs, Hefei, China
| | - Liu Ding
- Technical Center of Hefei Customs, Hefei, China
| | - Manman Wang
- Technical Center of Hefei Customs, Hefei, China
| | | | - Yuan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs, Nanjing, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
- *Correspondence: Feng Xue,
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Qingdao, China
- *Correspondence: Feng Xue,
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Lv X, Cao W, Zhang H, Zhang Y, Shi L, Ye L. CE-RAA-CRISPR Assay: A Rapid and Sensitive Method for Detecting Vibrio parahaemolyticus in Seafood. Foods 2022; 11:foods11121681. [PMID: 35741880 PMCID: PMC9223090 DOI: 10.3390/foods11121681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Vibrio parahaemolyticus is one of the major pathogenic Vibrio species that contaminate seafood. Rapid and accurate detection is crucial for avoiding foodborne diseases caused by pathogens and is important for food safety management and mariculture. In this study, we established a system that combines chemically enhanced clustered regularly interspaced short palindromic repeats (CRISPR) and recombinase-aided amplification (RAA) (CE–RAA–CRISPR) for detecting V. parahaemolyticus in seafood. The method combines RAA with CRISPR-associated protein 12a (Cas12a) for rapid detection in a one-pot reaction, effectively reducing the risk of aerosol contamination during DNA amplifier transfer. We optimized the primers for V. parahaemolyticus, determined the optimal crRNA/Cas12a ratio, and demonstrated that chemical additives (bovine serum albumin and L-proline) could enhance the detection capacity of Cas12a. The limit of detection (at optimal conditions) was as low as 6.7 × 101 CFU/mL in pure cultures and 7.3 × 101 CFU/g in shrimp. Moreover, this method exhibited no cross-reactivity with other microbial pathogens. The CE–RAA–CRISPR assay was compared with the quantitative polymerase chain reaction assay using actual food samples, and it showed 100% diagnostic agreement.
Collapse
Affiliation(s)
- Xinrui Lv
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Weiwei Cao
- College of Food and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China;
| | - Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Yilin Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
- Correspondence:
| |
Collapse
|
10
|
Yuan N, Yang H, Zhang Y, Xu H, Lu X, Xu H, Zhang W. Development of real‐time fluorescence saltatory rolling circle amplification for rapid detection of
Vibrio parahaemolyticus
in seafood. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Yuan
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
| | - Haoyu Yang
- Department of Sports Work Hebei Agricultural University Baoding 071001 China
| | - Yunzhe Zhang
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Hancong Xu
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Xin Lu
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
| | - Hui Xu
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
| | - Wei Zhang
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
- College of Life Sciences Hebei Agricultural University Baoding 071001 China
| |
Collapse
|
11
|
Zhu W, Gao J, Liu H, Liu J, Jin T, Qin N, Ren X, xia X. Antibiofilm effect of sodium butyrate against Vibrio parahaemolyticus. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Yan L, Shi F, Zhang J, Niu Y, Huang L, Huang Y, Sun W. Electrochemical DNA biosensor based on platinum-gold bimetal decorated graphene modified electrode for the detection of Vibrio Parahaemolyticus specific tlh gene sequence. CURR ANAL CHEM 2021. [DOI: 10.2174/1573411017666211217164846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
By using bimetal nanocomposite modified electrode, the electrochemical DNA biosensor showed the advantages of high sensitivity, low cost, rapid response and convenient operation, which was applied for disease diagnosis, food safety, and biological monitoring.
Objective:
A nanocomposite consisting of platinum (Pt)-gold (Au) bimetal and two-dimensional graphene (GR) was synthesized by hydrothermal method, which was modified on the surface of carbon ionic liquid electrode and further used for the immobilization of probe ssDNA related to Vibrio Parahaemolyticus tlh gene to construct an electrochemical DNA sensor.
Method:
Potassium ferricyanide was selected as electrochemical indicator, cyclic voltammetry was used to study the electrochemical behaviours of different modified electrodes and differential pulse voltammetry was employed to test the analytical performance of this biosensor for the detection of target gene sequence.
Results:
This electrochemical DNA biosensor could detect the Vibrio Parahaemolyticus tlh gene sequence as the linear concentration in the range from 1.0×10-13 mol L-1 to 1.0×10-6 mol L-1 with the detection limit as 2.91×10-14 mol L-1 (3σ).
Conclusion:
This proposed electrochemical DNA biosensor could be used to identify the special gene sequence with good selectivity, low detection limit and wide detection range.
Collapse
Affiliation(s)
- Lijun Yan
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Fan Shi
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Jingyao Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lifang Huang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuhao Huang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
13
|
Yang Q, Guo W, Liu Y, Zhang Y, Ming R, Yuan Y, Tan J, Zhang W. Novel Single Primer Isothermal Amplification Method for the Visual Detection of Vibrio parahaemolyticus. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02033-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Gao S, Sun C, Hong H, Gooneratne R, Mutukumira A, Wu X. Rapid detection of viable Cronobacter sakazakii in powdered infant formula using improved propidium monoazide (PMAxx) and quantitative recombinase polymerase amplification (qRPA) assay. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Pan L, Yuan Z, Farouk MH, Qin G, Bao N. Isolation and analysation of soybean agglutinin-specific binding proteins for erythrocyte membrane in different animal species. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1869600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhijie Yuan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
A polymerase chain reaction based lateral flow test strip with propidium monoazide for detection of viable Vibrio parahaemolyticus in codfish. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Zhao Y, Zeng D, Yan C, Chen W, Ren J, Jiang Y, Jiang L, Xue F, Ji D, Tang F, Zhou M, Dai J. Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst 2020; 145:3106-3115. [DOI: 10.1039/d0an00224k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Escherichia coli O157:H7 is a severe foodborne pathogen. Paper-based ELISA can rapidly and accurately detect E.coli O157:H7 in beef. The method has good sensitivity, specificity and repeatability. It is suitable for point-of-care testing and offers new ideas for the detection of other foodborne pathogens.
Collapse
|