1
|
Zhou Y, Gu X, Ji S, Yang Y, Zhao Y, Liu H. Antibiofilm mechanism of mouse gastrointestinal stimulation against Vibrio parahaemolyticus under bile salt culture. Microb Pathog 2025; 200:107339. [PMID: 39880136 DOI: 10.1016/j.micpath.2025.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Bile salts are crucial microbe-selective inhibitors present in the intestinal tracts of humans and other animals. Environmental and clinical strains of Vibrio parahaemolyticus (V. parahaemolyticus) exhibited different biofilm-forming abilities under bile salt incubation. In order to find an effective way to eliminate biofilm, in this study, environmental strains were subjected to mouse gastrointestinal (GI) stimulation and cultured in medium containing 0.06 % bile salts. The effects of GI stimulation on V. parahaemolyticus biofilm formation were evaluated by biofilm cells assay, atomic force microscopy (AFM) assay, confocal laser scanning microscopy (CLSM) assay, extracellular polysaccharide (EPS) assay, and salmon surface biofilm formation assay. The results showed that GI stimulation diminished the ability of V. parahaemolyticus to form biofilm, significantly reduced biofilm cells, decreased the level of EPS, and destroyed the biofilm structure. For the biofilm formed by V. parahaemolyticus after GI stimulation, AFM observed that the appearance of the biofilm became inhomogeneous and rough, and CLSM observed that the 3D structure of the biofilm became dispersed and sparse. GI stimulation reduced the ability of V. parahaemolyticus to form biofilms on the surface of salmon containing 0.06 % bile salts at both 12 h and 24 h, as evidenced by a decrease in the number of adherent cells. Comparing biofilms formed by tdh-positive V. parahaemolyticus before and after undergoing GI stimulation, a total of 1169 differentially expressed genes (DEGs) were identified by RNA sequencing. And 10 of the biofilm-related genes displayed significant down-regulation after GI stimulation. Enrichment analysis of DEGs revealed that affecting the switch between succinate and fumarate in the TCA cycle could inhibit biofilm formation. This study offers new insights into strategies for preventing biofilm formation by foodborne pathogens.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Xin Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Shiying Ji
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Yao Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Wu CH, Kaneyasu Y, Yano K, Shigeishi H, Kitasaki H, Maehara T, Niitani Y, Takemoto T, Mine Y, Le MNT, Kawada-Matsuo M, Komatsuzawa H, Ohta K. Anti-fungal effects of slightly acidic electrolyzed water on Candida species. J Oral Biosci 2025; 67:100573. [PMID: 39515466 DOI: 10.1016/j.job.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Slightly acidic electrolyzed water (SAEW) is produced by electrolyzing 2-6% diluted hydrochloric acid in a membrane-less chamber, resulting in 5.0-6.5 pH, and can be applied to various foods as a disinfectant. Although SAEW has shown to have bactericidal activity, the details of its anti-fungal effects towards Candida species remain unknown. Therefore, we examined the fungicidal effects of SAEW on Candida spp. and biofilms on acrylic resins. METHODS The fungicidal effects of SAEW on Candida spp. at different reaction times and total numbers of colonies in culture plates were examined. Subsequently, SAEW was added to Candida spp. biofilms formed on polystyrene plates, and adenosine triphosphate (ATP) in SAEW was measured to examine its fungicidal effects towards Candida spp. biofilms. The fungicidal effect of SAEW on Candida spp. biofilms was determined by counting the number of colonies on the acrylic resin after adding SAEW. RESULTS SAEW completely killing activity within 1 min with the tested Candida spp. C. albicans and C. glabrata ATP were increased 5 min after adding SAEW compared with the controls, suggesting the removal of biofilm. Of the C. albicans on acrylic resin, >99.9%were killed by SAEW compared to their levels in deionized distilled water (DW) (76.2 × 102/mL and 43.3 × 102/mL, respectively). Similarly, 93.1% of C. glabrata were killed by SAEW compared to DW (159.3x102/mL). CONCLUSIONS SAEW may be useful in preventing oral candidiasis as part of oral care.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kanako Yano
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Honami Kitasaki
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoko Maehara
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yoshie Niitani
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
3
|
Kamble MT, Soowannayan C, Chaicherd S, Medhe SV, Rudtanatip T, Pissuwan D, Wongprasert K. Bimetallic nanoparticles with sulfated galactan eliminate Vibrio parahaemolyticus in shrimp Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109753. [PMID: 38977111 DOI: 10.1016/j.fsi.2024.109753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Bimetallic (Au/Ag) nanoparticles (BNPs) have shown enhanced antibacterial activity compared to their monometallic counterparts. Sulfated galactans (SG) are a naturally occurring polymer commonly found in red seaweed Gracilaria fisheri. They are biocompatible and biodegradable and environmentally friendly. In this study, we utilized SG in combination with BNPs to develop composite materials that potentially enhance antibacterial activity against shrimp pathogens Vibrio parahaemolyticus and Vibrio harveyi, compared to BNPs or SG alone. BNPs were coated with sulfated galactan (SGBNPs) and characterized using UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and transmission electron microscopy (TEM). UV-vis spectroscopy analysis revealed that the surface plasmon peaks of BNPs and SGBNPs appeared at 530 nm and 532 nm, respectively. Zeta potential measurements showed that SGBNPs had a negative charge of -32.4 mV, while the BNPs solution had a positive charge of 38.7 mV. TEM images demonstrated the spherical morphology of both BNPs and SGBNPs with narrow size distributions (3-10 nm). Analysis of the FTIR spectra indicated that SG maintained its backbone structure in SGBNPs, but some functional groups were altered. Notably, SGBNPs showed superior antimicrobial and antibiofilm activities against V. parahaemolyticus and V. harveyi compared to SG and BNPs. Furthermore, treatment with SGBNPs significantly down-regulated the expression of virulence-related genes (toxR, cpsQ, and mfpA) for V. parahaemolyticus 3HP compared to the respective control, bacteria treated with BNPs or SG. Diets supplemented with SGBNPs, BNPs, or SG showed no detrimental impact on the growth of shrimp Penaeus vannamei. Shrimp fed with SGBNPs-supplemented feed showed significantly higher survival rates than those fed with BNPs-supplemented feed when infected with 3HP after being on the supplemented feed for seven days and a subsequent number of fifteen days. These findings collectively demonstrate the benefit of using SG capped Au-Ag BNPs as an antibacterial agent for the prevention and control of Vibrio sp. Infection in shrimp while reducing the risk of environmental contamination.
Collapse
Affiliation(s)
- Manoj Tukaram Kamble
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chumporn Soowannayan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sunisa Chaicherd
- Toxicology Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Seema Vijay Medhe
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tawut Rudtanatip
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Dakrong Pissuwan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Zhu W, Liu J, Zhang Y, Zhao D, Li S, Dou H, Wang H, Xia X. The role of rcpA gene in regulating biofilm formation and virulence in Vibrio parahaemolyticus. Int J Food Microbiol 2024; 418:110714. [PMID: 38677238 DOI: 10.1016/j.ijfoodmicro.2024.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hanzheng Dou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
5
|
Shi H, Li C, Lu H, Zhu J, Tian S. Synergistic effect of electrolyzed water generated by sodium chloride combined with dimethyl dicarbonate for inactivation of Listeria monocytogenes on lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7905-7913. [PMID: 37490703 DOI: 10.1002/jsfa.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Electrolyzed water (EW) is recognized as an effective way to control and reduce pathogens in vegetables. However, the disinfection efficacy of EW alone is limited. In this work, the bactericidal activity and biofilm removal capability of EW, generated by adding NaCl to a portable EW generator, were investigated with special reference to Listeria monocytogenes. Furthermore, the impact of EW in combination with dimethyl dicarbonate (DMDC) in reducing the microbial load and improving the overall quality of lettuce during refrigerated storage was evaluated. RESULTS EW with 0.3% NaCl (SEW) had the highest bactericidal activity against L. monocytogenes. The pathogen treated with SEW exhibited lower superoxide dismutase activity and more leakage of proteins and nucleic acids than in the case of EW. Furthermore, the use of SEW resulted in changes in the cell permeability and morphology of L. monocytogenes. A decrease in adhesion and collapse of the biofilm architecture were also observed, indicating that SEW was more effective for inactivating L. monocytogenes cells compared to EW. For untreated lettuce, the populations of the total plate count and inoculated L. monocytogenes decreased by 2.47 and 2.35 log CFU g-1 , respectively, after the combined SEW/DMDC treatment for 3 min. The use of SEW alone or combined with DMDC did not negatively impact the lettuce color values, titratable acid, ascorbic acid and soluble solids compared to the control group. CONCLUSION SEW in combination with DMDC can be used as a novel and potentially effective disinfection strategy for ensuring the safety of vegetable consumption. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honghui Shi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chunliu Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Haixia Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shiyi Tian
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
6
|
Zhu W, Liu J, Zou Y, Li S, Zhao D, Wang H, Xia X. Anti-Biofilm Activity of Laurel Essential Oil against Vibrio parahaemolyticus. Foods 2023; 12:3658. [PMID: 37835311 PMCID: PMC10572487 DOI: 10.3390/foods12193658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Vibrio parahaemolyticus is a primary seafood-associated pathogen that could cause gastroenteritis. It can attach to various surfaces and form a biofilm, which poses serious threats to food safety. Hence, an effective strategy is urgently needed to control the biofilm formation of V. parahaemolyticus. Laurel essential oil (LEO) is used in food, pharmaceutical and other industries, and is commonly used as a flavoring agent and valuable spice in food industries. The potential antibiofilm effects of LEO against V. parahaemolyticus were examined in this study. LEO obviously reduced biofilm biomass at subinhibitory concentrations (SICs). It decreased the metabolic activity and viability of biofilm cells. Microscopic images and Raman spectrum indicted that LEO interfered with the structure and biochemical compositions of biofilms. Moreover, it also impaired swimming motility, decreased hydrophobicity, inhibited auto-aggregation and reduced attachment to different food-contact surfaces. RT-qPCR revealed that LEO significantly downregulated transcription levels of biofilm-associated genes of V. parahaemolyticus. These findings demonstrate that LEO could be potentially developed as an antibiofilm strategy to control V. parahaemolyticus biofilms in food industries.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Yue Zou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| |
Collapse
|
7
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
8
|
Evaluation of Antibacterial and Antibiofilm Properties of Kojic Acid against Aeromonas sobria and Staphylococcus saprophyticus. J FOOD QUALITY 2023. [DOI: 10.1155/2023/2531438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Biofilms composed of microbes and extracellular polymeric substances (EPSs) pose a significant risk to human health and lead to economic loss in the food industry. In this study, the antimicrobial and antibiofilm properties of kojic acid (KA) against Aeromonas sobria (A. sobria) and Staphylococcus saprophyticus (S. saprophyticus) were investigated by determining the leakage of DNA and protein, cell morphology, biofilm formation, the metabolic activity of biofilms, excretion of EPS, and biofilm architecture. The results indicated that the values of minimum inhibitory concentration (MIC) of A. sobria and S. saprophyticus after KA treatment were 0.4 mg/mL and 1.6 mg/mL, respectively. 1 × MIC KA showed unignorable antimicrobial activity against the two bacteria, leading to alterations in the bacterial physicochemical characteristics and cell death. Sub-MICs of KA can inhibit biofilm formation and decrease the metabolic activity and excretion of EPS, and these inhibition effects were in a dose-dependent manner. These results were further confirmed by the visual images obtained from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Moreover, S. saprophyticus is more susceptible to KA in inhibiting biofilm formation, and for A. sobria, changes in the cell structure and the permeability of the cell membrane were more obvious. This research highlighted the antibacterial and antibiofilm activity of KA against A. sobria and S. saprophyticus.
Collapse
|
9
|
Wang R, Qin X, Du Y, Shan Z, Shi C, Huang K, Wang J, Zhi K. Dual-modified starch nanoparticles containing aromatic systems with highly efficient encapsulation of curcumin and their antibacterial applications. Food Res Int 2022; 162:111926. [DOI: 10.1016/j.foodres.2022.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
|
10
|
Xiong R, Yan J, Mei J, Ye J, Xie J. The enhanced expression of genes encoding diguanylate cyclases under cold stress contributes to the adhesion and biofilm formation of Shewanella putrefaciens WS13. Front Nutr 2022; 9:1076932. [DOI: 10.3389/fnut.2022.1076932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Shewanella putrefaciens is a special spoilage bacterium of seafood during cold storage, which is easy to form biofilm and bring serious hazard to the seafood quality. Life cycle of biofilm starts after bacterial adhesion, which is essential for the formation and development of biofilm. As a ubiquitous second messenger in bacteria, c-di-GMP regulates the conversion between bacterial planktonic state and biofilm state. In this study, the adhesion and biofilm formation of S. putrefaciens WS13 under 4°C were compared to those under 30°C. Atom force microscope and scanning electron microscope were used to study the bacterial adhesion. Biofilm was analyzed by Fourier transform infrared spectroscopy, Bradford assay and phenol-sulfuric acid method. High-performance liquid chromatographic-tandem mass spectrometric and quantitative real-time PCR were applied to study c-di-GMP level and genes encoding diguanylate cyclases in cells, respectively. Results showed that the swarming mobility of S. putrefaciens WS13 was weaker under 4°C, however, the adhesive force under 4°C was 4–5 times higher than that under 30°C. Biofilm biomass, extracellular polysaccharides and extracellular proteins were 2.5 times, 3 times, and 1.6 times more than those under 30°C, respectively, but biofilm composition formed under both temperatures were similar. c-di-GMP level in S. putrefaciens WS13 under 30°C was no more than half of that in the corresponding growth stage under 4°C. Quantitative real-time PCR analysis also showed that the expression of genes encoding diguanylate cyclases were significantly enhanced under 4°C than that under 30°C. S. putrefaciens WS13 adapted to the cold stress by enhancing the expression of genes encoding diguanylate cyclases to promote bacterial adhesion and biofilm formation. This study provides a theoretical foundation for the research on the cold adaptation mechanism of specific spoilage bacteria of seafood based on c-di-GMP, and also provides a new idea to control seafood quality from the perspective of microbial molecular biology.
Collapse
|
11
|
Li P, Mei J, Xie J. Carbon dioxide can inhibit biofilms formation and cellular properties of Shewanella putrefaciens at both 30 °C and 4 °C. Food Res Int 2022; 161:111781. [DOI: 10.1016/j.foodres.2022.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|
12
|
He X, Wu C, Lu L, Yan X, Yu H, Kang N. Influence of acidic electrolyzed water combined with vacuum precooling treatment on quality and antioxidant performance of fresh
Lycium barbarum L.. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Chen Wu
- Development Planning and Discipline Construction Division of Ningxia University Yinchuan Ningxia People's Republic of China
| | - Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| |
Collapse
|
13
|
Antibiofilm and Antiquorum Sensing Potential of Lactiplantibacillus plantarum Z057 against Vibrio parahaemolyticus. Foods 2022; 11:foods11152230. [PMID: 35892815 PMCID: PMC9332848 DOI: 10.3390/foods11152230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Vibrio parahaemolyticus is a widespread foodborne pathogen that causes serious seafood-borne gastrointestinal infections. Biofilm and quorum sensing (QS) are critical in regulating these infections. In this study, first, the ability of Lactiplantibacillus plantarum Z057 to compete, exclude, and displace V. parahaemolyticus biofilm was evaluated. Then, the inhibitory effects of L. plantarum Z057 extract (Z057-E) on V. parahaemolyticus biofilm and QS were explored from the aspects of biofilm biomass, metabolic activity, physicochemical properties, extracellular polymer matrix content, QS signal AI-2 activity, biofilm microstructure, and the expression levels of biofilm and QS-related genes. Results showed that L. plantarum Z057 effectively inhibited biofilm formation of V. parahaemolyticus and interfered with the adhesion of V. parahaemolyticus on the carrier surface. In addition, the Z057-E could significantly reduce the biofilm biomass, metabolic activity, hydrophobicity, auto-aggregation ability, swimming and swarming migration diameter, AI-2 activity, extracellular polysaccharide (EPS), and extracellular protein content of V. parahaemolyticus. Fluorescence microscope and scanning electron microscope (SEM) images demonstrated that the Z057-E could efficiently inactivate the living cells, destroy the dense and complete biofilm architectures, and reduce the essential component of the extracellular polymer matrix. Real-time fluorescence quantitative PCR revealed that the Z057-E treatment down-regulated the expression of flagellum synthesis-related genes (flaA, flgM), EPS, and extracellular protein synthesis-related genes (cpsA, cpsQ, cpsR, ompW), QS-related genes (luxS, aphA, opaR), and hemolysin secretion-related genes (toxS, toxR) of V. parahaemolyticus. Thus, our results suggested that L. plantarum Z057 could represent an alternative biocontrol strategy against foodborne pathogens with anti-adhesive, antibiofilm, and antiquorum sensing activities.
Collapse
|
14
|
Effect of CO 2 on the spoilage potential of Shewanella putrefaciens target to flavour compounds. Food Chem 2022; 397:133748. [PMID: 35905618 DOI: 10.1016/j.foodchem.2022.133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
To investigate the regulation mechanism of CO2 (0% CO2, 20% CO2, 60% CO2, and 100% CO2) on the spoilage potential of S. putrefaciens target to flavour compounds, the metabolic activity of S. putrefaciens and the changes in flavour compounds extracted from inoculated large yellow croakers were evaluated. Results showed that CO2 significantly reduced biofilm formation capacity and suppressed synthesis of intracellular adenosine triphosphate (ATP). The production of unpleasant flavour compounds, such as total volatile basic nitrogen (TVB-N), trimethylamine (TMA), inosine (HxR), hypoxanthine (Hx), histidine, lysine, histamine, putrescine, 1-octen-3-ol, hexanal and benzaldehyde, was inhibited by CO2. The hydrolysis and oxidation of lipid in CO2-treated samples were alleviated and unsaturated fatty acids (UFAs) were in a higher percentage. In summary, CO2 efficiently reduced the spoilage potential of S. putrefaciens and contributed to better flavour quality of samples during 4 °C storage. A more effective inhibition by 100% CO2 was observed.
Collapse
|
15
|
Wang D, Dong T, Heng Y, Xie Z, Jiang H, Tian M, Jiang H, Zhang Z, Ren Z, Zhu Y. Preparation of Acidic Electrolyzed Water by a RuO 2@TiO 2 Electrode with High Selectivity for Chlorine Evolution and Its Sterilization Effect. ACS OMEGA 2022; 7:23170-23178. [PMID: 35847312 PMCID: PMC9280926 DOI: 10.1021/acsomega.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The food hygiene problems caused by bacterial biofilms in food processing equipment are directly related to human life safety and health. Therefore, it is of great strategic significance to study new food sterilization technology. An acidic electrolyzed water (AEW) disinfectant is an electrochemical sterilization technology which has the characteristics of wide adaptability, high efficiency, and environmental friendliness. However, since the sterilization efficiency of AEW for biofilms is not ideal, it is necessary to increase the available chlorine content (ACC) in AEW. A feasible method to increase the ACC is by increasing the chlorine evolution reaction (CER) selectivity of the electrode for AEW preparation. In this paper, the RuO2@TiO2 electrode was prepared by thermal decomposition combined with high-vacuum magnetron sputtering. Compared with the oxygen evolution reaction (OER) activity of an ordinary RuO2 electrode, the OER activity of the RuO2@TiO2 electrode is significantly reduced. However, the CER activity of the RuO2@TiO2 electrode is close to the OER activity of RuO2. The CER mechanism of the RuO2@TiO2 electrode is the second electron transfer, and the OER mechanism is the formation and transformation of OHads. The potential difference between the CER and OER of the RuO2@TiO2 electrode is 174 mV, which is 65 mV higher than that of the RuO2 electrode, so the selectivity of the CER of the RuO2@TiO2 electrode is remarkably improved. During the preparation of AEW, the ACC obtained with the RuO2@TiO2 electrode is 1.7 times that obtained with the RuO2 electrode. In the sterilization experiments on Escherichia coli and Bacillus subtilis biofilms, the logarithmic killing values of AEW prepared the by RuO2@TiO2 electrode are higher than those of AEW prepared by the RuO2 electrode.
Collapse
|
16
|
Application of Electrolyzed Water in the Food Industry: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Electrolyzed water is a novel disinfectant and cleaner that has been widely utilized in the food sector for several years to ensure that surfaces are sterilized, and that food is safe. It is produced by the electrolysis of a dilute salt solution, and the reaction products include sodium hydroxide (NaOH) and hypochlorous acid. In comparison to conventional cleaning agents, electrolyzed water is economical and eco-friendly, easy to use, and strongly effective. Electrolyzed water is also used in its acidic form, but it is non-corrosive to the human epithelium and other organic matter. The electrolyzed water can be utilized in a diverse range of foods; thus, it is an appropriate choice for synergistic microbial control in the food industry to ensure food safety and quality without damaging the organoleptic parameters of the food. The present review article highlights the latest information on the factors responsible for food spoilage and the antimicrobial potential of electrolyzed water in fresh or processed plant and animal products.
Collapse
|
17
|
Fan Q, Yuan Y, Zhang T, Song W, Sheng Q, Yue T. Inhibitory effects of lactobionic acid on Vibrio parahaemolyticus planktonic cells and biofilms. Food Microbiol 2022; 103:103963. [DOI: 10.1016/j.fm.2021.103963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
|
18
|
Wang D, Flint SH, Palmer JS, Gagic D, Fletcher GC, On SL. Global expansion of Vibrio parahaemolyticus threatens the seafood industry: Perspective on controlling its biofilm formation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Shi J, Zhao W, Xie J, Zhu Y, Pan Y, Ou J, Zhao Y, Liu H. Comparison on the Growth Heterogeneity of Vibrio parahaemolyticus Coupled with Strain Source and Genotype Analyses in Different Oligotrophic Conditions. J Food Prot 2021; 84:1904-1910. [PMID: 34170320 DOI: 10.4315/jfp-21-089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Vibrio parahaemolyticus is an important foodborne pathogen in aquatic products that can survive long term in an oligotrophic environment and maintain pathogenicity. In this study, the growth curves of 38 strains of V. parahaemolyticus (pathogenic and environmental strains) under different oligotrophic conditions (tryptone soy broth [TSB] and TSB medium diluted 2, 4, and 6 times) were simulated and their growth heterogeneities were compared. The growth kinetic parameters (maximum specific growth rate and lag time) were calculated by the modified Gompertz model. The results showed that oligotrophic conditions affected the growth variability of strains, and the coefficient of variation of all strains reached the maximum in the 4-fold dilution of TSB. Under different oligotrophic conditions, the lag time of the pathogenic strains was shorter than that of the environmental strains, whereas the maximum specific growth rate of the environmental strains was greater. This indicated that pathogenic strains were more adaptable to the nutrient-deficient environment. The analysis of different genotypes revealed that the strains with genotype tlh+/tdh+/trh- showed greater growth variability in oligotrophic environments. These results provided theoretical support for the accuracy of the risk assessment of aquatic products. HIGHLIGHTS
Collapse
Affiliation(s)
- Jun Shi
- College of Food Science and Technology, Shanghai 201306, People's Republic of China
| | - Wei Zhao
- College of Food Science and Technology, Shanghai 201306, People's Republic of China
| | - Jing Xie
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, People's Republic of China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, People's Republic of China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, People's Republic of China
| | - Jie Ou
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, People's Republic of China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, People's Republic of China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, People's Republic of China.,Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| |
Collapse
|
20
|
Yan J, Xie J. Removal of Shewanella putrefaciens Biofilm by acidic electrolyzed water on food contact surfaces. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry-A Review. Foods 2021; 10:2587. [PMID: 34828868 PMCID: PMC8621587 DOI: 10.3390/foods10112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilms cause problems in the food industry due to their persistence and incompetent hygiene processing technologies. Interest in photodynamic inactivation (PDI) for combating biofilms has increased in recent years. This technique can induce microbial cell death, reduce cell attachment, ruin biofilm biomolecules and eradicate structured biofilms without inducing microbial resistance. This review addresses microbial challenges posed by biofilms in food environments and highlights the advantages of PDI in preventing and eradicating microbial biofilm communities. Current findings of the antibiofilm efficiencies of this technique are summarized. Additionally, emphasis is given to its potential mechanisms and factors capable of influencing biofilm communities, as well as promising hurdle strategies.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Emmanuel Kyere
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
22
|
Nong F, Zhang P, Meng J, Xie Q, Li Y, Pan Y, Zhao Y, Liu H. Characterization of Shiga-toxin producing Escherichia coli (STEC) isolated from retail raw meats in Southeast China. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Tan L, Li H, Chen B, Huang J, Li Y, Zheng H, Liu H, Zhao Y, Wang JJ. Dual-species biofilms formation of Vibrio parahaemolyticus and Shewanella putrefaciens and their tolerance to photodynamic inactivation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Liu F, Tang C, Wang D, Sun Z, Du L, Wang D. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Li Y, Zeng QH, Liu G, Peng Z, Wang Y, Zhu Y, Liu H, Zhao Y, Jing Wang J. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins. ULTRASONICS SONOCHEMISTRY 2021; 71:105364. [PMID: 33125962 PMCID: PMC7786555 DOI: 10.1016/j.ultsonch.2020.105364] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/05/2020] [Accepted: 10/02/2020] [Indexed: 05/24/2023]
Abstract
A novel protein extraction method of ultrasound-assisted basic electrolyzed water (BEW) was proposed, and its effects on the structural and functional properties of Antarctic krill proteins were investigated. Results showed that BEW reduced 30.9% (w/w) NaOH consumption for the extraction of krill proteins, and its negative redox potential (-800 ~ -900 mV) protected the active groups (carbonyl, free sulfhydryl, etc.) of the proteins from oxidation compared to deionized water (DW). Moreover, the ultrasound-assisted BEW increased the extraction yield (9.4%), improved the solubility (8.5%), reduced the particle size (57 nm), favored the transition of α-helix and β-turn to β-sheet, promoted the surface hydrophobicity and disulfide bonds formation of krill proteins when compared to BEW without ultrasound. These changes contributed to the enhanced foam capacity, foam stability and emulsifying capacity of the krill proteins. Notably, all the physicochemical, structural and functional properties of the krill proteins were comparable to those extracted by the traditional ultrasound-assisted DW. This study suggests that the ultrasound-assisted BEW can be a potential candidate to extract proteins, especially offering an alternative way to produce marine proteins with high nutritional quality.
Collapse
Affiliation(s)
- Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue H9X 3 V9, Canada
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China.
| |
Collapse
|