1
|
Pan D, Chu P, Fu X, Wen D, Song H, Bai S, Guo X. Elucidating the underlying mechanism of the bactericidal effect facilitated by a crucial flagellar protein under high-voltage electrostatic conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137963. [PMID: 40122007 DOI: 10.1016/j.jhazmat.2025.137963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The high-voltage electrostatic field (HVEF) has been proposed as an efficient and convenient strategy for microbial inactivation, playing a crucial role in ensuring urban safety and people's lives and health. However, the effects of the underlying antibacterial molecular mechanism on specific functional capabilities are largely unknown. Here, we systematically investigated the molecular mechanism underlying the inactivation effect of an HVEF against E. coli with a wire-plate-type device. Our experimental analysis revealed that the antibacterial effects primarily stemmed from the local alteration of cell membrane integrity and permeability, which further induced a series of oxidative damage events, including decreased SOD activity, increased ROS levels and MDA content, and, eventually, apoptosis. Theoretically, this process is mediated mainly by energy metabolism, cell motility and membrane transport signaling, as suggested by a multiomic analysis. Through quantitative methods, we showed that FliC, a key flagellar protein, plays a very important role in this process and that the quantity of fliC present on cells influences the HVEF tolerance. These results together reveal the previously unknown mechanism underlying the antibacterial effect of HVEFs and suggest that fliC activity and cell motility are novel components of this mechanism that distinguish HVEF-resistant bacteria from normal bacteria.
Collapse
Affiliation(s)
- Di Pan
- State Key Laboratory of NBC Protection for Civilian, Chemical Defense Institute, Academy of Military Science, Beijing 102205, China
| | - Pan Chu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongfei Fu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diya Wen
- State Key Laboratory of NBC Protection for Civilian, Chemical Defense Institute, Academy of Military Science, Beijing 102205, China
| | - Hua Song
- State Key Laboratory of NBC Protection for Civilian, Chemical Defense Institute, Academy of Military Science, Beijing 102205, China.
| | - Shupei Bai
- State Key Laboratory of NBC Protection for Civilian, Chemical Defense Institute, Academy of Military Science, Beijing 102205, China.
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Chemical Defense Institute, Academy of Military Science, Beijing 102205, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
Lin H, Wu G, Hu X, Chisoro P, Yang C, Li Q, Blecker C, Li X, Zhang C. Electric fields as effective strategies for enhancing quality attributes of meat in cold chain logistics: A review. Food Res Int 2024; 193:114839. [PMID: 39160042 DOI: 10.1016/j.foodres.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Meat quality (MQ) is unstable during cold chain logistics (CCL). Different technologies have been developed to enhance MQ during the CCL process, while most of them cannot cover all the links of the cold chain because of complex environment (especially transportation and distribution), compatibility issues, and their single effect. Electric fields (EFs) have been explored as a novel treatment for different food processing. The effects and potential advantages of EFs for biological cryopreservation have been reported in many publications and some commercial applications in CCL have been realized. However, there is still a lack of a systematic review on the effects of EFs on their quality attributes in meat and its applications in CCL. In this review, the potential mechanisms of EFs on meat physicochemical properties (heat and mass transfer and ice formation and melting) and MQ attributes during different CCL links (freezing, thawing, and refrigeration processes) were summarized. The current applications and limitations of EFs for cryopreserving meat were also discussed. Although high intensity EFs have some detrimental effects on the quality attributes in meat due to electroporation and electro-breakdown effect, EFs present good applicability opportunities in most CCL scenes that have been realized in some commercial applications. Future studies should focus on the biochemical reactions of meat to the different EFs parameters, and break the limitations on equipment, so as to make EFs techniques closer to usability in the production environment and realize cost-effective large-scale application of EFs on CCL.
Collapse
Affiliation(s)
- Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Guangyu Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojia Hu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Prince Chisoro
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingqing Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
4
|
Nie X, Zuo Z, Zhou L, Gao Z, Cheng L, Wang X, Nie L, Huang PH. Investigating the Effect of High-Voltage Electrostatic Field (HVEF) Treatment on the Physicochemical Characteristics, Bioactive Substances Content, and Shelf Life of Tomatoes. Foods 2024; 13:2823. [PMID: 39272588 PMCID: PMC11394846 DOI: 10.3390/foods13172823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
This study evaluated the ability of a high-voltage electrostatic field (HVEF) treatment to extend the shelf life of tomatoes. Tomatoes were exposed to HVEF treatment for different lengths of time, and the physicochemical properties of tomatoes and bioactive compounds were monitored during 28 days of storage at 4 °C. The results indicated that the quality parameters of tomatoes were better maintained during storage by the HVEF treatment relative to the control treatment, extending their shelf life by 14-28 days. The HVEF treatment mitigated losses in firmness, weight, color changes, and bioactive substances, such as total phenolic content, total flavonoid content, ascorbic acid, and lycopene. The activity of pectin-degrading enzymes was also inhibited. The best exposure times for the HVEF treatment were 90 and 120 min. While the measured parameters decreased in both the control and HVEF treatment groups, the decrease in all of these measured parameters was significantly less (p < 0.05) in the optimum HVEF treatment groups than in the control. While the physicochemical properties may vary between different tomato varieties, the HVEF treatment of harvested tomatoes for 90 or 120 min can mitigate the degradation of quality parameters and loss of bioactive compounds incurred during the postharvest storage of tomatoes, thus maintaining their commercial value.
Collapse
Affiliation(s)
- Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhijie Zuo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhe Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Lilin Cheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiaoli Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Linghong Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China
| |
Collapse
|
5
|
Sun Kim B, Ko EJ, Choi J, Chang Y, Bai J. Isolation, characterization, and application of a lytic bacteriophage SSP49 to control Staphylococcus aureus contamination on baby spinach leaves. Food Res Int 2024; 192:114848. [PMID: 39147476 DOI: 10.1016/j.foodres.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Staphylococcus aureus, a major foodborne pathogen, is frequently detected in fresh produce. It often causes food poisoning accompanied by abdominal pain, diarrhea, and vomiting. Additionally, the abuse of antibiotics to control S. aureus has resulted in the emergence of antibiotics-resistant bacteria, such as methicillin resistant S. aureus. Therefore, bacteriophage, a natural antimicrobial agent, has been suggested as an alternative to antibiotics. In this study, a lytic phage SSP49 that specifically infects S. aureus was isolated from a sewage sample, and its morphological, biological, and genetic characteristics were determined. We found that phage SSP49 belongs to the Straboviridae family (Caudoviricetes class) and maintained host growth inhibition for 30 h in vitro. In addition, it showed high host specificity and a broad host range against various S. aureus strains. Receptor analysis revealed that phage SSP49 utilized cell wall teichoic acid as a host receptor. Whole genome sequencing revealed that the genome size of SSP49 was 137,283 bp and it contained 191 open reading frames. The genome of phage SSP49 did not contain genes related to lysogen formation, bacterial toxicity, and antibiotic resistance, suggesting its safety in food application. The activity of phage SSP49 was considerably stable under various high temperature and pH conditions. Furthermore, phage SSP49 effectively inhibited S. aureus growth on baby spinach leaves both at 4 °C and 25 °C while maintaining the numbers of active phage during treatments (reductions of 1.2 and 2.1 log CFU/cm2, respectively). Thus, this study demonstrated the potential of phage SSP49 as an alternative natural biocontrol agent against S. aureus contamination in fresh produce.
Collapse
Affiliation(s)
- Bong Sun Kim
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Eun-Jin Ko
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Jieun Choi
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Jaewoo Bai
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
6
|
Qiao J, Zhang M, Shen D, Liu Y. A new strategy to improve the quality of frozen chicken wings: High voltage electrostatic field combined with phosphorus-free water retaining agent. Food Res Int 2024; 188:114479. [PMID: 38823840 DOI: 10.1016/j.foodres.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Freezing is a commonly used method for long-term storage of chicken wing products, of which disadvantages are mainly the product damage caused in the process. The aim of this study was to improve the freezing quality of chicken wings with a combination of phosphorus-free water retaining agent (WRA) and high-voltage electrostatic field (HVEF). The effect of WRA acting at different HVEF intensities (0, 1, 3, and 5 kV/cm) on the quality attributes of frozen chicken wings was investigated in 0, 7, 14, 21, 28 and 35 days of frozen storage. The results showed that WRA had functional properties of significantly improving the water holding capacity (WHC), color and texture properties, and fat stability of frozen chicken wing samples. The application of HVEF on this basis helped to promote the absorption of WRA and inhibit oxidative deterioration of chicken wing samples during frozen storage. Meanwhile, the combination of HVEF at 3 kV/cm was more prominent in terms of improvement in WHC, moisture content, color, protein secondary structure and microstructure integrity. This advantage had been consistently maintained with the extension of storage time. Overall, WRA combined with HVEF of 3 kV/cm can be used as an effective strategy to improve the freezing quality of chicken wing samples and has the potential to maintain the frozen chicken wing samples quality for a long time.
Collapse
Affiliation(s)
- Jiangshan Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Dongbei Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Yaping Liu
- Guangdong Galore Food Co., Ltd., 528447 Zhongshan, Guangdong, China
| |
Collapse
|
7
|
Zhang Y, Liang Y, Pan D, Bai S, Wen D, Tang M, Song H, Guo X, Han H. Enhancing Escherichia coli Inactivation: Synergistic Mechanism of Ultraviolet Light and High-Voltage Electric Field. Foods 2024; 13:1343. [PMID: 38731714 PMCID: PMC11083544 DOI: 10.3390/foods13091343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigated the bactericidal effects of ultraviolet (UV) radiation, a high-voltage electric field (HVEF), and their combination on Escherichia coli. The results indicated that UV and combined disinfection were more effective with longer exposure, leading to significant reductions in microbial activity. Specifically, the single UV disinfection alone reduced activity by 3.3 log after 5 min, while combined disinfection achieved a 4.2 log reduction. In contrast, short-term HVEF treatment did not exhibit significant bactericidal effects, only achieving a reduction of 0.17 log in 5 min. Furthermore, prolonged exposure to both UV disinfection and an HVEF was found to damage cell membranes, ultimately causing cell death, while shorter durations did not. Despite rapid cell count decreases, flow cytometry did not detect apoptotic or necrotic cells, likely due to rapid cell rupture. This study suggests that combining UV radiation and an HVEF could be a promising approach for inhibiting bacterial reproduction, with HVEF enhancing UV effects. These findings provide insights for using combined HVEF and UV disinfection in food safety and preservation.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
| | - Di Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Shupei Bai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Diya Wen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
| | - Hua Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| |
Collapse
|
8
|
Zhang L, Zhang M, Mujumdar AS, Ma Y. Intermittent high voltage electrostatic field and static magnetic field assisted modified atmosphere packaging alleviate mildew of postharvest strawberries after simulated transportation by activating the phenylpropanoid pathway. Food Chem 2024; 434:137444. [PMID: 37713754 DOI: 10.1016/j.foodchem.2023.137444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The mildew is a typical symptom of strawberries during storage. The effectiveness of intermittent high voltage electrostatic field combined with static magnetic field (HVEF-SMF) technique in inhibiting the mildew of strawberries (before and after simulation of transport vibrations) was investigated. Intermittent HVEF, SMF and HVEF-SMF treatments inhibited spoilage fungal growth on the surface of strawberries by increasing the membrane permeability and leakage of intracellular materials of spoilage fungal. The HVEF-SMF alleviated mildew in strawberries, which probably via the increase of antifungal compounds (total phenolics and lignin), phenylpropanoid biosynthetic enzyme activities (Phenylalanine ammonia-lyase, 4-coumarate-CoA ligase) and pathogenesis-related proteins enzymes activities (chitinase and β-1,3-glucanase). Overall, HVEF-SMF contributed to alleviating the mildew and disease incidence of strawberries, improving the levels of antimicrobial activity, as well as extending their shelf life from 6 d to 12 d. Therefore, HVEF-SMF treatment is a promising technology for alleviating postharvest mildew in strawberries after transportation.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co., 226500 Rugao, Jiangsu, China
| |
Collapse
|
9
|
Huang J, Zhang M, Fang Z. Perspectives on Novel Technologies of Processing and Monitoring the Safety and Quality of Prepared Food Products. Foods 2023; 12:3052. [PMID: 37628050 PMCID: PMC10453564 DOI: 10.3390/foods12163052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
With the changes of lifestyles and rapid growth of prepared food industry, prepared fried rice that meets the consumption patterns of contemporary young people has become popular in China. Although prepared fried rice is convenient and nutritious, it has the following concerns in the supply chain: (1) susceptible to contamination by microorganisms; (2) rich in starch and prone to stall; and (3) vegetables in the ingredients have the issues of water loss and discoloration, and meat substances are vulnerable to oxidation and deterioration. As different ingredients are used in prepared fried rice, their food processing and quality monitoring techniques are also different. This paper reviews the key factors that cause changes in the quality of prepared fried rice, and the advantages and limitations of technologies in the processing and monitoring processes. The processing technologies for prepared fried rice include irradiation, high-voltage electric field, microwave, radio frequency, and ohmic heating, while the quality monitoring technologies include Raman spectral imaging, near-infrared spectral imaging, and low-field nuclear magnetic resonance technology. These technologies will serve as the foundation for enhancing the quality and safety of prepared fried rice and are essential to the further development of prepared fried rice in the emerging market.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi 214122, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
10
|
Huang J, Zhang M, Mujumdar AS, Ma Y. Technological innovations enhance postharvest fresh food resilience from a supply chain perspective. Crit Rev Food Sci Nutr 2023; 64:11044-11066. [PMID: 37409544 DOI: 10.1080/10408398.2023.2232464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Fresh food is rich in nutrients but is usually seasonal, perishable, and challenging to store without degradation of quality. The inherent limitations of various preservation technologies can result in losses in all stages of the supply chain. As consumers of fresh foods have become more health-conscious, new technologies for intelligent, energy-efficient, and nondestructive preservation and processing have emerged as a research priority in recent years. This review aims to summarize the quality change characteristics of postharvest fruits, vegetables, meats, and aquatic products. It critically analyzes research progress and applications of various emerging technologies, which include: the application of high-voltage electric field, magnetic field, electromagnetic field, plasma, electrolytic water, nanotechnology, modified atmosphere packaging, and composite bio-coated film preservation technologies. An evaluation is presented of the benefits and drawbacks of these technologies, as well as future development trends. Moreover, this review provides guidance for design of the food supply chain to take advantage of various technologies used to process food, reduce losses and waste of fresh food, and this improve the overall resilience of the supply chain.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
11
|
Zhang J, Fei L, Cui P, Walayat N, Ji S, Chen Y, Lyu F, Ding Y. Effect of low voltage electrostatic field combined with partial freezing on the quality and microbial community of large yellow croaker. Food Res Int 2023; 169:112933. [PMID: 37254359 DOI: 10.1016/j.foodres.2023.112933] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
The effect of low voltage electrostatic field combined with partial freezing (LVEF- PF) treatment on storage quality and microbial community of large yellow croaker was studied. Three different methods including chilled (C), partial freezing (PF) and 6 kV/m electrostatic field combined partial freezing storage were used to preserve large yellow croaker for 18 days. Total viable counts (TVC), sensory evaluation, and physiochemical index including pH, total volatile basic nitrogen (TVB-N), K value and centrifugal loss were examined. During storage, the large yellow croaker was susceptible to microbial growth and spoilage. However, LVEF-PF treatment was found to be effective in enhancing sensory quality, inhibiting microbial growth, and maintaining myofibril microstructure. Low field nuclear magnetic resonance showed that LVEF-PF treatment reduced the migration of immobilized water to free water. At 18th day, the TVC value of LVEF-PF, PF and chilled group were 3.56 log CFU/g, 5.11 log CFU/g, 7.73 log CFU/g, respectively. Therefore, from the results of TVB-N and TVC value, the shelf life of LVEF-PF group was at least 3 days longer than PF group, and 6 days longer than the chilled group. High-throughput sequencing showed that the microbial community diversity significantly decreased during storage. The predominant bacteria in chilled, PF, LVEF-PF group at 18th day were Pseudomonas, Psychrobacter and Shewanella, respectively, and the relative abundance of spoilage bacteria such as Pseudomonas and Psychrobacter were reduced by LVEF-PF treatment, that corresponding with lower values of TVB-N and TVC value. LVEF-PF treatment could be used as a new processing and storage method to delay deterioration and prolong shelf life of large yellow croaker.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengqiang Ji
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yiling Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Zhang L, Yang N, Jin Y, Xu X. Putative inactivation mechanism and germicidal efficacy of induced electric field against Staphylococcus aureus. Food Microbiol 2023; 111:104208. [PMID: 36681392 DOI: 10.1016/j.fm.2022.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Induced electric field (IEF), as an alternative non-conventional processing technique, is utilized to sterilize liquid foods. In this study, the survival and sublethal injury of S. aureus under IEF were investigated in 0.85% normal saline, and the inactivation mechanism of IEF was expounded. The plate count results showed that the sublethal injury rates remained above 90% after IEF treatment for more than 8.4 s, and 7.1 log CFU/mL of S. aureus was completely inactivated after 14 s IEF treatment. Scanning electron microscopy and transmission electron microscope images showed that IEF caused the destruction of cell membrane and internal substructure, and the damage to intracellular substructure was more severe. Altered membrane integrity or permeability was demonstrated through flow cytometry and confocal laser scanning microscope analysis, and the different damage to cells was quantified by propidium iodide & 5-carboxy fluorescein diacetate single and double staining. In addition, IEF treatment also decreased the membrane potential and esterase activity of S. aureus cells. Putative inactivation mechanism of IEF against S. aureus is a complex process, and its apoptosis is the result of the combination of several factors, which provide a basis for understanding the inactivation mechanism of IEF.
Collapse
Affiliation(s)
- Lingtao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
13
|
Change of the frozen storage quality of concentrated Mongolian milk curd under the synergistic action of ultra-high pressure and electric field. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Postharvest storage properties and quality kinetic models of cherry tomatoes treated by high-voltage electrostatic fields. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Yu Q, Zhang M, Ju R, Mujumdar AS, Wang H. Advances in prepared dish processing using efficient physical fields: A review. Crit Rev Food Sci Nutr 2022; 64:4031-4045. [PMID: 36300891 DOI: 10.1080/10408398.2022.2138260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prepared dishes are increasingly popular convenience food that can be eaten directly from hygienic packaging by heating. Physics field (PF) is food processing method built with physical processing technology, which has the characteristics of high efficiency and environmental safety. This review focuses on summarizing the application of PFs in prepared dishes, evaluating and comparing PFs through quality changes during processing and storage of prepared dishes. Currently, improving the quality and extending the shelf life of prepared dishes through thermal and non-thermal processing are the main modes of action of PFs. Most PFs show good potential in handing prepared dishes, but may also react poorly to some prepared dishes. In addition, the difficulty of precise control of processing conditions has led to research mostly at the laboratory stage, but as physical technology continues to break through, more PFs and multi-physical field will be promoted for commercial use in the future. This review contributes to a deeper understanding of the effect of PFs on prepared dishes, and provides theoretical reference and practical basis for future processing research in the development of various enhanced PFs.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Yuan Y, Liu Q, Huang Y, Qi M, Yan H, Li W, Zhuang H. Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus aureus and Its Application in Juices. Molecules 2022; 27:molecules27207136. [PMID: 36296729 PMCID: PMC9612228 DOI: 10.3390/molecules27207136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial Photodynamic Treatment (aPDT) is a non-thermal sterilization technology, which can inactivate common foodborne pathogens. In the present study, photodynamic inactivation on Staphylococcus aureus (S. aureus) with different concentrations of curcumin and light dose was evaluated and the mechanisms were also investigated. The results showed that curcumin-based aPDT could inactivate S. aureus cells by 6.9 log CFU/mL in phosphate buffered saline (PBS). Moreover, the modified Gompertz model presented a good fit at the inactivation data of S. aureus. Photodynamic treatment caused cell membrane damage as revealed by analyzing scanning electron microscopy (SEM) images. Leakage of intracellular constituents further indicated that cell membrane permeability was changed. Flow cytometry with double staining demonstrated that cell membrane integrity and the activity of nonspecific esterase were destroyed. Compared with the control group, intracellular reactive oxygen species (ROS) levels caused by photodynamic treatment significantly increased. Furthermore, curcumin-based aPDT reduced S. aureus by 5 log CFU/mL in juices. The color of the juices was also tested using a Chromatic meter, and it was found that b* values were the most markedly influenced by photodynamic treatment. Overall, curcumin-based aPDT had strong antibacterial activity against S. aureus. This approach has the potential to remove foodborne pathogens from liquid food.
Collapse
|
17
|
Yang X, Lan W, Xie J. Antimicrobial and anti-biofilm activities of chlorogenic acid grafted chitosan against Staphylococcus aureus. Microb Pathog 2022; 173:105748. [PMID: 36064104 DOI: 10.1016/j.micpath.2022.105748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/10/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
In this work, Chitosan-grafted-chlorogenic acid (CS-g-CA) was prepared by the carbodiimide method. The purpose of this study was to investigate the antibacterial and anti-biofilm activity of CS-g-CA against Staphylococcus aureus (S. aureus). The minimum inhibitory concentration (MIC) of CS-g-CA against S. aureus was identified as 0.625 mg/mL. S. aureus treated with 1/2×MIC of CS-g-CA had a longer logarithmic growth phase than that of the CK group, while 1×MIC and 2×MIC inhibited the growth of bacteria. The damaging effect of CS-g-CA on bacterial cells was analyzed by measuring the activity of cellular antioxidant enzymes (Catalase (CAT) and Glutathione peroxidase (GSH-Px)) and intracellular enzymes (alkaline phosphatase (AKPase) and adenosine triphosphatase (ATPase)). The results of DNA gel electrophoresis illustrated that CS-g-CA disrupted the normal metabolism of bacteria. Scanning electron microscopy (SEM) results showed that S. aureus shrank and died under CS-g-CA treatment. 1×MIC of CS-g-CA can significantly inhibit the formation of biofilms, and 1/2×MIC of CS-g-CA control the swimming speed of S. aureus. In addition, 77.53% mature biofilm and 60.62% extracellular polysaccharide (EPS) in the mature biofilm of S. aureus were eradicated by CS-g-CA at 2×MIC. Confocal laser scanning microscopy (CLSM) observation further confirmed these results. Therefore, CS-g-CA was an antimicrobial and antibiofilm agent to control S. aureus, which can effectively controlling the growth of S. aureus in food, thereby preventing the occurrence of food-borne diseases.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
18
|
Wang S, Liu S, Hao G, Zhao L, Lü X, Wang H, Wang L, Zhang J, Ge W. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Qi M, Yan H, Zhang Y, Yuan Y. Impact of high voltage prick electrostatic field (HVPEF) processing on the quality of ready-to-eat fresh salmon (Salmo salar) fillets during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Shen J, Zhang M, Mujumdar AS, Chen J. Effects of High Voltage Electrostatic Field and Gelatin-Gum Arabic Composite Film on Color Protection of Freeze-dried Grapefruit Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Cui B, Sun Y, Wang K, Liu Y, Fu H, Wang Y, Wang Y. Pasteurization mechanism on the cellular level of radio frequency heating and its possible non-thermal effect. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kang S, Li X, Xing Z, Liu X, Bai X, Yang Y, Guo D, Xia X, Zhang C, Shi C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Sun H, Li F, Li Y, Guo L, Wang B, Huang M, Huang H, Liu J, Zhang C, Feng Z, Sun J. Effect of High-Voltage Electrostatic Field Heating on the Oxidative Stability of Duck Oils Containing Diacylglycerol. Foods 2022; 11:foods11091322. [PMID: 35564044 PMCID: PMC9105880 DOI: 10.3390/foods11091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
High-voltage electrostatic field (HVEF) as an emerging green technology is just at the beginning of its use in meat products and by-products processing. In this study, we employed duck oil to produce duck-oil-based diacylglycerol (DAG), termed DDAG. Three different DDAG volume concentrations (0, 20%, and 100%) of hybrid duck oils, named 0%DDAG, 20%DDAG, and 100%DDAG, respectively, were used to investigate their thermal oxidation stability in high-voltage electrostatic field heating and ordinary heating at 180 ± 1 ℃. The results show that the content of saturated fatty acids and trans fatty acids of the three kinds of duck oils increased (p < 0.05), while that of polyunsaturated fatty acids decreased (p < 0.05) from 0 h to 8 h. After heating for 8 h, the low-field nuclear magnetic resonance showed that the transverse relaxation time (T21) of the three oils decreased (p < 0.05), while the peak area ratio (S21) was increased significantly (p < 0.05). The above results indicate that more oxidation products were generated with heating time. The peroxide value, the content of saturated fatty acids, and the S21 increased with more DAG in the duck oil, which suggested that the oxidation stability was likely negatively correlated with the DAG content. Moreover, the peroxide value, the content of saturated fatty acids and trans fatty acids, and the S21 of the three concentrations of duck oils were higher (p < 0.05) under ordinary heating than HVEF heating. It was concluded that HVEF could restrain the speed of the thermal oxidation reaction occurring in the duck oil heating and be applied in heating conditions.
Collapse
Affiliation(s)
- Hailei Sun
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Fangfang Li
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Yan Li
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Liping Guo
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Baowei Wang
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology, Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., Nanjing 211226, China;
| | - He Huang
- Shandong Newhope Liuhe Group Co., Ltd., Qingdao 266000, China; (H.H.); (J.L.)
| | - Jiqing Liu
- Shandong Newhope Liuhe Group Co., Ltd., Qingdao 266000, China; (H.H.); (J.L.)
| | | | - Zhansheng Feng
- Yingyuan Co., Ltd., Jining 272000, China; (C.Z.); (Z.F.)
| | - Jingxin Sun
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
24
|
In Vitro Antibacterial Mechanism of High-Voltage Electrostatic Field against Acinetobacter johnsonii. Foods 2022; 11:foods11070955. [PMID: 35407042 PMCID: PMC8997369 DOI: 10.3390/foods11070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the antibacterial properties and mechanisms of a high-voltage static electric field (HVEF) in Acinetobacter johnsonii, which were assessed from the perspective of biochemical properties and stress-related genes. The time/voltage-kill assays and growth curves showed that an HVEF decreased the number of bacteria and OD600 values. In addition, HVEF treatment caused the leakage of cell contents (nucleic acids and proteins), increased the electrical conductivity and amounts of reactive oxygen substances (ROS) (16.88 fold), and decreased the activity of Na+ K+-ATPase in A. johnsonii. Moreover, the changes in the expression levels of genes involved in oxidative stress and DNA damage in the treated A. johnsonii cells suggested that HVEF treatment could induce oxidative stress and DNA sub-damage. This study will provide useful information for the development and application of an HVEF in food safety.
Collapse
|
25
|
Ma M, Zhao J, Yan X, Zeng Z, Wan D, Yu P, Xia J, Zhang G, Gong D. Synergistic effects of monocaprin and carvacrol against Escherichia coli O157:H7 and Salmonella Typhimurium in chicken meat preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Inhibition mechanism of high voltage prick electrostatic field (HVPEF) on Staphylococcus aureus through ROS-mediated oxidative stress. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Sun J, Wang D, Sun Z, Liu F, Du L, Wang D. The combination of ultrasound and chlorogenic acid to inactivate Staphylococcus aureus under planktonic, biofilm, and food systems. ULTRASONICS SONOCHEMISTRY 2021; 80:105801. [PMID: 34688141 PMCID: PMC8551818 DOI: 10.1016/j.ultsonch.2021.105801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/03/2023]
Abstract
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.
Collapse
Affiliation(s)
- Jinyue Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
28
|
Han Y, Chen W, Sun Z. Antimicrobial activity and mechanism of limonene against
Staphylococcus aureus. J Food Saf 2021. [DOI: 10.1111/jfs.12918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yingjie Han
- College of Food Sciences & Engineering, Hainan University Haikou China
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University Haikou China
| | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University Haikou China
| |
Collapse
|
29
|
Nie C, Shen T, Hu W, Ma Q, Zhang J, Hu S, Tian H, Wu H, Luo X, Wang J. Characterization and antibacterial properties of epsilon-poly- l-lysine grafted multi-functional cellulose beads. Carbohydr Polym 2021; 262:117902. [PMID: 33838793 DOI: 10.1016/j.carbpol.2021.117902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
In recent years, harmful microorganisms in water pose great harm to ecological environment and human health. To solve this problem, epsilon-poly-l-lysine (EPL) grafted cellulose beads were prepared via 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation and carbodiimide mediated cross-linking reaction. Hydroxyl groups on C6 of cellulose were oxidized to carboxyl groups by TEMPO and grafting reaction was achieved between newly formed carboxyl groups of cellulose and amino of EPL. The beads were characterized by FTIR, SEM, XRD and TGA. The crystalline form of cellulose transformed from cellulose I to cellulose II after being dissolved and regenerated. The grafted cellulose beads showed good antibacterial activities against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus and Alicyclobacillus acidoterrestris with 10 h. The beads could be biodegraded in soil after 28 days. It is expected that the bio-based composite beads could have potential applications in water purification and food treatment fields.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, PR China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, PR China
| | - Qin Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jiahui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Shuqian Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Hao Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Xiaogang Luo
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Key Laboratory for Green Chemical Process of Ministry of Education, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, Henan Province, PR China.
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|