1
|
He J, Bao F, Li W, Deng J, Zhong F, Lin Q, Fang Y, Mwaikono KS. Polylactic acid amine-sensitive colorimetric indicator film loaded with eugenol/coumarin derivatives: Towards freshness indication and shelf-life extension of chilled pork. Int J Biol Macromol 2025; 305:141290. [PMID: 39984075 DOI: 10.1016/j.ijbiomac.2025.141290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The action of microorganisms can lead to a decrease in food freshness and cause food safety issues. Traditional packaging can only provide a certain antimicrobial effect and cannot indicate the freshness of food, which can no longer meet the needs of consumers. The preparation of intelligent packaging films with antimicrobial effects and freshness indication is an effective solution. In this study, A novel electrospun intelligent food packaging film based on polylactic acid/eugenol/coumarin derivatives (7-(diethylaMino)-2-oxo-2H-chroMene-3-carbaldehyde) has been constructed to achieve the dual functions of antimicrobial and freshness indication for chilled pork. The antimicrobial layer loads eugenol coaxially into the fiber, which could scavenge 82.92 % of DPPH free radicals and effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The freshness-indicating layer showed fluorescence responsiveness to biogenic amines. The freshness-indicating and antimicrobial fibrous bilayer film turned green in practical application to indicate that the refrigerated pork had spoiled and was effective in extending the shelf life by 4-6 days. This study demonstrated the effectiveness of the bilayer film for preservation and freshness non-destructive testing of chilled pork. It provided a theoretical basis for the general application of film.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - FeiFei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dares Salaam. Tanzania
| |
Collapse
|
2
|
Ashiagbor K, Jayan H, Gao S, Amaglo NK, Adade SYSS, El-Seedi HR, Khalifa SAM, Zou X, Guo Z. Recent advances in photoelectric methods application for cooking oil quality and safety evaluation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40219683 DOI: 10.1002/jsfa.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/14/2025]
Abstract
Cooking oil is used daily in consumed food and culinary applications; therefore, its safety and quality are very important. Notably, susceptibility to contamination at each processing stage poses threats to living organisms. This review discusses the parameters of oil quality, as well as the role of the various non-destructive photoelectric techniques with respect to its quality and safety, including near-infrared spectroscopy (NIR), mid-infrared spectroscopy, Fourier transform near-infrared spectroscopy, Raman spectroscopy and fluorescence spectroscopy. Data on cooking oil quality, such as values of the following parameters, notably peroxides, thiobarbituric acid, anisidine, iodine, trans-fat and fatty acid profile, carbonyl compounds, adulteration and total polar components, are also demonstrated. Photoelectric methods are rapid and efficient tools for the preliminary screening of cooking oil when aiming to determine its quality before its entry into the food chain. Primarily, NIR has been used to predict most of the cooking oil safety and quality parameters, and thus is considered as the most convenient non-destructive method to be recommended. Accordingly, deep insight into state-of-the-art photoelectric/spectral technologies and the varieties of techniques available provides an opportunity to detect and predict the safety parameters of products prior to their processing and distribution. In this review, we highlight these perspectives with particular emphasis on the cooking oil. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kwami Ashiagbor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Newton K Amaglo
- Department of Horticulture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shaden A M Khalifa
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Stockholm, Sweden
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Peng J, Liu F, Ji S, Zhu J, Song J, Wang X, Wang H, Wang R. Developing high-performance bifunctional catalysts for zinc-air batteries by utilizing Ca to modify the electronic structure of Fe. J Colloid Interface Sci 2025; 692:137472. [PMID: 40187139 DOI: 10.1016/j.jcis.2025.137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
This study prepares a high-performance calcium-iron/nitrogen-doped carbon (Ca-Fe/NC) catalyst using s-block calcium and d-block iron for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) reveal a strong electronic interaction between Ca and Fe, enhancing interfacial charge transfer and catalytic activity. The catalyst demonstrates excellent performance in the ORR and OER. It shows a half-wave potential of 0.87 V and an overpotential of 320 mV at 10 mA cm-2. A zinc-air battery assembled with Ca-Fe/NC exhibits only 1.3 % voltage decay after 150 h of operation. This research provides an effective approach for developing high-performance oxygen electrode materials through p-d orbital electron regulation.
Collapse
Affiliation(s)
- Jiao Peng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fangfang Liu
- Shandong Peninsula Blue Economy and Engineering Research Institute, Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Shouguang, Weifang 262700, China
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jiaoru Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jimei Song
- Shandong Peninsula Blue Economy and Engineering Research Institute, Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Shouguang, Weifang 262700, China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
4
|
Zhang J, Zhang J, Zhang L, Qin Z, Wang T. Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety. Foods 2025; 14:1157. [PMID: 40238286 PMCID: PMC11989113 DOI: 10.3390/foods14071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for continuous freshness assessment. A key focus is natural compound-based chromogenic indicators, which establish visual spoilage detection via distinct color transitions. Concurrently, antimicrobial systems integrating inorganic compounds, organic bioactive agents, and natural antimicrobials effectively inhibit microbial growth. Strategic incorporation of these agents into polymeric matrices enhances meat safety, supported by standardized evaluation protocols for regulatory compliance and quality assurance. Future research should prioritize optimizing sensitivity, cost-efficiency, and sustainability, alongside developing biodegradable materials to balance food safety with reduced environmental impact, advancing sustainable food supply chains.
Collapse
Affiliation(s)
| | | | | | | | - Tianxing Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (J.Z.); (L.Z.); (Z.Q.)
| |
Collapse
|
5
|
Liang H, Lv F, Xian M, Luo C, Zhang L, Yang M, Li Q, Zhao X. Inhibition Mechanism of Cinnamomum burmannii Leaf Essential Oil Against Aspergillus flavus and Aflatoxins. Foods 2025; 14:682. [PMID: 40002124 PMCID: PMC11853908 DOI: 10.3390/foods14040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
This investigation evaluates the comparative efficacy of Cinnamomum burmannii leaf essential oil (YXYO) and its main active ingredients as a novel preservative to protect stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination caused by Aspergillus flavus. Morphological observations utilizing SEM and TEM revealed significant alterations in treated samples, alongside a decrease in ergosterol content and a dose-dependent disruption of the antioxidant system and energy system. Transcriptomic analysis suggested that differentially expressed genes were predominantly associated with spore growth, the cell wall, the cell membrane, oxidative stress, energy metabolism, and aflatoxin biosynthesis. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) identified ten active ingredients in YXYO, including borneol, α-terpineol, terpinen-4-ol, etc. Moreover, an effective inhibition of A. flavus infection in peanuts was observed with the application of 30 μL/disc of YXYO and a blend of its active compounds.
Collapse
Affiliation(s)
- Huanyan Liang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (M.Y.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| | - Feifei Lv
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| | - Mengting Xian
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| | - Chenghua Luo
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (M.Y.)
| | - Qian Li
- College of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| |
Collapse
|
6
|
Mohammed Aggad FZ, Ilias F, Elghali F, Mrabet R, El Haci IA, Aifa S, Mnif S. Evaluation of Antibacterial Activity in Some Algerian Essential Oils and Selection of Thymus vulgaris as a Potential Biofilm and Quorum Sensing Inhibitor Against Pseudomonas aeruginosa. Chem Biodivers 2025:e202402691. [PMID: 39777967 DOI: 10.1002/cbdv.202402691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Biofilm formation and virulence factor production by Pseudomonas aeruginosa are identified as the main mechanisms of its antibiotic resistance and pathogenicity. In this context, the study of the chemical composition of three Algerian essential oils (EOs) and the screening of their antibacterial, antibiofilm, and virulence factor inhibitory activities enabled us to select the thyme EO as the best oil to control the P. aeruginosa strain isolated from hospital environments. This EO, composed essentially of thymol (55.82%) associated with carvacrol, had an anti-adhesive activity of 69.8% at a concentration of 5 µL/mL and a biofilm eradication activity of 74.86% at a concentration of 2.5 µL/mL. In addition, this EO was able to inhibit P. aeruginosa twitching motility by 100% at a concentration of 2.5 µL/mL. Pyocyanin was inhibited by 99.33% at a thyme EO concentration of 1.25 µL/mL. Rhamnolipids were significantly inhibited by 63.33% in the presence of thyme EO at a concentration of 1.25 µL/mL after 24 h of incubation. Molecular docking showed that carvacrol and thymol can bind to the three quorum sensing receptors in P. aeruginosa, RhlR, LasR, and PqsR, with good affinities, which can inhibit or modulate biofilm formation and the production of certain virulence factors.
Collapse
Affiliation(s)
- Fatima Zahra Mohammed Aggad
- Laboratory of Applied Hydrology and Environment, Faculty of Science and Technology, University of Ain Temouchent, Ain Temouchent, Algeria
| | - Faiza Ilias
- Laboratory of Applied Hydrology and Environment, Faculty of Science and Technology, University of Ain Temouchent, Ain Temouchent, Algeria
- Laboratory of Applied Genetic in Agriculture, Ecology and Public Health, University of Tlemcen, Tlemcen, Algeria
| | - Fares Elghali
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Rania Mrabet
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Imad Abdelhamid El Haci
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Bou-Ismail, Tipaza, Algeria
- Laboratoire des Produits Naturels, Faculté SNV-STU, Université de Tlemcen, Tlemcen, Algeria
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Sun R, Li Y, Su R, Cai X, Kong Y, Jiang T, Cheng S, Yang H, Song L, Al-Asmari F, Sameeh MY, Lü X, Shi C. Antibacterial effect of ultrasound combined with Litsea cubeba essential oil nanoemulsion on Salmonella Typhimurium in kiwifruit juice. Int J Food Microbiol 2025; 426:110898. [PMID: 39241544 DOI: 10.1016/j.ijfoodmicro.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the antibacterial effect of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella Typhimurium in kiwifruit juice and effect on the quality and sensory properties of kiwifruit juice. In this study, LEON prepared by ultrasonic emulsification method had a good particle size distribution and high stability. The US+LEON treatment significantly (P < 0.05) improved antibacterial efficacy, compared to the control, and would not destroy the nutritional components containing ascorbic acid, flavonoids, total phenol and total soluble solids. Meanwhile, US+LEON treatment enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) radical scavenging capacity and ferric ion reducing antioxidant power (FRAP). In terms of sensory properties, US and LEON had a significant (P < 0.05) effect on the odor and overall morphology of kiwifruit juice. The enhance of antibacterial efficacy and the retention of nutrients by combined treatments shows that US+LEON is a promising antibacterial method that will provide new ideas for the processing and safety of fruit juices, and the US parameters and LEON concentration should be adjusted to reduce the effect on food sensory properties in future studies.
Collapse
Affiliation(s)
- Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
8
|
Deng H, Zhang W, Ramezan Y, Riahi Z, Khan A, Huang Z. Antibacterial and antioxidant plant-derived aldehydes: A new role as cross-linking agents in biopolymer-based food packaging films. Compr Rev Food Sci Food Saf 2025; 24:e70089. [PMID: 39676345 DOI: 10.1111/1541-4337.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
In recent years, biopolymer-based food packaging films have emerged as promising alternatives to petroleum-based plastic food packaging films. Various additives have been explored to enhance their properties, and one such group of additives is natural plant aldehydes. These aldehydes are commonly employed to improve the antibacterial and antioxidant properties of biopolymer-based food packaging films. However, their potential role as cross-linking agents is often overlooked in these applications. This work introduces the properties of commonly used natural plant aldehydes in biopolymer-based food packaging films. Specifically, it summarizes the effects of natural plant aldehydes such as cinnamaldehyde, vanillin, and others on the properties of biopolymer-based food packaging films. Furthermore, the application of biopolymer-based food packaging films functionalized with natural plant aldehydes in food preservation is discussed. This work concludes that various natural plant aldehydes serve as effective antimicrobial agents and antioxidants. They can not only physically interact with biopolymers but also undergo chemical cross-linking reactions with some polymers through Schiff base reactions and Michael addition reactions, thereby further improving the comprehensive properties of the film.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Riahi
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
9
|
Ben Abada M, Soltani A, Haoual Hamdi S, Boushih E, Fourmentin S, Greige-Gerges H, Mediouni Ben Jemâa J. Potential of cyclodextrin-based formulations of Rosmarinus officinalis essential oils in the control of the date moth Ectomyelois ceratoniae (Pyralidae). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 39686516 DOI: 10.1080/09603123.2024.2439446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Recently essential oils (EOs) encapsulation is experiencing growing applications in agricultural and agri-food sector. Encapsulation is reported as safe environmental technology leading to a reduction of conventional insecticides use. This study concerns the assessment of fumigant toxicity and persistence of Rosmarinus officinalis EO encapsulated in two cyclodextrins β-CD and HP-β-CD against larvae of the date moth, Ectomyelois ceratoniae. The retention capacity, encapsulation efficacy, loading capacity and release behavior of the two inclusion complexes were investigated. Results showed that two studied CDs had in important retention capacity. Additionally, the encapsulation within CDs delayed the release of rosemary EO bioactive components; which explains the effectiveness of the encapsulated rosemary EO in CDs against E. ceratoniae fifth instars larvae. Furthermore, the encapsulation in the two CDs improved the persistence of the insecticidal toxicity. This study supports the use of cyclodextrins, mainly HP-β-CD, in the date industry for the control of insect pests.
Collapse
Affiliation(s)
- Maha Ben Abada
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia
| | - Abir Soltani
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia
| | - Soumaya Haoual Hamdi
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia
| | - Emna Boushih
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia
| | - Sophie Fourmentin
- Département de chimie, UCEIV, Unité de Chimie Environnementale Et Interactions Sur Le Vivant, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon
| | - Jouda Mediouni Ben Jemâa
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia
| |
Collapse
|
10
|
Barros JMHF, Santos AA, Stadnik MJ, da Costa C. Encapsulation of eucalyptus and Litsea cubeba essential oils using zein nanopolymer: Preparation, characterization, storage stability, and antifungal evaluation. Int J Biol Macromol 2024; 278:134690. [PMID: 39142480 DOI: 10.1016/j.ijbiomac.2024.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The encapsulation of essential oils (EOs) in protein-based biopolymeric matrices stabilized with surfactant ensures protection and physical stability of the EO against unfavorable environmental conditions. Accordingly, this study prepared zein nanoparticles loaded with eucalyptus essential oil (Z-EEO) and Litsea cubeba essential oil (Z-LEO), stable and with antifungal activity against Colletotrichum lindemuthianum, responsible for substantial damage to bean crops. The nanoparticles were prepared by nanoprecipitation with the aid of ultrasound treatment and characterized. The nanoparticles exhibited a hydrodynamic diameter close to 200 nm and PDI < 0.3 for 120 days, demonstrating the physical stability of the carrier system. Scanning electron microscopy and Transmission electron microscopy revealed that the nanoparticles were smooth and uniformly distributed spheres. Fourier-transform infrared spectroscopy showed interaction between zein and EOs through hydrogen bonding and hydrophobic interactions. Thermogravimetric analysis demonstrated the thermal stability of the nanoparticles compared to pure bioactive compounds. The nanoparticles exhibited a dose-dependent effect in inhibiting the fungus in in vitro testing, with Z-EEO standing out by inhibiting 70.0 % of the mycelial growth of C. lindemuthianum. Therefore, the results showed that zein has great potential to encapsulate hydrophobic compounds, improving the applicability of the bioactive compound as a biofungicide, providing protection for the EO.
Collapse
Affiliation(s)
- José Marcelo Honório Ferreira Barros
- Federal University of Santa Catarina, Graduate Program in Engineering Chemistry, Department of Chemical and Food Engineering, Florianópolis, Santa Catarina, Brazil
| | - Alessandro Antônio Santos
- Federal University of Santa Catarina, Graduate Program in Plant Genetic Resources, Department of Plant Sciences, Florianópolis, Santa Catarina, Brazil
| | - Marciel João Stadnik
- Federal University of Santa Catarina, Graduate Program in Plant Genetic Resources, Department of Plant Sciences, Florianópolis, Santa Catarina, Brazil
| | - Cristiane da Costa
- Federal University of Santa Catarina, Graduate Program in Engineering Chemistry, Department of Chemical and Food Engineering, Florianópolis, Santa Catarina, Brazil; Federal University of Santa Catarina, Graduate Program in Textile Engineering, Department of Textile Engineering, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
11
|
Ed-Dra A, Abdallah EM, Sulieman AME, Anarghou H. Harnessing medicinal plant compounds for the control of Campylobacter in foods: a comprehensive review. Vet Res Commun 2024; 48:2877-2900. [PMID: 38954256 DOI: 10.1007/s11259-024-10455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Campylobacter is a major foodborne and zoonotic pathogen, causing severe human infections and imposing a substantial economic burden on global public health. The ongoing spread and emergence of multidrug-resistant (MDR) strains across various fields exacerbate therapeutic challenges, raising the incidence of diseases and fatalities. Medicinal plants, renowned for their abundance in secondary metabolites, exhibit proven efficacy in inhibiting various foodborne and zoonotic pathogens, presenting sustainable alternatives to ensure food safety. This review aims to synthesize recent insights from peer-reviewed journals on the epidemiology and antimicrobial resistance of Campylobacter species, elucidate the in vitro antibacterial activity of medicinal plant compounds against Campylobacter by delineating underlying mechanisms, and explore the application of these compounds in controlling Campylobacter in food. Additionally, we discuss recent advancements and future prospects of employing medicinal plant compounds in food products to mitigate foodborne pathogens, particularly Campylobacter. In conclusion, we argue that medicinal plant compounds can be used as effective and sustainable sources for developing new antimicrobial alternatives to counteract the dissemination of MDR Campylobacter strains.
Collapse
Affiliation(s)
- Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco.
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Science, Moulay Ismail University, Zitoune, Meknes, 50000, Morocco.
| | - Emad M Abdallah
- Department of Biology, College of Science, Qassim University, Qassim, 51452, Saudi Arabia
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai, Negeri Sembilan, 71800, Malaysia
| | | | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
- High Institute of Nursing Professions and Health Techniques Dakhla Annex, Dakhla, Morocco
| |
Collapse
|
12
|
Hedayati S, Tarahi M, Iraji A, Hashempur MH. Recent developments in the encapsulation of lavender essential oil. Adv Colloid Interface Sci 2024; 331:103229. [PMID: 38878587 DOI: 10.1016/j.cis.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
The unregulated and extensive application of synthetic compounds, such as preservatives, pesticides, and drugs, poses serious concerns to the environment, food security, and global health. Essential oils (EOs) are valid alternatives to these synthetic chemicals due to their therapeutic, antioxidant, and antimicrobial activities. Lavender essential oil (LEO) can be potentially applied in food, cosmetic, textile, agricultural, and pharmaceutical industries. However, its bioactivity can be compromised by its poor stability and solubility, which severely restrict its industrial applications. Encapsulation techniques can improve the functionality of LEO and preserve its bioactivity during storage. This review reports recent advances in the encapsulation of LEO by different methods, such as liposomes, emulsification, spray drying, complex coacervation, inclusion complexation, and electrospinning. It also outlines the effects of different processing conditions and carriers on the stability, physicochemical properties, and release behavior of encapsulated LEO. Moreover, this review focuses on the applications of encapsulated LEO in different food and non-food products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Zanela J, Shirai MA, Olivato JB, Casagrande M, Canonico CM, Wagner Júnior A, Yamashita F. Active Biodegradable Starch/PBAT-poly(butylene adipate-co-terephthalate) Film with Eucalyptus citriodora Essential Oil Incorporation. Foods 2024; 13:2104. [PMID: 38998610 PMCID: PMC11241364 DOI: 10.3390/foods13132104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Plastic pollution and the reduction in synthetic food additives are demands that emerge from consumers, leading to the development of biodegradable plastic materials. The use of essential oils-EOs-has been researched because it is a natural product with antioxidant properties. Due to its nature, EO is composed of volatile compounds that can be lost during extrusion. The aim of this work was to produce active biodegradable starch/PBAT films with the incorporation of neat Eucalyptus citriodora EO (0.5, 1.0, and 1.5%) or EO microencapsulated by spray drying (2.5, 5.0, and 7.5%), aiming at the protection of the EO. The produced films showed adequate mechanical properties (tensile strength ranged from 5.72 to 7.54 MPa and the elongation at break ranged from 319 to 563%). Testing in food simulants showed that the films retained antioxidant activity, being more suitable for use in fatty or non-acid foods, with the microencapsulation process offering protection to the EO during the process.
Collapse
Affiliation(s)
- Juliano Zanela
- Department of Food Science and Technology, State University of Londrina, Rod. Celso Garcia Cid (PR 445), Km 380, P.O. Box 6001, Londrina 86051-990, PR, Brazil
- Agronomy School, Federal University of Technology-Paraná, Estrada para Boa Esperança, Km 04, Dois Vizinhos 85660-000, PR, Brazil
| | - Marianne Ayumi Shirai
- Department of Food Technology, Federal University of Technology-Paraná, Londrina 86036-370, PR, Brazil
| | - Juliana Bonametti Olivato
- Pharmaceutical Sciences Department, State University of Ponta Grossa, Av. General Carlos Cavalcante, 4748, Ponta Grossa 84030-900, PR, Brazil
| | - Maira Casagrande
- Agronomy School, Federal University of Technology-Paraná, Estrada para Boa Esperança, Km 04, Dois Vizinhos 85660-000, PR, Brazil
| | - Cristian Medrado Canonico
- Agronomy School, Federal University of Technology-Paraná, Estrada para Boa Esperança, Km 04, Dois Vizinhos 85660-000, PR, Brazil
| | - Américo Wagner Júnior
- Agronomy School, Federal University of Technology-Paraná, Estrada para Boa Esperança, Km 04, Dois Vizinhos 85660-000, PR, Brazil
| | - Fabio Yamashita
- Department of Food Science and Technology, State University of Londrina, Rod. Celso Garcia Cid (PR 445), Km 380, P.O. Box 6001, Londrina 86051-990, PR, Brazil
| |
Collapse
|
14
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Ma D, Yang B, Zhao J, Yuan D, Li Q. Advances in protein-based microcapsules and their applications: A review. Int J Biol Macromol 2024; 263:129742. [PMID: 38278389 DOI: 10.1016/j.ijbiomac.2024.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.
Collapse
Affiliation(s)
- Donghui Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China.
| |
Collapse
|
16
|
Guo H, Lan T, Qian J, Luo Y, Tian X, Yin H, Xu H, Cui H, Shen X, Guo Q. A Versatile Nanoemulsion of Antibiotic and Eucalyptol with Synergistic Effects Against E. Coli Infected Urocystitis. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 03/18/2025]
Abstract
AbstractThe extensive use and misuse of antibiotics have resulted in bacterial resistance becoming increasing commonplace. Essential oils (EOs) are known to possess antimicrobial properties and therefore have many potential practical applications. However, the default of hydrophobicity, chemical instability, and volatility limit scope of application. Encapsulation of EOs in colloidal delivery systems can mitigate these challenges and allow for greater efficacy. A homogenous nanoemulsion (HS15‐CE) containing a combination of eucalyptol (Euc) and cefradine (Cef) is developed to explore its synergistic effect on antibacterial activity and potentially reduce the amount of antibiotic required to treat bacterial infections. The HS15‐CE nanoemulsion displays a synergistic effect on the inhibition of Escherichia coli (E. coli) growth in vitro, significantly decreasing the minimum inhibitory concentration (MIC) by eight times. The ex vivo imaging reveals high accumulation concentrations and long retention in bladders. Moreover, the nanoemulsion alleviates the E. coli induced cystitis infection, as evidenced by decreased bacterial colonies in urine, reduced inflammatory cytokines, and increased expression of tight junctional protein ZO‐1. These findings suggest the potential of the HS15‐CE nanoemulsion in providing a synergistic effect for the treatment of bacterial urocystitis.
Collapse
Affiliation(s)
- Honglei Guo
- Department of Nephrology the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing 210029 China
| | - Tianyu Lan
- College of Ethnic Medicine Guizhou Minzu University Guiyang Guizhou Province 550025 China
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Jun Qian
- Department of Nephrology the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing 210029 China
| | - Yongjun Luo
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Xinxin Tian
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Hao Yin
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou 215101 China
| | - Hui Xu
- Kuang Yaming Honors School, Nanjing University Nanjing 210023 China
| | - Hongqing Cui
- Department of Nephrology the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing 210029 China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| |
Collapse
|
17
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Sanei-Dehkordi A, Heiran R, Montaseri Z, Elahi N, Abbasi Z, Osanloo M. Promising Larvicidal Effects of Nanoliposomes Containing Carvone and Mentha spicata and Tanacetum balsamita Essential Oils Against Anopheles stephensi. Acta Parasitol 2024; 69:216-226. [PMID: 37979013 DOI: 10.1007/s11686-023-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The use of synthetic pesticides to control the spread of mosquito-borne diseases has caused environmental pollution and insecticide resistance in mosquitoes. Developments of new green insecticides have thus received more attention to overcome these problems. METHODS Nanoliposomes containing carvone and essential oils were first prepared. The nanoliposome physicochemical characteristics (particle size, morphology, and successful loading) were then evaluated by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and the Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) analyses. Larvicidal effects of carvone, Mentha spicata, and Tanacetum balsamita essential oils were investigated against the main malaria vector, Anopheles stephensi, in non-formulated and nanoformulated states. RESULTS The larvicidal effects of nanoformulated states were significantly more potent (7.2 folds, 3.5 folds, and 8 folds) than non-formulated states. Nanoliposomes containing M. spicata and T. balsamita essential oils with particle sizes of 175 ± 8 and 184 ± 5 nm showed the best efficacies (LC50 values = 9.74 and 9.36 μg/mL). CONCLUSION The prepared samples could be used as new green potent larvicides against An stephensi mosquito in further field trials. It is also recommended to investigate their efficacies against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Roghayeh Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abbasi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
19
|
Tan WN, Samling BA, Tong WY, Chear NJY, Yusof SR, Lim JW, Tchamgoue J, Leong CR, Ramanathan S. Chitosan-Based Nanoencapsulated Essential Oils: Potential Leads against Breast Cancer Cells in Preclinical Studies. Polymers (Basel) 2024; 16:478. [PMID: 38399856 PMCID: PMC10891598 DOI: 10.3390/polym16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Since ancient times, essential oils (EOs) derived from aromatic plants have played a significant role in promoting human health. EOs are widely used in biomedical applications due to their medicinal properties. EOs and their constituents have been extensively studied for treating various health-related disorders, including cancer. Nonetheless, their biomedical applications are limited due to several drawbacks. Recent advances in nanotechnology offer the potential for utilising EO-loaded nanoparticles in the treatment of various diseases. In this aspect, chitosan (CS) appears as an exceptional encapsulating agent owing to its beneficial attributes. This review highlights the use of bioactive EOs and their constituents against breast cancer cells. Challenges associated with the use of EOs in biomedical applications are addressed. Essential information on the benefits of CS as an encapsulant, the advantages of nanoencapsulated EOs, and the cytotoxic actions of CS-based nanoencapsulated EOs against breast cancer cells is emphasised. Overall, the nanodelivery of bioactive EOs employing polymeric CS represents a promising avenue against breast cancer cells in preclinical studies.
Collapse
Affiliation(s)
- Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Benedict Anak Samling
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Nelson Jeng-Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Joseph Tchamgoue
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Chean-Ring Leong
- Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| |
Collapse
|
20
|
Sala-Luis A, Oliveira-Urquiri H, Bosch-Roig P, Martín-Rey S. Eco-Sustainable Approaches to Prevent and/or Eradicate Fungal Biodeterioration on Easel Painting. COATINGS 2024; 14:124. [DOI: 10.3390/coatings14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Eliminating and controlling fungal biodeterioration is one of the most important challenges of easel painting conservation. Historically, the pathologies produced by biodeterioration agents had been treated with non-specific products or with biocides specially designed for conservation but risky for human health or the environment due to their toxicity. In recent years, the number of research that studied more respectful solutions for the disinfection of paintings has increased, contributing to society’s efforts to achieve the Sustainable Development Goals (SDGs). Here, an overview of the biodeterioration issues of the easel paintings is presented, critically analyzing chemical and eco-sustainable approaches to prevent or eradicate biodeterioration. Concretely, Essential Oils and light radiations are studied in comparison with the most used chemical biocides in the field, including acids, alcohols, and quaternary ammonium salts. This review describes those strategies’ biocidal mechanisms, efficiency, and reported applications in vitro assays on plates, mockups, and real scale. Benefits and drawbacks are evaluated, including workability, easel painting material alterations, health risks, and environmental sustainability. This review shows innovative and eco-friendly methods from an easel painting conservation perspective, detecting its challenges and opportunities to develop biocontrol strategies to substitute traditional chemical products.
Collapse
Affiliation(s)
- Agustí Sala-Luis
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Haizea Oliveira-Urquiri
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Susana Martín-Rey
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
21
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Barreto-Cruz OT, Henao Zambrano JC, Castañeda-Serrano RD, Peñuela Sierra LM. Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic ( Allium sativum) and Oregano ( Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep. Vet Sci 2023; 10:695. [PMID: 38133246 PMCID: PMC10747443 DOI: 10.3390/vetsci10120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
This study assessed the impact of a mixture of garlic (Allium sativum) and oregano (Origanum vulgare) essential oils (EOGOs) on in vitro dry matter digestibility (IVDMD) and in vivo apparent nutrient digestibility. Different EOGO inclusion levels were evaluated to assess the dose response and potential effects of the mixture. Three EOGO inclusion levels (0.5, 0.75, and 1 mL/kg of incubated dry matter) were evaluated in vitro, while four treatments (0.5, 0.75, and 1 mL/day of EOGO and a control group) were tested in vivo on 12 West African sheep. A randomized controlled trial was conducted using a 4 × 4 design. Blood parameters (glucose, blood urea nitrogen, and β-hydroxybutyrate) were measured to observe the effect of EOGO on the metabolism. The results showed that the inclusion of EOGO significantly enhanced IVDMD at low levels (p < 0.052) compared with the highest levels in treatments containing 0.5 and 0.75 mL/kg of EOGO dry matter. A higher intake of dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF) (p < 0.05) was observed in the in vivo diets with the inclusion of EOGO. In terms of in vivo apparent digestibility, significant differences were found among treatments in the digestibility coefficients of DM, CP, and NDF. EOGO inclusion increased the digestibility of DM. CP digestibility displayed a cubic effect (p < 0.038), with the lowest values of digestibility observed at 1 mL EOGO inclusion. Additionally, NDF digestibility showed a cubic effect (p < 0.012), with the highest value obtained at 0.75 mL of EOGO inclusion. The inclusion levels above 0.75 mL EOGO showed a cubic effect, which indicates that higher concentrations of EOGO may not be beneficial for the digestibility of CP and NDF. Although no significant difference was observed in total digestible nutrients, a linear trend was observed (p < 0.059). EOGO improved the intake of DM, CP, and NDF. EOGO supplementation improved the digestibility of DM and NDF, with optimal levels observed at 0.5 mL/day. No significant effects were observed in the blood parameters. These results suggest that EOGO has the potential as an additive in ruminal nutrition to improve food digestibility and serve as an alternative to antibiotic additives. The use of EOGO potentially improves fiber digestion and may reduce the use of antibiotics in livestock production. Garlic (A. sativum) and oregano (O. vulgare) essential oils effectively modulated fiber digestibility at 0.75 mL/day. Garlic (A. sativum) and oregano (O. vulgare) essential oils have the potential to improve digestibility at low inclusion levels and serve as an alternative to antibiotic additives. The effectiveness of essential oils is greater in a mixture and at lower doses.
Collapse
Affiliation(s)
- Olga Teresa Barreto-Cruz
- Block 5 Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Department of Animal Production, University Cooperative of Colombia, Ibague 730003, Colombia;
| | - Juan Carlos Henao Zambrano
- Block 5 Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Department of Animal Production, University Cooperative of Colombia, Ibague 730003, Colombia;
| | - Roman David Castañeda-Serrano
- Department of Animal Production, University of Tolima, Santa Helena 42 Street n 2, Ibague 730006, Colombia; (R.D.C.-S.); (L.M.P.S.)
| | - Lina Maria Peñuela Sierra
- Department of Animal Production, University of Tolima, Santa Helena 42 Street n 2, Ibague 730006, Colombia; (R.D.C.-S.); (L.M.P.S.)
| |
Collapse
|
23
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
24
|
He J, Hadidi M, Yang S, Khan MR, Zhang W, Cong X. Natural food preservation with ginger essential oil: Biological properties and delivery systems. Food Res Int 2023; 173:113221. [PMID: 37803539 DOI: 10.1016/j.foodres.2023.113221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.
Collapse
Affiliation(s)
- Jinman He
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; School of Life Sciences, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Siyuan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
25
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Tsitlakidou P, Tasopoulos N, Chatzopoulou P, Mourtzinos I. Current status, technology, regulation and future perspectives of essential oils usage in the food and drink industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6727-6751. [PMID: 37158299 DOI: 10.1002/jsfa.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Nowadays, essential oils (EOs) have a wide use in many applications such as in food, cosmetics, pharmaceutical and animal feed products. Consumers' preferences concerning healthier and safer foodstuffs lead to an increased demand for natural products, in replacement of synthetic substances, used as preservatives, flavourings etc. EOs, besides being safe, are promising alternatives as natural food additives, and much research has been carried out on their antioxidant and antimicrobial activity. The initial purpose of this review is to discuss conventional and 'green' extraction techniques along with their basic mechanism for the isolation of EOs from aromatic plants. This review aims to provide a broad overview of the current knowledge about the chemical constitution of EOs while considering the existence of different chemotypes, since bioactivity is attributed to the chemical composition - qualitative and quantitative - of EOs. Although the food industry primarily uses EOs as flavourings, an overview on recent applications of EOs in food systems and active packaging is provided. EOs exhibit poor solubility in water, oxidation susceptibility, negative organoleptic effect and volatility, restricting their use. Encapsulation techniques have been proven to be one of the best approaches to preserve the biological activities of EOs and minimize their effects on food sensory qualities. Herein, different encapsulation techniques and their basic mechanism for loading EOs are discussed. EOs are highly accepted by consumers, who are often under the misconception that 'natural' means safe. This is, however, an oversimplification, and the possible toxicity of EOs should be taken into consideration. Thus, in the final section of the current review, the focus is on current EU legislation, safety assessment and sensory evaluation of EOs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Petroula Tsitlakidou
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Tasopoulos
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization - DIMITRA, Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Guan N, Shi Y, Tong H, Yang Y, Li J, Guo D, Wang X, Shan Z, Lü X, Shi C. Inhibition of Cronobacter sakazakii Biofilm Formation and Expression of Virulence Factors by Coenzyme Q 0. Foodborne Pathog Dis 2023; 20:442-452. [PMID: 37669036 DOI: 10.1089/fpd.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
In this study, we investigated the inhibitory effects of coenzyme Q0 (CoQ0) on biofilm formation and the expression of virulence genes by Cronobacter sakazakii. We found that the minimum inhibitory concentration of CoQ0 against C. sakazakii strains ATCC29544 and ATCC29004 was 100 μg/mL, while growth curve assays showed that subinhibitory concentrations (SICs) of CoQ0 for both strains were 6.4, 3.2, 1.6 and 0.8 μg/mL. Assays exploring the inhibition of specific biofilm formation showed that SICs of CoQ0 inhibited biofilm formation by C. sakazakii in a dose-dependent manner, which was confirmed by scanning electron microscopy and confocal laser scanning microscopy analyses. CoQ0 inhibited the swimming and swarming motility of C. sakazakii and reduced its ability to adhere to and invade HT-29 cells. In addition, CoQ0 impeded the ability of C. sakazakii to survive and replicate within RAW 264.7 cells. Finally, real-time polymerase chain reaction analysis confirmed that nine C. sakazakii genes associated with biofilm formation and virulence were downregulated in response to CoQ0 treatment. Overall, our findings suggest that CoQ0 is a promising antibiofilm agent and provide new insights for the prevention and control of infections caused by C. sakazakii.
Collapse
Affiliation(s)
- Ning Guan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yiqi Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Haoyu Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Waresindo WX, Priyanto A, Sihombing YA, Hapidin DA, Edikresnha D, Aimon AH, Suciati T, Khairurrijal K. Konjac glucomannan-based hydrogels with health-promoting effects for potential edible electronics applications: A mini-review. Int J Biol Macromol 2023; 248:125888. [PMID: 37473898 DOI: 10.1016/j.ijbiomac.2023.125888] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Konjac glucomannan (KGM), a dietary fiber hydrocolloid polysaccharide isolated from Amorphophallus konjac tubers, has potential applications in various fields. However, the use of KGM-based hydrogels has mainly focused on the food, biomedical, and water treatment industries. KGM possesses several health benefits and could be a promising candidate for use in edible electronics. This paper presents the first review of KGM-based hydrogels as edible electronics and their potential health benefits. The paper initially focuses on the health-promoting effects of KGM-based hydrogels, such as prebiotic effects, antiobesity, antioxidant, and antibacterial properties. Then, it discusses the feasible design strategies for KGM-based hydrogels as edible electronics, considering their flexibility, mechanical properties, response to stimuli, degradability aspects, their role as electronic device components, and the retention period of the devices. Finally, this review outlines future directions for developing KGM-based hydrogels for use in edible electronics.
Collapse
Affiliation(s)
- William Xaveriano Waresindo
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Aan Priyanto
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Yuan Alfinsyah Sihombing
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dian Ahmad Hapidin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; University Center of Excellence - Nutraceutical, Bioscience, and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Akfiny Hasdi Aimon
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; University Center of Excellence - Nutraceutical, Bioscience, and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Sciences, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Lampung 35365, Indonesia.
| |
Collapse
|
29
|
Pires JB, Santos FND, Costa IHDL, Kringel DH, Zavareze EDR, Dias ARG. Essential oil encapsulation by electrospinning and electrospraying using food proteins: A review. Food Res Int 2023; 170:112970. [PMID: 37316009 DOI: 10.1016/j.foodres.2023.112970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Proteins are excellent polymeric materials for encapsulating essential oils (EOs) by electrospinning and electrospraying to protect these compounds and form nanomaterials with active properties. Proteins can encapsulate bioactive molecules by several mechanisms, including surface activity, absorption and stabilization mechanisms, amphiphilic nature, film-forming capacity, foaming, emulsification, and gelation, due to interactions among their functional groups. However, proteins have some limitations in encapsulating EOs by the electrohydrodynamic process. Their properties can be improved by using auxiliary polymers, increasing their charges by adding ionic salts or polyelectrolytes, denaturing their structure by heat, and exposure to specific pH conditions and ionic strength. This review addresses the main proteins used in electrospinning/electrospraying techniques, production methods, their interactions with EOs, bioactive properties, and applications in food matrices. Multivariate analysis associated with bibliometrics of metadata extracted from studies in Web of Science using the keywords electrospinning and essential oil (EO) were used as the search strategy.
Collapse
Affiliation(s)
- Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Igor Henrique de Lima Costa
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | | | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
30
|
Malekjani N, Karimi R, Assadpour E, Jafari SM. Control of release in active packaging/coating for food products; approaches, mechanisms, profiles, and modeling. Crit Rev Food Sci Nutr 2023; 64:10789-10811. [PMID: 37401796 DOI: 10.1080/10408398.2023.2228413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antimicrobial or antioxidant active packaging (AP) is an emerging technology in which a bioactive antimicrobial or antioxidant agent is incorporated into the packaging material to protect the contained product during its shelf life from deterioration. The important issue in AP is making a balance between the deterioration rate of the food product and the controlled release of the bioactive agent. So, the AP fabrication should be designed in such a way that fulfills this goal. Modeling the controlled release is an effective way to avoid trial and error and time-consuming experimental runs and predict the release behavior of bioactive agents in different polymeric matrices and food/food simulants. To review the release of bioactive compounds from AP, in the first part of this review we present an introductory explanation regarding the release controlling approaches in AP. Then the release mechanisms are explained which are very important in defining the appropriate modeling approach and also the interpretation of the modeling results. Different release profiles that might be observed in different packaging systems are also introduced. Finally, different modeling approaches including empirical and mechanistic techniques are covered and the recent literature regarding the utilization of such approaches to help design new AP is thoroughly studied.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
31
|
Zhao Y, Wang Y, Zhang Z, Li H. Advances in Controllable Release Essential Oil Microcapsules and Their Promising Applications. Molecules 2023; 28:4979. [PMID: 37446642 DOI: 10.3390/molecules28134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Essential oils (EOs) have emerged as natural and popular ingredients used in the preparation of safe and sustainable products because of their unique characteristics, such as antibacterial and antioxidant activity. However, due to their high volatility, poorly solubility in water, and susceptibility to degradation and oxidation, the application of EOs is greatly limited. One of the promising strategies for overcoming these restrictions is encapsulation, which involves in the entrapment of EOs inside biocompatible materials to utilize their controllable release and good bioavailability. In this review, the microencapsulation of the controllable release EOs and their applications are investigated. The focus is on the antimicrobial mechanism of various EOs on different bacteria and fungi, release mechanism of microencapsulated EOs, and preparation research progress of the controllable EOs microcapsules. In addition, their applications are introduced in relation to the food, textiles, agriculture, and medical fields.
Collapse
Affiliation(s)
- Yana Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Yanbo Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
32
|
Su R, Guo X, Cheng S, Zhang Z, Yang H, Wang J, Song L, Liu Z, Wang Y, Lü X, Shi C. Inactivation of Salmonella using ultrasound in combination with Litsea cubeba essential oil nanoemulsion and its bactericidal application on cherry tomatoes. ULTRASONICS SONOCHEMISTRY 2023; 98:106481. [PMID: 37336076 PMCID: PMC10300259 DOI: 10.1016/j.ultsonch.2023.106481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The presence of Salmonella in nature poses a significant and unacceptable threat to the human public health domain. In this study, the antibacterial effect and mechanism of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella. LEON + US treatment has a significant bactericidal effect on Salmonella. Reactive oxygen species (ROS), malondialdehyde (MDA) detection, N-phenyl-l-naphthylamine (NPN) uptake and nucleic acid release assays showed that LEON + US exacerbated cell membrane lipid peroxidation and increased the permeability of the cell membrane. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) showed that LEON + US treatment was able to alter cell morphology. It can be observed by flow cytometry (FCM) that LEON + US treatment can cause cell apoptosis. In addition, bacterial counts of cherry tomatoes treated with LEON (0.08 μL/mL) + US (345 W/cm2) for 9 min were reduced by 6.50 ± 0.20 log CFU/mL. This study demonstrates that LEON + US treatment can be an effective way to improve the safety of fruits and vegetables in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingzi Wang
- School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Ebrahimi R, Fathi M, Ghoddusi HB. Nanoencapsulation of oregano essential oil using cellulose nanocrystals extracted from hazelnut shell to enhance shelf life of fruits: Case study: Pears. Int J Biol Macromol 2023; 242:124704. [PMID: 37146853 DOI: 10.1016/j.ijbiomac.2023.124704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
This study aimed to investigate the potential application of cellulose nanocrystals (CNCs) extracted from an agricultural waste for encapsulation of oregano essential oil (OEO) and subsequently their use for coating to improve the shelf life of pears as a model. By hydrolyzing hazelnut shell cellulose under the optimum conditions, high crystalline CNCs with a zeta potential of -67.8 ± 4.4 mV and a diameter of 157 ± 10 nm were produced. Different concentrations of OEO (10-50 % w/w) were incorporated into CNCs and characterized using FTIR, XRD, SEM and TEM. OEO containing 50 % CNC with the highest EE and LC was selected for coating. Pears were coated with gluten containing 0.5, 1.5 and 2 % encapsulated OEO (EOEO) and pure OEO and stored for 28 days. Physicochemical, microbial and sensory properties of the pears were examined. Microbial analysis showed that EOEO2% was more effective in controlling microbial growth than controls and pure OEO, and a 1.09 Log reduction in bacterial count was recorded on day 28 of storage when compared to control. It was concluded that CNCs produced from an agricultural waste and loaded on an essential oil could be used to extend the shelf life of pear and potentially other fruits.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid B Ghoddusi
- Microbiology Research Unit (MRU), School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
34
|
Chen X, Yang H, Li C, Hu W, Cui H, Lin L. Enhancing the targeting performance and prolonging the antibacterial effects of clove essential oil liposomes to Campylobacter jejuni by antibody modification. Food Res Int 2023; 167:112736. [PMID: 37087219 DOI: 10.1016/j.foodres.2023.112736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The application of plant essential oil liposomes to prevent and control food safety risks caused by Campylobacter jejuni (C. jejuni) still faces challenges such as lack of targeting and low release rate. Here, a bacteria-targeted and protease-activated antibacterial liposome (ACCLPs) was successfully synthesized through encapsulation of clove essential oil (CEO) by film dispersion method, embedding of casein by freeze-thaw method, and conjugation of C. jejuni antibody on the liposome membrane by post-insertion method. The average particle size, the essential oil encapsulation rate, the casein mosaic rate, and the antibody coupling efficiency of ACCLPs were determined as185.87 nm,16.9%,70.1% and 87.5%, respectively. The modification with C. jejuni antibody could significantly improve the targeting of ACCLPs to C. jejuni. Controlled release experiments showed that the exocrine protease from C. jejuni could hydrolyze the embedded casein and perforation on the ACCLPs, thus leading to a bacteria-dependent CEO release and significant prolonging the antibacterial effects of ACCLPs. Application results of ACCLPs on C. jejuni-contaminated foods showed that ACCLPs could effectively inhibit C. jejuni in a variety of meat products, fruits and vegetables and extend their shelf life without significantly affecting food quality. The results above in this work would provide a new view for the development of high efficient liposome-based antibacterial system of plant essential oil.
Collapse
|
35
|
Valinezhad N, Talebi AF, Alamdari S. Biosynthesize, physicochemical characterization and biological investigations of chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. Int J Biol Macromol 2023; 241:124503. [PMID: 37085080 DOI: 10.1016/j.ijbiomac.2023.124503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The bioavailability, solubility, stability, and evaporation rate of essential oils can all be improved by using appropriate nanocarriers. This study describes the simple biosynthesize, physicochemical, optical, and biological activity of Chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. The prepared nanocomposite was evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV-vis and photoluminescence (PL) techniques. The XRD investigation showed that crystallinity indexes of CS-FEO nanocomposite were lower than that of the pure CS and higher than nano-CS. According to SEM/TEM images, a spherical shape with a particle size distribution of around 50-250 nm for nanocomposite was obtained. PL measurement exhibited the addition of FEO caused a strong red emission. GC-MS analysis showed 40 various components in FEO. The antibacterial activity was studied using broth micro-dilution, disc diffusion, colony counts, and well agar diffusion methods against Gram-positive and Gram-negative bacteria. The results revealed that CS-FEO has stronger antibacterial activities than pure CS. It was also observed that the combined use of CS with FEO resulted in synergistic effects against studied bacteria. Obtained results imply that the CS-FEO may provide a new outlook in biomedical applications.
Collapse
Affiliation(s)
- Negin Valinezhad
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Ahmad Farhad Talebi
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| | - Sanaz Alamdari
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| |
Collapse
|
36
|
Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK. Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibition of fungi and aflatoxin B 1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int J Biol Macromol 2023; 233:123565. [PMID: 36740131 DOI: 10.1016/j.ijbiomac.2023.123565] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 μL/mL, respectively and AFB1 production at 5.0 μL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
37
|
Chávez-Delgado EL, Jacobo-Velázquez DA. Essential Oils: Recent Advances on Their Dual Role as Food Preservatives and Nutraceuticals against the Metabolic Syndrome. Foods 2023; 12:1079. [PMID: 36900596 PMCID: PMC10000519 DOI: 10.3390/foods12051079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Essential oils (EO) are compounds synthesized by plants as secondary products and are a complex mixture of volatile molecules. Studies have demonstrated their pharmacological activity in the prevention and treatment of metabolic syndrome (MetS). Moreover, they have been used as antimicrobial and antioxidant food additives. The first part of this review discusses the role of EO as nutraceuticals to prevent metabolic syndrome-related disorders (i.e., obesity, diabetes, and neurodegenerative diseases), showing results from in vitro and in vivo studies. Likewise, the second part describes the bioavailability and mechanisms of action of EO in preventing chronic diseases. The third part presents the application of EO as food additives, pointing out their antimicrobial and antioxidant activity in food formulations. Finally, the last part explains the stability and methods for encapsulating EO. In conclusion, EO dual role as nutraceuticals and food additives makes them excellent candidates to formulate dietary supplements and functional foods. However, further investigation is needed to understand EO interaction mechanisms with human metabolic pathways and to develop novel technological approaches to enhance EO stability in food systems to scale up these processes and, in this way, to overcome current health problems.
Collapse
Affiliation(s)
- Emily L. Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
38
|
Alvand ZM, Rahimi M, Rafati H. Chitosan decorated essential oil nanoemulsions for enhanced antibacterial activity using a microfluidic device and response surface methodology. Int J Biol Macromol 2023; 239:124257. [PMID: 36996964 DOI: 10.1016/j.ijbiomac.2023.124257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
In this work, the antibacterial activity of Satureja Khuzestanica essential oil nanoemulsions improved by employing chitosan (ch/SKEO NE) against E. coli bacterium. The optimum ch/SKEO NE with mean droplet size of 68 nm was attained at 1.97, 1.23, and 0.10%w/w of surfactant, essential oil and chitosan, using Response Surface Methodology (RSM). Applying microfluidic platform, the ch/SKEO NE resulted in improved antibacterial activity owing to the modification of surface properties. The nanoemulsion samples showed a significant rupturing effect on the E. coli bacterial cell membrane which resulted in a rapid release of cellular contents. This action was remarkably intensified by executing microfluidic chip in parallel to the conventional method. Having treated the bacteria in the microfluidic chip for 5 min with a 8 μg/mL concentration of ch/SKEO NE, the bacterial integrity disrupted quickly, and the activity was totally lost in a 10-min period at 37 μg/mL, while it took 5 h for a complete inhibition in the conventional method using the same concentration of ch/SKEO NE. It can be concluded that nanoemulsification of EOs using chitosan coating can intensify the interaction of nanodroplets with the bacterial membrane, especially within the microfluidic chips which provides high contact surface area.
Collapse
|
39
|
Meligy AM, El-Hamid MIA, Yonis AE, Elhaddad GY, Abdel-Raheem SM, El-Ghareeb WR, Mohamed M, Ismail H, Ibrahim D. Liposomal Encapsulated Oregano, Cinnamon, and Clove oils Enhanced the performance, bacterial metabolites Antioxidant potential, and Intestinal microbiota of Broiler Chickens. Poult Sci 2023; 102:102683. [PMID: 37120892 PMCID: PMC10173274 DOI: 10.1016/j.psj.2023.102683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Encapsulated phytochemicals with augmented therapeutic and nutritional characteristics have become promising alternatives to antimicrobials in the poultry industry. Hence, our key target was to explore the efficacy of liposomal encapsulation, as a novel carrier, for essential oils (LEOs) on growth, digestibility, intestinal microbiota, and bacterial metabolites of broiler chickens. Moreover, the impact of encapsulated EOs on transcription mechanisms targeting the genes encoding digestive enzymes, gut barrier functions and antioxidant potential of broiler chickens was evidenced. Four equal broiler groups were fed 4 basal diets fortified with LEOs (oregano, cinnamon, and clove) at the levels of 0, 200, 300, and 400 mg/kg diet. Our findings revealed significant improvement in body weight gain and feed conversion ratio of birds fed higher levels of LEOs. These results came concurrently with increasing the activities of digestive enzymes at both serum and molecular levels and consequently nutrient digestibility (dry matter, ether extract, crude protein, and crude fiber) in these groups. Remarkably, the abundance of beneficial bacteria as well as the bacterial metabolites (valeric acid, butyric acid, propionic acid, acetic acid, and total short-chain fatty acids) was increased, while that of pathogenic ones was reduced following dietary inclusion of LEOs. Of note, the mRNA expression of genes encoding antioxidant stability [catalase (CAT), superoxide dismutase 1 (SOD-1), glutathione peroxidase 1 (GPX-1), nuclear factor erythroid 2-related factor 2 (NRF2), NAD(P)H dehydrogenase quinone 1 (NQO1), and heme oxygenase-1 (HO-1)] as well as barrier functions [mucin-2 (MUC-2)] and tight junction proteins, TJP [junctional adhesion molecule-2 (JAM-2) and occludin] were noticeably upregulated in broilers fortified with 400 mg/kg diet of LEOs. Overall, the present work recommended dietary inclusion of LEOs as beneficial additives for attaining targeted performance, gut health and antioxidant stability in poultry farming.
Collapse
|
40
|
Soto ER, Rus F, Mirza Z, Ostroff GR. Yeast Particles for Encapsulation of Terpenes and Essential Oils. Molecules 2023; 28:molecules28052273. [PMID: 36903519 PMCID: PMC10005402 DOI: 10.3390/molecules28052273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Terpenes and essential oils are materials of great commercial use due to their broad spectra of antibacterial, antifungal, membrane permeation enhancement and antioxidant biological properties, as well as for their use as flavors and fragrances. Yeast particles (YPs) are 3-5 µm hollow and porous microspheres, a byproduct of some food-grade yeast (Saccharomyces cerevisiae) extract manufacturing processes, that have been used for the encapsulation of terpenes and essential oils with high payload loading capacity (up to 500% weight) and efficiency, providing stability and sustained-release properties. This review focuses on encapsulation approaches for the preparation of YP-terpene and essential oil materials that have a wide range of potential agricultural, food and pharmaceutical applications.
Collapse
|
41
|
Zhang J, Zhang M, Bhandari B, Wang M. Basic sensory properties of essential oils from aromatic plants and their applications: a critical review. Crit Rev Food Sci Nutr 2023; 64:6990-7003. [PMID: 36803316 DOI: 10.1080/10408398.2023.2177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
With higher standards in terms of diet and leisure enjoyment, spices and essential oils of aromatic plants (APEOs) are no longer confined to the food industry. The essential oils (EOs) produced from them are the active ingredients that contribute to different flavors. The multiple odor sensory properties and their taste characteristics of APEOs are responsible for their widespread use. The research on the flavor of APEOs is an evolving process attracting the attention among scientists in the past decades. For APEOs, which are used for a long time in the catering and leisure industries, it is necessary to analyze the components associated with the aromas and the tastes. It is important to identify the volatile components and assure quality of APEOs in order to expand their application. It is worth celebrating the different means by which the loss of flavor of APEOs can be retarded in practice. Unfortunately, relatively little research has been done on the structure and flavor mechanisms of APEOs. This also points the way to future research on APEOs.Therefore, this paper reviews the principles of flavor, identification of components and sensory pathways in humans for APEOs. Moreover, the article outlines the means of increasing the efficiency of using of APEOs. Finally, with respect to the sensory applications of APEOs, the review focuses on the practical application of APEOs in food sector and in aromatherapy.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mingqi Wang
- R & D Center, Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, China
| |
Collapse
|
42
|
György É, Laslo É, Salamon B. Antimicrobial impacts of selected Lamiaceae plants on bacteria isolated from vegetables and their application in edible films. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Assessment of Growth Inhibition of Eugenol-Loaded Nano-Emulsions against Beneficial Bifidobacterium sp. along with Resistant Escherichia coli Using Flow Cytometry. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal tract microbiota influences many aspects of the dietary components on colon health and during enteric infections, thus, playing a pivotal role in the colon health. Therefore, the eugenol (EU) nano-emulsion effective concentration reported in our previous study against cancer cells should be explored for safety against beneficial microbes. We evaluated the sensitivity of Bifidobacterium breve and B. adolescentis against EU-loaded nano-emulsions at 0, 300, 600 and 900 µm, which were effective against colon and liver cancer cells. Both B. breve and B. adolescentis showed comparable growth ranges to the control group at 300 and 600 µm, as evident from the plate count experimental results. However, at 900 µm, a slight growth variation was revealed with respect to the control group. The real-time inhibition determination through flow cytometry showed B. breve viable, sublethal cells (99.49 and 0.51%) and B. adolescentis (95.59 and 0.15%) at 900 µm, suggesting slight inhibition even at the highest tested concentration. Flow cytometry proved to be a suitable quantitative approach that has revealed separate live, dead, and susceptible cells upon treatment with EU nano-emulsion against Escherichia coli. Similarly, in the case of B. breve and B. adolescentis, the cells showed only live cells that qualitatively suggest EU nano-emulsion safety. To judge the viability of these sublethal populations of B. breve and B. adolescentis, Fourier transforms infrared spectroscopy was carried out, revealing no peak shift for proteins, lipids, DNA and carbohydrates at 900 µm EU nano-emulsion compared to the control. On the other hand, EU-loaded nano-emulsions (900 µm)-treated E. coli showed a clear peak shift for a membrane protein, lipids, DNA and carbohydrates. This study provides insights to utilize plant phenols as safe medicines as well as dietary supplements.
Collapse
|
44
|
Rather AH, Khan RS, Wani TU, Rafiq M, Jadhav AH, Srinivasappa PM, Abdal-Hay A, Sultan P, Rather SU, Macossay J, Sheikh FA. Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int J Biol Macromol 2023; 226:690-705. [PMID: 36513179 DOI: 10.1016/j.ijbiomac.2022.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, polyurethane (PU) and cellulose acetate (CA) electrospun fibers encapsulating rosemary essential oil (REO) and adsorbed silver (Ag) nanoparticles (NPs) were fabricated. The biologically inspired materials were analyzed for physicochemical characteristics using scanning electron microscopy, X-ray diffractometer, Fourier transform infrared, thermal gravimetric analysis, X-ray photoelectron spectroscopy, water contact angle, and water uptake studies. Results confirmed the presence of CA and Ag NPs on the PU micro-nanofibers increased the hydrophilicity from 107.1 ± 0.36o to 26.35 ± 1.06o. The water absorption potential increased from 0.07 ± 0.04 for pristine PU fibers to 12.43 ± 0.49 % for fibers with 7 wt% of CA, REO, and Ag NPs. The diffractometer confirmed the 2θ of 38.01°, 44.13o, and 64.33o, corresponding to the diffraction planes of Ag on the fibers. The X-ray photoelectron spectroscopy confirmed microfibers interfacial chemical interaction and surface changes due to CA, REO, and Ag presence. The inhibition tests on Staphylococcus aureus and Escherichia coli indicated that composites are antibacterial in activity. Moreover, synergistic interactions of REO and Ag NPs resulted in superior antibacterial activity. The cell viability and attachment assay showed improved hydrophilicity of the fibers, which resulted in better attachment of cells to the micro-nanofibers, similar to the natural extracellular matrix in the human body.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Taha Umair Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Muheeb Rafiq
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Arvind H Jadhav
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Puneethkumar M Srinivasappa
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Abdalla Abdal-Hay
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt; The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston, QLD 4006, Australia
| | - Phalisteen Sultan
- Department of Cellular and Molecular Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanantnagar, Srinagar 190005, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javier Macossay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States of America
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
45
|
Role of silica (SiO2) nano/micro-particles in the functionality of degradable packaging films/coatings and their application in food preservation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Impact of Coreopsis tinctoria Nutt. Essential oil microcapsules on the formation of biogenic amines and quality of smoked horsemeat sausage during ripening. Meat Sci 2023; 195:109020. [DOI: 10.1016/j.meatsci.2022.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
47
|
Guan P, Chang Y, Li S, Wang X, Dong Z, Zhou W, Zheng Q, Huang Z, Suo B. Transcriptome analysis reveals the molecular mechanism of cinnamaldehyde against Bacillus cereus spores in ready-to-eat beef. Food Res Int 2023; 163:112185. [PMID: 36596126 DOI: 10.1016/j.foodres.2022.112185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the antibacterial effect and mechanism of cinnamaldehyde on Bacillus cereus spores in ready-to-eat beef. The colour difference and texture of the ready-to-eat beef supplemented with cinnamaldehyde did not differ greatly from the colour and texture of the blank beef. However, cinnamaldehyde has an effective antibacterial effect on the total number of bacterial colonies and B. cereus spores in ready-to-eat beef. Transmission electron microscopy (TEM) analysis revealed that the cell membrane of B. cereus was disrupted by cinnamaldehyde, leading to leakage of intracellular components. Transcriptome sequencing (RNA-seq) indicated that the B. cereus spore resistance regulation system (sigB, sigW, rsbW, rsbV, yfkM and yflT) and phosphoenolpyruvate phosphotransferase system (PTS) (ptsH, ptsI and ptsG) respond positively to cinnamaldehyde in an adverse environment. Intracellular disorders due to damage to the cell membrane involve some transporters (copA, opuBA and opuD) and some oxidative stress systems (ywrO, scdA and katE) in the regulation of the body. However, downregulation of K+ transport channels (kdpD and kdpB), osmotic pressure regulation (opuE) and some oxidative stress (norR and srrA)-related genes may accelerate spore apoptosis. In addition, cinnamaldehyde also effectively inhibits the spore germination-related genes (smc, mreB and gerE). This study provides new insights into the molecular mechanism of the antibacterial effect of cinnamaldehyde on B. cereus spores in ready-to-eat beef.
Collapse
Affiliation(s)
- Peng Guan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuting Chang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Zijie Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weitao Zhou
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qi Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhongmin Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
48
|
Dehnad D, Emadzadeh B, Ghorani B, Rajabzadeh G, Kharazmi MS, Jafari SM. Nano-vesicular carriers for bioactive compounds and their applications in food formulations. Crit Rev Food Sci Nutr 2022; 64:5583-5602. [PMID: 36519525 DOI: 10.1080/10408398.2022.2156474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
49
|
Cao Z, Zhou D, Ge X, Luo Y, Su J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J Food Biochem 2022; 46:e14513. [PMID: 36385402 DOI: 10.1111/jfbc.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Fruits are highly susceptible to postharvest losses induced majorly by postharvest diseases. Peach are favored by consumers because of their high nutritional value and delicious taste. However, it was easy to be affected by fungal infection. The current effective method to control postharvest diseases of fruits is to use chemical fungicides, but these chemicals may cause adverse effects on human health and the residual was potentially harmful to nature and the environment. So, it is especially important to develop safe, non-toxic, and highly effective strategies for the preservation of the fruits. Essential oil, as a class of the natural bacterial inhibitor, has been proven to exhibit strong antibacterial activity, low toxicity, environmental friendliness, and induce fruit resistance to microorganism, which could be recognized as one of the alternatives to chemical fungicides. This paper reviews the research progress of essential oils (Eos) in the storage and preservation of fruits, especially the application in peach, as well as the application in active packaging such as edible coatings, microcapsules, and electrospinning loading. Electrospinning can prepare a variety of nanofibers from different viscoelastic polymer solutions, and has broad application prospects. The paper especially summarizes the application of the new Eos technology on peach. The essential oil with thymol, eugenol, and carvacrol as the main components has a better inhibitory effect on the postharvest disease of peaches, and can be further applied. PRACTICAL APPLICATIONS: As an environmentally friendly natural antibacterial agent, essential oil can be used as a substitute for chemical preservatives to keep fruits fresh. This paper summarizes the different preservation methods of essential oils for fruits, and especially summarizes the different preservation methods of essential oils for peaches after harvesting, as well as their inhibitory effects on pathogenic fungi. It could provide ideas for preservation of fruits and vegetables by essential oils.
Collapse
Affiliation(s)
- Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yali Luo
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
50
|
Ojeda-Piedra SA, Zambrano-Zaragoza ML, González-Reza RM, García-Betanzos CI, Real-Sandoval SA, Quintanar-Guerrero D. Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238187. [PMID: 36500284 PMCID: PMC9738418 DOI: 10.3390/molecules27238187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Consumers today demand the use of natural additives and preservatives in all fresh and processed foods, including meat and meat products. Meat, however, is highly susceptible to oxidation and microbial growth that cause rapid spoilage. Essential oils are natural preservatives used in meat and meat products. While they provide antioxidant and antimicrobial properties, they also present certain disadvantages, as their intense flavor can affect the sensory properties of meat, they are subject to degradation under certain environmental conditions, and have low solubility in water. Different methods of incorporation have been tested to address these issues. Solutions suggested to date include nanotechnological processes in which essential oils are encapsulated into a lipid or biopolymer matrix that reduces the required dose and allows the formation of modified release systems. This review focuses on recent studies on applications of nano-encapsulated essential oils as sources of natural preservation systems that prevent meat spoilage. The studies are critically analyzed considering their effectiveness in the nanostructuring of essential oils and improvements in the quality of meat and meat products by focusing on the control of oxidation reactions and microbial growth to increase food safety and ensure innocuity.
Collapse
Affiliation(s)
- Sergio A. Ojeda-Piedra
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
- Correspondence: ; Tel.: +52-5556232065
| | - Ricardo M. González-Reza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - Claudia I. García-Betanzos
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - Samantha A. Real-Sandoval
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54745, Mexico
| |
Collapse
|