1
|
Yang X, Liu B, Zhang L, Wang X, Xie J, Liang J. Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China. Toxins (Basel) 2025; 17:41. [PMID: 39852994 PMCID: PMC11769556 DOI: 10.3390/toxins17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw milk were collected from 160 pastures in three climate zones of China from October to November 2020. The results indicated the level of AFB1 and AFM1 ranged from 51.1 to 74.1 ng/kg and 3.0 to 7.0 ng/kg, respectively. Spatial analysis indicated the contamination was mostly concentrated in the temperate monsoon climate zone. On average, the estimated dietary exposure to AFM1 from milk and dairy products for Chinese consumers ranged from 0.0138 to 0.0281 ng/kg bw/day, with the MOE values below 10,000, and liver cancer risk of 0.00004-0.00009 cases/100,000 persons/year. For different groups, the average exposure to AFM1 was highest in the temperate monsoon climate zone and for toddlers.
Collapse
Affiliation(s)
- Xueli Yang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan 1st Street, Tianshan District, Urumqi 830001, China
| | - Bolin Liu
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fuhua Avenue, Economic and Technological Development Zone, Hefei 230601, China; (B.L.); (J.X.)
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| | - Jian Xie
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fuhua Avenue, Economic and Technological Development Zone, Hefei 230601, China; (B.L.); (J.X.)
| | - Jiang Liang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| |
Collapse
|
2
|
Liu X, Luo Y, Zhang Y, Xie Z, Xu C. Gold nanoparticle-mediated fluorescence resonance energy transfer for analytical applications in the fields of life health and safety. Talanta 2025; 282:127023. [PMID: 39406076 DOI: 10.1016/j.talanta.2024.127023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Fluorescence Resonance Energy Transfer (FRET) has emerged as a predominant, highly sensitive, and homogeneous optical analytical technique in the realm of analytical testing and bio-imaging. Gold nanoparticles (AuNPs) demonstrate a size-dependent, broader absorption range within visible wavelengths owing to the phenomenon of surface plasmon resonance. As a result, they can effectively act as light acceptors, enabling the creation of a donor-acceptor system crucial for achieving precise target analyte analysis. In this comprehensive review, we present an extensive survey of recent research advancements in the field of FRET techniques based on AuNPs for the analytical detection of a wide range of entities, including some biomolecules, pesticides, enzymes, microorganisms, food safety and environmental pollutants. Additionally, we elucidate the procedural strategies and underlying mechanisms involved. Finally, we provide perspectives on the current issues and future efforts surrounding the FRET applications of AuNPs in biological analysis. Overall, this review aims to provide a holistic comprehension of gold nanoparticle applications in life analysis using FRET, while also presenting a promising vision for future endeavors in this domain.
Collapse
Affiliation(s)
- Xuemei Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yunjing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Yong Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ziqi Xie
- College of Mathematics Statistics and Mechanics, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
3
|
Wang Y, Zhou A, Yu B, Sun X. Recent Advances in Non-Contact Food Decontamination Technologies for Removing Mycotoxins and Fungal Contaminants. Foods 2024; 13:2244. [PMID: 39063328 PMCID: PMC11276063 DOI: 10.3390/foods13142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural food commodities are highly susceptible to contamination by fungi and mycotoxins, which cause great economic losses and threaten public health. New technologies such as gamma ray irradiation, ultraviolet radiation, electron beam irradiation, microwave irradiation, pulsed light, pulsed electric fields, plasma, ozone, etc. can solve the problem of fungal and mycotoxin contamination which cannot be effectively solved by traditional food processing methods. This paper summarizes recent advancements in emerging food decontamination technologies used to control various fungi and their associated toxin contamination in food. It discusses the problems and challenges faced by the various methods currently used to control mycotoxins, looks forward to the new trends in the development of mycotoxin degradation methods in the future food industry, and proposes new research directions.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Aiyun Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Bei Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Pipoyan D, Hovhannisyan A, Beglaryan M, Mantovani A. Risk Assessment of AFM1 in Raw Milk and Dairy Products Produced in Armenia, a Caucasus Region Country: A Pilot Study. Foods 2024; 13:1518. [PMID: 38790817 PMCID: PMC11121432 DOI: 10.3390/foods13101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This paper presents the first assessment of dietary exposure to aflatoxin M1 (AFM1) and associated health risks through milk and dairy product consumption in Armenia. Data on AFM1 in raw milk were obtained from an annual residue monitoring program. Additionally, commonly consumed dairy products (pasteurized milk, cheese, sour cream, curd cheese) were sampled, considering the sources of raw milk used by dairy companies. Per capita consumption of raw milk was sourced from national food balance databases, while individual consumption data for dairy products was collected via a 24 h recall survey with 1400 adult respondents. Detectable levels of AFM1 were observed in 7.14% of raw milk samples (up to 0.334 μg/kg) and, albeit at lower amounts (up to 0.009 µg/kg), in 30% and 40% of sour cream and curd cheese, respectively. The AFM1 levels were lower than the national maximum permitted level (0.5 μg/kg); however, levels in raw milk exceeded the EU ML (0.05 μg/kg). The estimated margin of exposure values for dairy products indicated no significant risk, whereas a reasonable worst-case estimate, using the measurable levels of AFM1 in raw milk consumption indicated a potential public health concern. This study provides a scientific basis for evaluating aflatoxin issues in the Caucasus area.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (A.H.)
| | - Astghik Hovhannisyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (A.H.)
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (A.H.)
| | - Alberto Mantovani
- Italian National Food Safety Committee, Lungotevere Ripa 1, 00153 Rome, Italy;
| |
Collapse
|
5
|
Aptasensor-based assay for dual-readout determination of aflatoxin B1 in corn and wheat via an electrostatic force-mediated FRET strategy. Mikrochim Acta 2023; 190:80. [PMID: 36729205 DOI: 10.1007/s00604-023-05641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023]
Abstract
A rapid and sensitive aptasensor was established for the dual-readout determination of aflatoxin B1 (AFB1) utilizing an electrostatically mediated fluorescence resonance energy transfer (FRET) signal amplification strategy. In the presence of AFB1, the aptamer preferentially bound to AFB1, resulting in the aggregation of bare gold nanoparticles (AuNPs) induced by NaCl, accompanied by a change of AuNP solution from wine-red to purple. This color change was used for colorimetric channel analysis. Then, the positively charged quantum dots were introduced into reaction system and interacted with negatively charged AuNPs, which successfully converted the color signal into a more sensitive fluorescence signal through FRET. The fluorescence quenching efficiency decreased with increasing concentrations of AFB1, and the fluorescence of aptasensor gradually recovered. The variation of fluorescence intensity was employed for fluorometric channel analysis. Under the optimal conditions, the color and fluorescence signals exhibited excellent response to AFB1 concentration within the ranges 10-320 ng·mL-1 and 3-320 ng·mL-1, respectively, and the limit of detection was as low as 7.32 ng·mL-1 and 1.48 ng·mL-1, respectively. The proposed aptasensor exhibited favorable selectivity, good recovery (85.3-113.4% in spiked corn and wheat samples), stable reproducibility (RSD<13.3%), and satisfactory correlation with commercial kits (R2=0.998). The aptasensor developed integrates advantages of modification-free, dual-readout, self-calibration, easy operation, and cost-effectiveness, while providing a simple and universal strategy for rapid and sensitive detection of mycotoxins in foodstuffs.
Collapse
|
6
|
Xiong J, He S, Zhang S, Qin L, Yang L, Wang Z, Zhang L, Shan W, Jiang H. A label-free aptasensor for dual-mode detection of aflatoxin B1 based on inner filter effect using silver nanoparticles and arginine-modified gold nanoclusters. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
In-syringe dispersive micro-solid phase extraction method for the HPLC-fluorescence determination of aflatoxins in milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard‐Forget F, Waffo‐Téguo P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr Rev Food Sci Food Saf 2022; 21:1161-1197. [DOI: 10.1111/1541-4337.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Omar S. Ahmed
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Caroline Rouger
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA) INRAE Villenave d'Ornon France
| | | | - Pierre Waffo‐Téguo
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| |
Collapse
|
9
|
Development of a colorimetric aptasensor for aflatoxin B1 detection based on silver nanoparticle aggregation induced by positively charged perylene diimide. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|