1
|
Yang X, Liang J, Bao Q, Pan W, Wang Y, Wang K, Gong Y, Wu H, Liu Q. Preparation and characterization of polyvinyl alcohol and chitosan composite film with cassia oil encapsulated in β-cyclodextrin and its application in fresh banana. Int J Biol Macromol 2025; 301:140246. [PMID: 39870266 DOI: 10.1016/j.ijbiomac.2025.140246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films. FTIR, XRD, and SEM analyses demonstrated that cassia oil microcapsules (COM) were uniformly dispersed throughout the film and exhibited excellent compatibility with the matrix. The inclusion of 30 % COM improved the film's UV-blocking properties from 86.15 % to 91.03 %. Additionally, due to its hydrophobic nature, CO significantly reduced the water content to 9.02 % and 10.67 %. Furthermore, the COM enhanced the film's tensile strength from 21.18 MPa to 43.21 MPa, and increased its antioxidant capacity to 36.87 %. The results also indicated that 30 % COM significantly enhanced the film's antimicrobial activity against Escherichia coli and Staphylococcus aureus with inhibition zone diameters of 12.5 mm and 11.5 mm, while maintaining biosafety, as evidenced by unaltered cell survival rates in BEAS-2B and L02 cells. The film containing 30 % COM exhibited excellent preservation capacity for bananas, effectively extending their shelf life. These findings suggest that films containing COM have the potential to replace traditional plastic packaging in practical applications.
Collapse
Affiliation(s)
- Xiangjun Yang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Junjun Liang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Qingnan Bao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Weixuan Pan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Yue Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Kehui Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Yinming Gong
- Shuren School of Yangzhou Middle School Education Group, Yangzhou 225001, PR China
| | - Huiwen Wu
- Science and Technology Center of Fenyang College, Shanxi Medical University, Fenyang 032200, PR China; Cultivation Key Laboratory of Metabolic Cardiovascular Diseases Research, Fenyang 032200, PR China; Department of Oncology, Shanxi Province Fenyang Hospital, Fenyang 032200, PR China.
| | - Qi Liu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China.
| |
Collapse
|
2
|
Hou J, Ding Y, Li W, Guo Z, Yan X. Application of edible coatings in ' Emerald' blueberry under room storage conditions and storage kinetics analysis. Food Sci Biotechnol 2025; 34:1371-1381. [PMID: 40110414 PMCID: PMC11914560 DOI: 10.1007/s10068-024-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 03/22/2025] Open
Abstract
Blueberry is nutritious but perishable, which could be preserved using edible coatings. However, the blueberry storage kinetics at room conditions were rarely revealed. So, the 'Emerald' blueberries were adopted to divided into four groups including control (CK), carboxymethylcellulose (CMC), chitosan (CS) and layer-by-layer coatings (LBL) groups, to analyze the coatings effects on the blueberry qualities and storage kinetics. The LBL coatings extended the storage life up to 9 days at (20 ± 5) °C and (60 ± 10) % relative humidity. Besides, the zero-order reaction models could be represented the storage kinetics parameters like rotting rate, weight loss rate, hardness, SSC, respiration rate, and DPPH∙ scavenging rate for all coatings, except the cell membrane permeability and the POD activity. The blueberry rotting rate in the LBL group were 0.844/day, showing the slowest variation among the four groups. It provided the optimal edible coatings for blueberry preservation. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01764-0.
Collapse
Affiliation(s)
- Jumin Hou
- College of Food Science and Engineering, Ministry of Education Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Changchun, 130012 China
| | - Yinghui Ding
- College of Food Science and Engineering, Ministry of Education Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Changchun, 130012 China
| | - Weizhuo Li
- College of Food Science and Engineering, Ministry of Education Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Changchun, 130012 China
| | - Zixuan Guo
- College of Food Science and Engineering, Ministry of Education Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Changchun, 130012 China
| | - Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, NO. 5333, Xi'an Road, Changchun, 130033 Jilin China
| |
Collapse
|
3
|
Liu X, Zheng Z, Liu Y. Lipophilic antioxidants in edible oils: Mechanisms, applications and interactions. Food Res Int 2025; 200:115423. [PMID: 39779163 DOI: 10.1016/j.foodres.2024.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils. This review focused on the diverse mechanisms and applications of lipophilic antioxidants to inhibit oxidation of edible oils. A range of both synthetic and natural lipophilic antioxidants, including butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), tocopherols, tocopherols, carotenoids, flavonoids, ascorbyl palmitate, and lipophilic phenolic compounds were discussed. Moreover, lipophilic antioxidant extracts, as the mixture of natural lipophilic antioxidants, can significantly inhibit oil oxidation. The interaction mechanisms of natural lipophilic antioxidants were reviewed. However, compared to synthetic lipophilic antioxidants, the mechanisms and interactions of natural lipophilic antioxidants need to be further studied. Additionally, their stability and solubility, the extraction and purification costs, and the impact on the sensory must be considered when applying natural lipophilic antioxidants to edible oils. This review serves as a timely reference for application of natural lipophilic antioxidants in edible oils, contributing to the development of healthier and more sustainable options.
Collapse
Affiliation(s)
- Xuejing Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
4
|
Iñiguez-Moreno M, Santiesteban-Romero B, Flores-Contreras EA, Scott-Ayala S, Araújo RG, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. Sustainable Solutions for Postharvest Berry Protection: Natural Edible Coatings. FOOD BIOPROCESS TECH 2024; 17:3483-3505. [DOI: 10.1007/s11947-023-03301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2024]
|
5
|
Bizymis AP, Giannou V, Tzia C. Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules 2024; 29:3754. [PMID: 39202834 PMCID: PMC11356815 DOI: 10.3390/molecules29163754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio), and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio). The bioactive components incorporated (5, 10 and 15% v/v) were as follows: (i) pomace oil-based nanoemulsion (NE) aiming to enhance barrier properties, and (ii) caffeine (C), aiming to enhance the antioxidant activity of films, respectively. Indeed, NE addition led to very high barrier properties (low oxygen and water vapor permeability), increased flexibility and reduced color. Furthermore, the contribution of these coatings to fresh strawberries' preservation under cold storage was investigated, with very promising results concerning weight loss, color difference, and preservation of fruit moisture and quantity of O2 and CO2 inside the packages. Additionally, C addition led to very high antioxidant activity, reduced color and improved barrier properties. Finally, the contribution of these coatings to avocado's preservation under cold storage was investigated, with very encouraging results for color difference, hardness and peroxide value of the fruit samples.
Collapse
Affiliation(s)
| | | | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Polytechnioupoli, Zografou, 15780 Athens, Greece; (A.-P.B.); (V.G.)
| |
Collapse
|
6
|
Silue Y, Fawole OA. Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions. Foods 2024; 13:2321. [PMID: 39123513 PMCID: PMC11311519 DOI: 10.3390/foods13152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Edible coatings and films have gained substantial attention as a promising and sustainable technology for fruit preservation. This study employed a bibliometric analysis to identify core research areas, research gaps, and emerging trends, thus providing a comprehensive roadmap for future research on the use of edible coatings and films for fruit quality preservation. The study involved 428 research articles related to edible coatings and films for fruit preservation published in the Scopus database before 06 October 2023. Utilizing Vosviewer and R for network analysis, we generated network visualization maps, research performance statistics, and identified key contributors and their collaborations. The results show the evolution of this field into three distinct phases: Initial Exploration (1998-2007), Growing Interest (2008-2015), and Rapid Expansion (2016-2023). The study revealed contributions from 1713 authors, with the first article appearing in 1998. Brazil and China emerged as the most productive countries in this domain. The core research areas focus on biomaterials, functional properties, and natural substances. Identified research gaps include pilot and industrial-scale applications, the lack of a regulatory framework and safety guidelines, and the application of artificial intelligence (AI), particularly deep learning and machine learning, in this field of edible coatings and films for fruit preservation. Overall, this study offers a scientific understanding of past achievements and ongoing research needs, thus aiming to boost a broader adoption of edible coatings and films by consumers and the food industry to preserve fruit quality, thereby enhancing their societal and environmental impact.
Collapse
Affiliation(s)
- Yardjouma Silue
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa;
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Olaniyi Amos Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa;
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
7
|
Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2024; 64:6272-6297. [PMID: 36651301 DOI: 10.1080/10408398.2023.2167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jinglin Huang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qianyu Li
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
8
|
Ding R, Dai X, Zhang Z, Bi Y, Prusky D. Composite Coating of Oleaster Gum Containing Cuminal Keeps Postharvest Quality of Cherry Tomatoes by Reducing Respiration and Potentiating Antioxidant System. Foods 2024; 13:1542. [PMID: 38790842 PMCID: PMC11120580 DOI: 10.3390/foods13101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Exploring the green and affordable protection of perishable cherry tomato fruits during storage, herein, the protective efficacy, and its underpinning mechanisms, of a coating of oleaster gum, alone or incorporated with cuminal, on cherry tomatoes stored at ambient temperature was investigated. The composite coating of oleaster gum with 0.1% cuminal reduced the decay, respiration rate, weight loss, and softening of the fruits and decelerated the decreases in their total soluble solid, titratable acidity, and soluble protein levels, and therefore maintained their marketability. Furthermore, it reduced the accumulation of O2·- and H2O2 in the fruits and mitigated cell membrane lipid oxidation and permeabilization, thereby retarding their senescence. Instrumentally, it elevated the activities of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the levels of ascorbic acid and glutathione. This potentiation of the fruits' antioxidant system makes this composite coating a promising approach to keeping the postharvest quality of perishable fruits.
Collapse
Affiliation(s)
- Ruojun Ding
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Xishuang Dai
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Zhong Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
9
|
Hossen MA, Shimul IM, Sameen DE, Rasheed Z, Dai J, Li S, Qin W, Tang W, Chen M, Liu Y. Essential oil-loaded biopolymeric particles on food industry and packaging: A review. Int J Biol Macromol 2024; 265:130765. [PMID: 38462119 DOI: 10.1016/j.ijbiomac.2024.130765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Essential oils (EOs) are liquid extracts derived from various parts of herbal or medicinal plants. They are widely accepted in food packaging due to their bioactive components, which exhibit remarkable antioxidant and antimicrobial properties against various pathogenic and food spoilage microorganisms. However, the functional efficacy of EOs is hindered by the high volatility of their bioactive compounds, leading to rapid release. Combining biopolymers with EOs forms a complex network within the polymeric matrix, reducing the volatility of EOs, controlling their release, and enhancing thermal and mechanical stability, favoring their application in food packaging or processing industries. This study presents a comprehensive overview of techniques used to encapsulate EOs, the natural polymers employed to load EOs, and the functional properties of EOs-loaded biopolymeric particles, along with their potential antioxidant and antimicrobial benefits. Additionally, a thorough discussion is provided on the widespread application of EOs-loaded biopolymers in the food industries. However, research on their utilization in confectionery processing, such as biscuits, chocolates, and others, remains limited. Further studies can be conducted to explore and expand the applications of EOs-loaded biopolymeric particles in food processing industries.
Collapse
Affiliation(s)
- Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zainab Rasheed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wuxia Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
10
|
Kumar H, Dhalaria R, Guleria S, Sharma R, Cimler R, Dhanjal DS, Chopra C, Kumar V, Manickam S, Siddiqui SA, Kaur T, Verma N, Kumar Pathera A, Kuča K. Advances in the concept of functional foods and feeds: applications of cinnamon and turmeric as functional enrichment ingredients. Crit Rev Food Sci Nutr 2023; 65:1144-1162. [PMID: 38063355 DOI: 10.1080/10408398.2023.2289645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, India
| | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Kamil Kuča
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, Czech Republic
| |
Collapse
|
11
|
Bizymis AP, Kalantzi S, Mamma D, Tzia C. Addition of Silver Nanoparticles to Composite Edible Films and Coatings to Enhance Their Antimicrobial Activity and Application to Cherry Preservation. Foods 2023; 12:4295. [PMID: 38231729 DOI: 10.3390/foods12234295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
The aim of this study was to examine the potential enhancement of the antimicrobial activity of edible films, composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%) and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%), with silver nanoparticle (AgNP) incorporationat levels 5, 10 and 15% v/v. According to the results, the AgNP addition led to very high antimicrobial activity of both films, reducing by more than 96% the microbial growth of the Gram-negative bacterium Escherichia coli (E. coli) in all cases. On the other hand, by adding AgNPs to films, their thickness as well as oxygen and water vapor permeability decreased, while their transparency increased. Furthermore, the contribution of these specific edible films to preserve cherries under cold storage was investigated. All edible coatings resulted in an improvement of the fruit properties under consideration, and especially the color difference, hardness and total microbial load.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| |
Collapse
|
12
|
Piechowiak T, Skóra B, Balawejder M. Effect of postharvest nicotinamide treatment on NAD + metabolism and redox status in strawberry fruit during storage. PHYTOCHEMISTRY 2023; 213:113766. [PMID: 37343736 DOI: 10.1016/j.phytochem.2023.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601, Rzeszow, Poland
| |
Collapse
|
13
|
Iñiguez-Moreno M, González-González RB, Flores-Contreras EA, Araújo RG, Chen WN, Alfaro-Ponce M, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. Nano and Technological Frontiers as a Sustainable Platform for Postharvest Preservation of Berry Fruits. Foods 2023; 12:3159. [PMID: 37685092 PMCID: PMC10486450 DOI: 10.3390/foods12173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda A. Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Rafael G. Araújo
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Mariel Alfaro-Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Tlalpan, Mexico City 14380, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
14
|
Piechowiak T, Skóra B. Edible coating enriched with cinnamon oil reduces the oxidative stress and improves the quality of strawberry fruit stored at room temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2389-2400. [PMID: 36683377 DOI: 10.1002/jsfa.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The present study aimed to assess the impact of a starch/gelatine coating containing cinnamon oil on selected quality attributes and redox status in strawberry fruit stored at room temperature (72 h). RESULTS Research showed that the application of cinnamon oil to an edible coating allows an improvement of the quality of strawberry fruit stored at room temperature. The cinnamon oil coating inhibits the development of yeast and mould, and reduces loss of soluble solids and ascorbic acid during 72 h storage at room temperature. Moreover, the coating with cinnamon oil clearly reduced the level of oxidative stress, which was manifested by a lower level of reactive oxygen species, as well as a lower activity of antioxidant enzymes. The elimination of oxidative stress in the cinnamon oil-coated fruit also contributed to lower PARP1 mRNA expression, inhibiting the metabolism of NAD+ and reducing ATP losses. CONCLUSION The coating of strawberry fruit with a starch/gelatine biofilm containing cinnamon oil is an effective method for delaying postharvest senescence of fruit and the storage degradation of tissue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
15
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
16
|
Najmi Z, Scalia AC, De Giglio E, Cometa S, Cochis A, Colasanto A, Locatelli M, Coisson JD, Iriti M, Vallone L, Rimondini L. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods 2023; 12:foods12020332. [PMID: 36673424 PMCID: PMC9857945 DOI: 10.3390/foods12020332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Strawberries and raspberries are susceptible to physiological and biological damage. Due to the consumer concern about using pesticides to control fruit rot, recent attention has been drawn to essential oils. Microbiological activity evaluations of different concentrations of tested EOs (cinnamon, clove, bergamot, rosemary and lemon; 10% DMSO-PBS solution was used as a diluent) against fruit rot fungal strains and a fruit-born human pathogen (Escherichia coli) indicated that the highest inhibition halos was found for pure cinnamon and clove oils; according to GC-MS analysis, these activities were due to the high level of the bioactive compounds cinnamaldehyde (54.5%) in cinnamon oil and eugenol (83%) in clove oil. Moreover, thermogravimetric evaluation showed they were thermally stable, with temperature peak of 232.0 °C for cinnamon and 200.6/234.9 °C for clove oils. Antibacterial activity evaluations of all tested EOs at concentrations from 5-50% (v/v) revealed a concentration of 10% (v/v) to be the minimum inhibitory concentration and minimum bactericidal concentration. The physicochemical analysis of fruits in an in vivo assay indicated that used filter papers doped with 10% (v/v) of cinnamon oil (stuck into the lids of plastic containers) were able to increase the total polyphenols and antioxidant activity in strawberries after four days, with it being easier to preserve strawberries than raspberries.
Collapse
Affiliation(s)
- Ziba Najmi
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- National Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | | | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Antonio Colasanto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coisson
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
- Correspondence:
| | - Lisa Vallone
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| |
Collapse
|